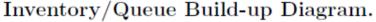
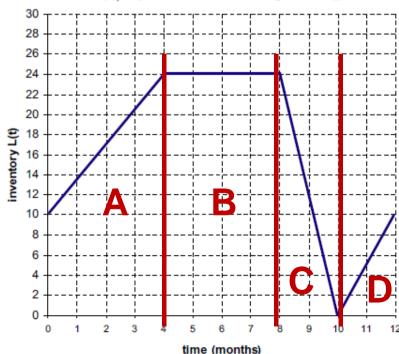
Fluid Models, with Applications to Staffing

- Part 1. Queue Build-Up Diagram (p.2-3)
- Part 2. Fluid Models (p. 4-8)
- Example Tele-SHOP (p. 9-24)
 - EXCEL Tool Solver
- Part 3. V-model (p. 25-26)

Part 1. Queue Build-Up Diagram

• **Process Flow:** A supermarket receives from suppliers 25 tons of fish per month. The average quantity of fish held in freezer storage is *16.5 tons*. The amount sold is 21.5 (tons per month) in Jan-Apr, 25 in May-Aug, 37 in Sep-Oct and 20 in Nov-Dec. There was 10 tons of inventory at the beginning.





A: Queue build-up

B: Queue constant

C: Queue decreases

D: Queue build-up

Part 1. Queue Build-Up Diagram (2)

- On average, how long does a ton of fish remain in freezer storage between the time it is received and the time it is sent to the sales department?
- We want to use the Little's Law. How do we compute L?
 - by calculating the area below the inventory build-up graph:

Inventory/Queue Build-up Diagram.

30
28
26
24
22
20
18
16
16
14
12
10
8
6
4
2
0
0
1 2 3 4 5 6 7 8 9 10 11 12
time (months)

$$17 \times \frac{4}{12} + 24 \times \frac{4}{12} + 12 \times \frac{2}{12} + 5 \times \frac{2}{12} =$$

$$\frac{17}{3} + 8 + 2 + \frac{5}{6} = 16.5.$$

• Then, $W = \frac{L}{\lambda} = \frac{16.5}{25} = 0.66$ months, on average, is the period that a ton of fish spends in the freezer.

Part 2. Fluid Models

- Deterministic View
 - $\lambda(t)$ instantaneous arrival rate at time t
 - c(t) instantaneous capacity of the system, at time to (maximal potential processing rate)
 - $\delta(t)$ instantaneous processing rate at time t.
 - $\delta(t) \leq c(t)$.
 - \circ Q(t) total amount of material in the system, (being processed + queued) at time t.

Part 2. Fluid Models (2)

- Assume that Q(0), $\lambda(t)$ and $\delta(t)$ are given for all $t \in [0, T]$.
- Then Q(t) is the solution of the nonlinear differential equation $\frac{d}{dt}Q(t) = \lambda(t) \delta(t), Q(0) = Q_0, t \in [0, T].$

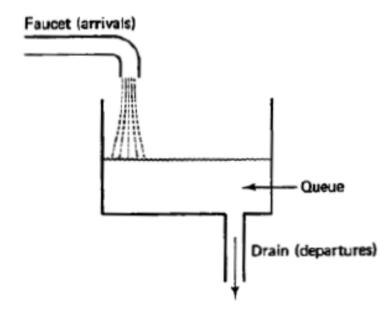


Figure 6.5 In a fluid model, the customers can be viewed as a liquid that accumulates in a tub. Queues increase when the fluid enters the tub faster than it leaves.

Part 2. Fluid Models (3)

- $\frac{d}{dt}Q(t) = \lambda(t) \delta(t), Q(0) = Q_0, t \in [0, T]$
 - The general solution may be very complicated.
 - How to create or plot $Q(t) = (Q(0), Q(t_1), Q(t_2), ..., Q(T))$?
- Start with Q(0). Then for $t_n=t_{n-1}+\Delta t$, n=1,2,... $Q(t_n)=Q(t_{n-1})+\lambda(t_{n-1})\cdot\Delta t-\delta(t_{n-1})\cdot\Delta t$
- EXCEL software can be used (will be shown later in an example)

Part 2. Fluid Models (4)

- Each little tube (on slide 5) can be viewed as a server. Consider a queueing system with one class of customers and one service station.
 - $\delta \lambda(t)$ instantaneous arrival rate at time t
 - $_{\circ}$ μ service rate, constant in time
 - \circ N(t) # servers in the system at time t
 - $\circ Q(t)$ total # customers in the system, (being served + queued) at time t
 - $c(t) = \mu \cdot N(t)$ $\delta(t) = \mu \cdot (Q(t) \wedge N(t)) \text{ (where } a \wedge b = \min(a, b))$ $\frac{d}{dt} Q(t) = \lambda(t) \mu \cdot (Q(t) \wedge N(t))$
- If we add the possibility to abandon queue (where θ is the abandonment rate for each customer in queue):

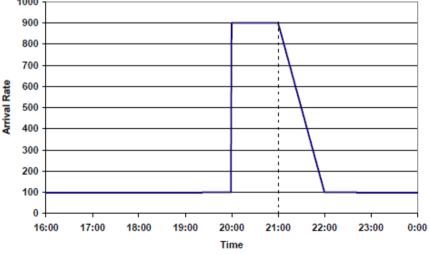
$$\frac{d}{dt}Q(t) = \lambda(t) - \mu \cdot (Q(t) \wedge N(t)) - \theta \cdot (Q(t) - N(t))^{+}$$

EX. Tele-SHOP (HW Question)

• **Tele-SHOP** is a commercial channel dealing with online sales, which is operated by a call-center. In order to increase profits decided to place a 30-sec daily advertisement on national TV, at 20:00.

 It turns out that the arrivals to the call-center are well approximated by an inhomogeneous Poisson process, with an arrival rate function given by

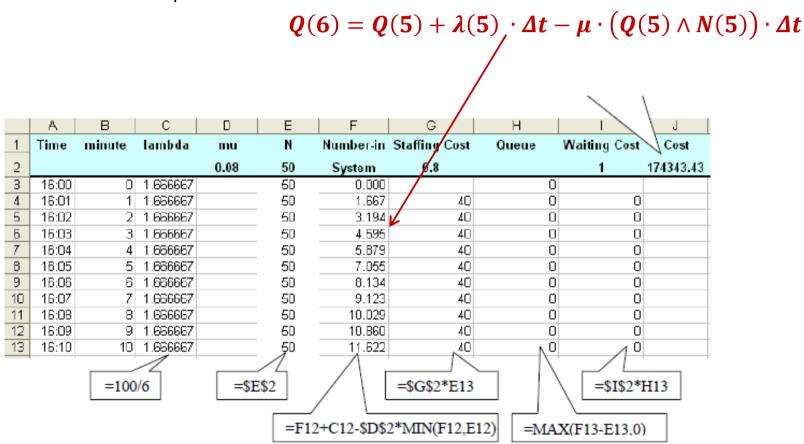
the graph:



- The call center operates from 16:00-24:00.
- The service duration of each incoming call has an average of 12 minutes.
- The number of servers in the system is fixed and equals N.

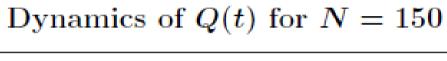
EX. Q(t)

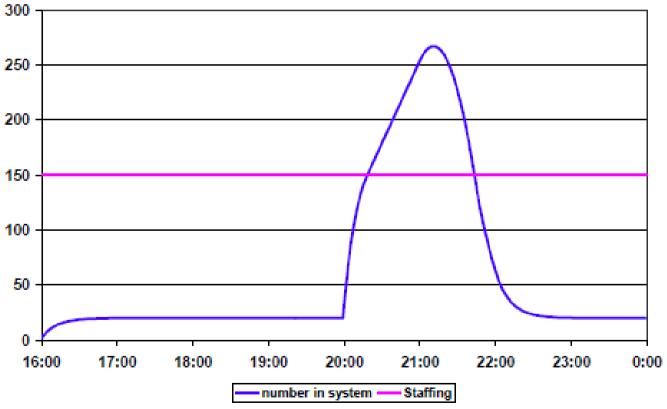
- Assuming that no abandonment takes place, plot Q(t) for N=0,150,200.
 - We use an EXCEL spreadsheet



EX. Q(t) (2)

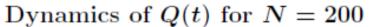
• N=150

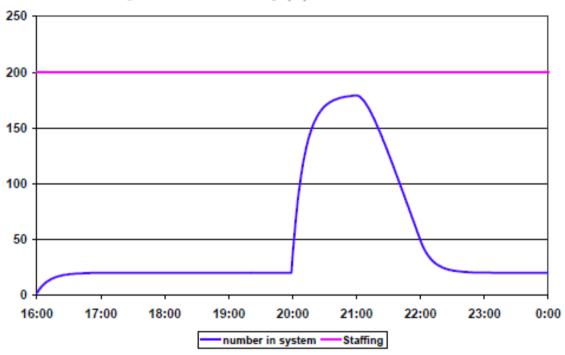




EX. **Q**(t) (3)

• N=200

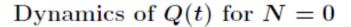


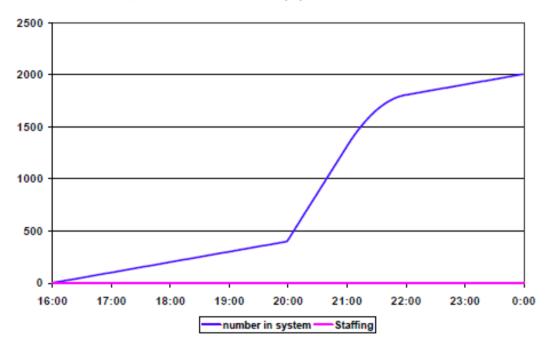


• Q satisfies $\frac{d}{dt}Q(t) = \lambda(t) - \mu \cdot Q(t)$, Q(0) = 0.

EX. Q(t) (4)

• N=0



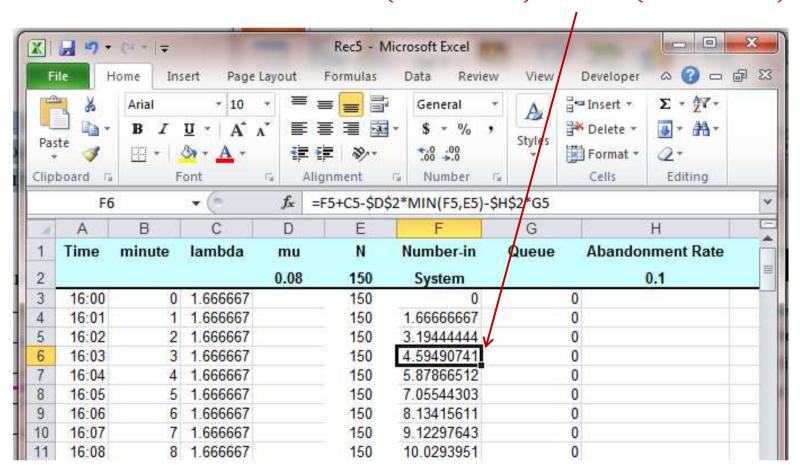


• Q(t) satisfies $Q(t) = \int_0^t \lambda(t)dt \ (= A(t))$

EX. Q(t) with Abandonments

• Now assume that waiting customers can abandon from the system and the abandonment rate is $\theta = 6$ customers per hour (i.e. each waiting customer abandons after an average of $\frac{1}{\theta}$ hours, if he was not admitted to service before).

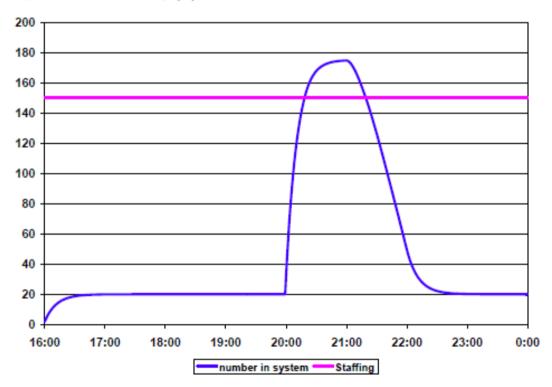
$$Q(6) = Q(5) + \lambda(5) \cdot \Delta t - \mu \cdot (Q(5) \wedge N(5)) \cdot \Delta t - \theta \cdot (Q(5) - N(5))^{+} \cdot \Delta t$$



EX. Q(t) with Abandonments (2)

• N=150

Dynamics of Q(t) for N = 150 with abandonment



$$\frac{d}{dt}Q(t) = \lambda(t) - \mu \cdot (Q(t) \wedge N(t)) - \theta \cdot (Q(t) - N(t))^{+}$$

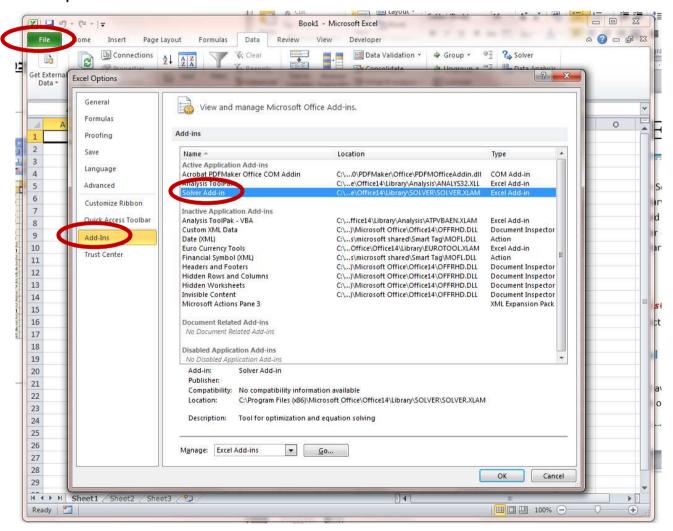
EX. Profit Maximization

Define

- c staffing cost rate (monetary unit per one unit of work)
- r service completion reward per customer
- s abandonment penalty per customer
- h waiting cost rate (monetary unit per unit of waiting time)
- Then the total profit is
 - $C^{(N)} = \int_0^T [r\mu(Q_t \wedge N_t) (s\theta + h)(Q_t N_t)^+ cN_t]dt$
 - Depends on the staffing function $N = \{N(t), 0 \le t \le T\}$
- How to choose the **optimal staffing** N=N(t) in order to maximize the profit $C^{(N)}$?
 - Exact solution is usually not available.
 - EXCEL Solver can be used in order to compute an approximate solution.

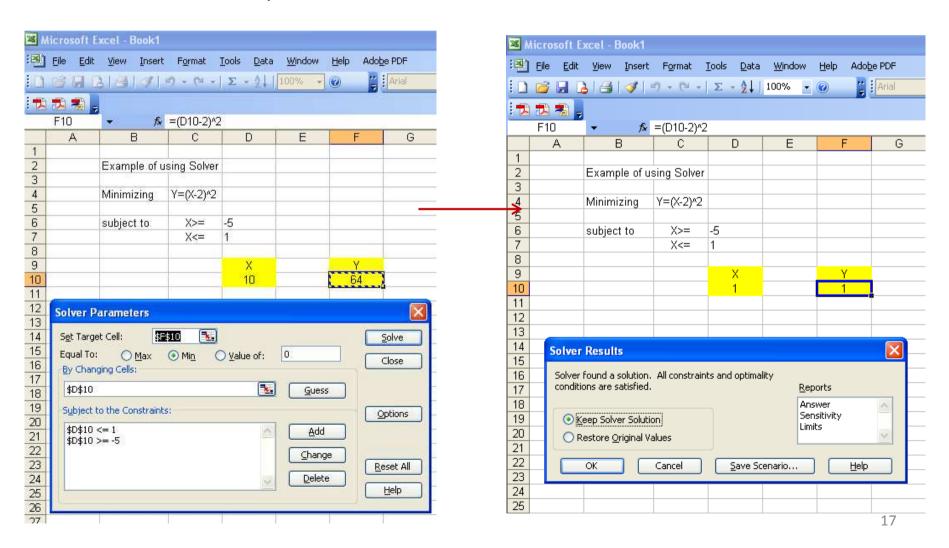
EX. EXCEL Solver

- Activate Solver Add-in
 - File -> Options -> Add-Ins -> Solver Add-in



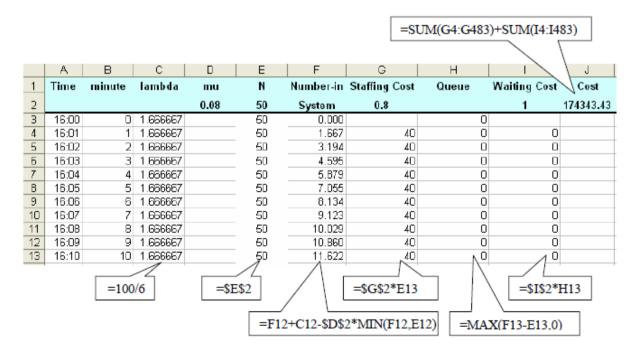
EX. EXCEL Solver (2)

Illustrative example



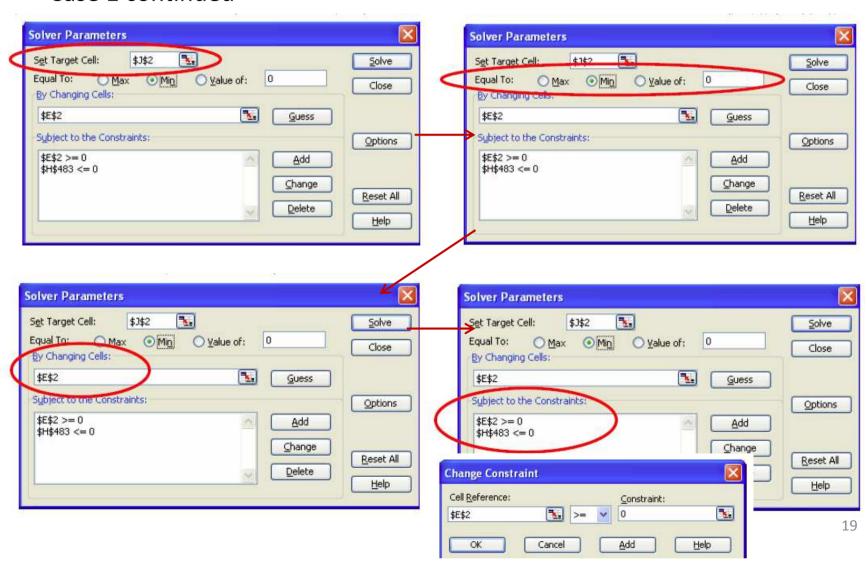
EX. Profit Maximization (2)

- Case 1: Assume N fixed. Minimize the cost of running the call center
 - An hour work of a server costs \$48 -> c =0.8
 - Minute waiting of a customer costs \$1 -> h=1
 - Assume no abandonments (θ =0) and no rewards (r=0)
 - Use Solver to solve this problem



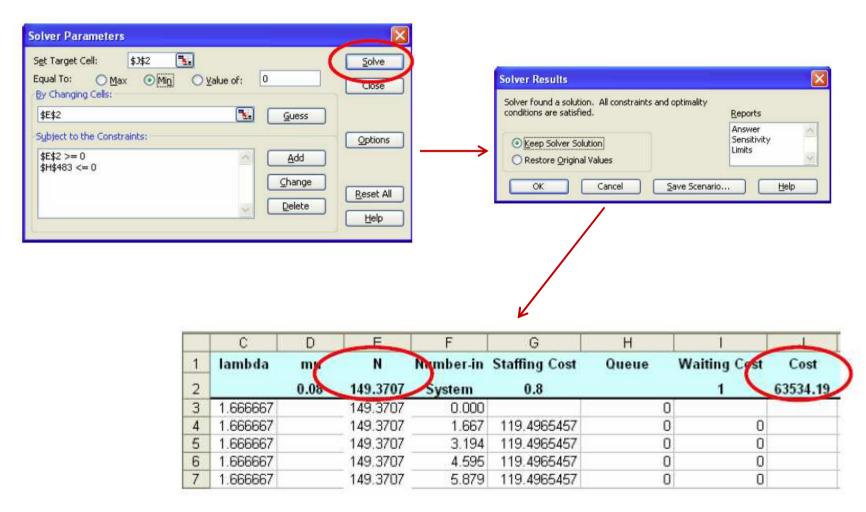
EX. Profit Maximization (3)

Case 1 continued



EX. Profit Maximization (4)

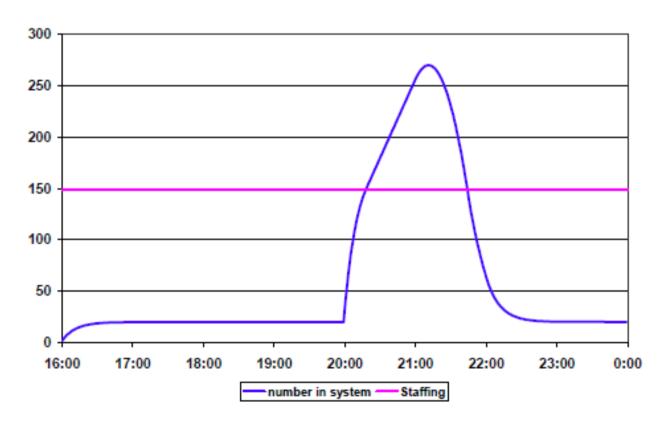
Case 1 continued



EX. Profit Maximization (5)

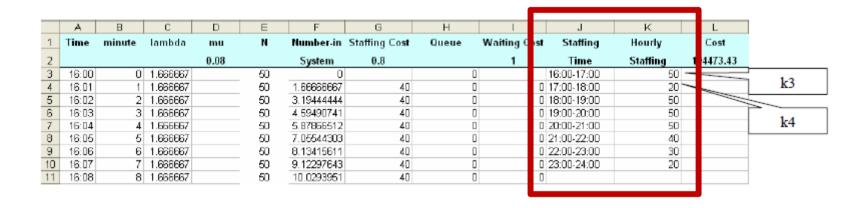
Case 1 continued

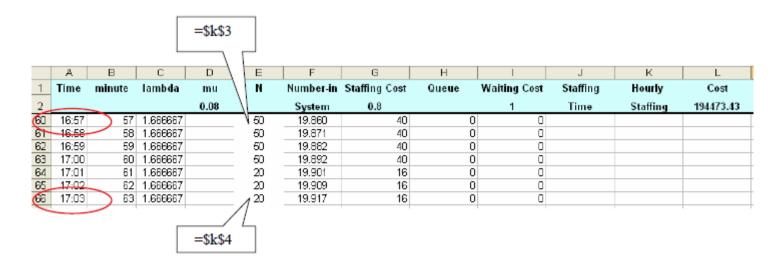
Solution: The optimal staffing $N^* = 149$ and the cost $C^{N^*} = 63,534$.



EX. Profit Maximization (6)

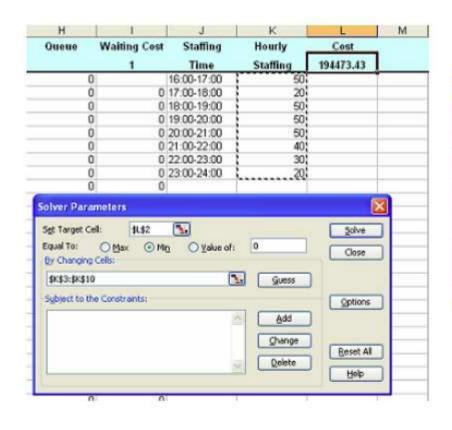
Case 2: Assume that the staffing can be changed at each hour.





EX. Profit Maximization (7)

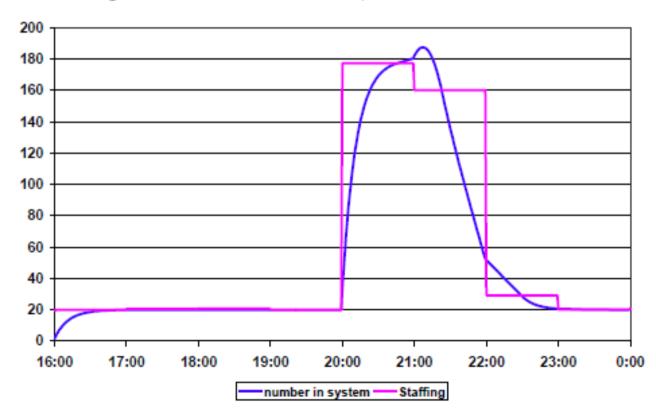
Case 2 continued



EX. Profit Maximization (8)

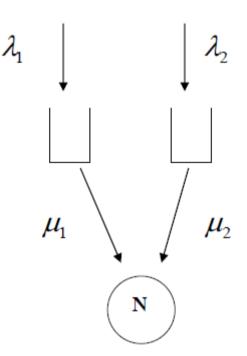
Case 2 continued

Solution: The optimal cost $C^{N^*} = 23, 133$.



Part 3. V-model

- Assume there are two classes of customers
 - VIP (Class 1), with arrival rate $\lambda_1(t)$
 - Regular (Class 2), with arrival rate $\lambda_2(t)$
 - Each server serves both classes, with rates μ_i for class i (i=1,2)
 - Define $Q_i(t)$ to be the total number of class i customers in the system, i=1,2



- Let $Q(t) = Q_1(t) + Q_2(t)$. Assume Q(0) = 0.
 - Is it possible to write the differential equation for Q(t) without any additional assumptions?

Part 3. V-model

- A routing policy: assume that the call center works in the preemptive-resume regime:
 - At every moment a service to a customer can be interrupted (in this case a customer goes back to queue of its class) and resumed at a later time.
 - VIP customers are high priority customers, which means that no regular customer can be in service while VIP customer is waiting.
- Differential equation for $Q_i(t)$, i = 1, 2

$$\frac{d}{dt}Q_1(t) = \lambda_1(t) - \mu_1 \cdot (Q_1(t) \wedge N(t)), Q_1(0) = 0,$$

$$\frac{d}{dt}Q_2(t) = \lambda_2(t) - \mu_2 \cdot \left(Q_2(t) \wedge (N(t) - Q_1(t))^+\right), Q_2(0) = 0.$$