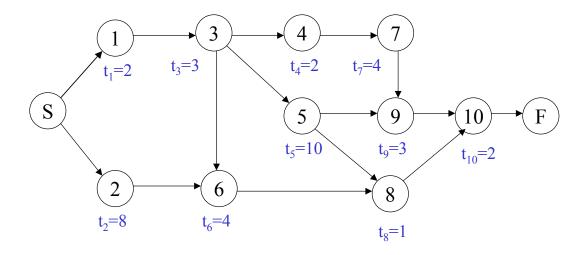
Recitation 4, Part 2: PERT

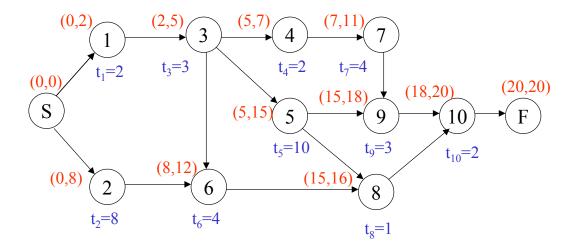

Example 1:

Project Management: Example of Classical Approach

Tennis Tournament Activities (Fitzsimmons, pp 391–392)

Task Description	Code	Immediate Predecessors
Negotiate for location	1	_
Contact seeded players	2	_
Plan promotion	3	1
Locate officials	4	3
Send invitations	5	3
Sign player contracts	6	2,3
Purchase balls and trophies	7	4
Negotiate catering	8	5,6
Prepare location	9	5,7
Tournament	10	8,9

PERT Chart

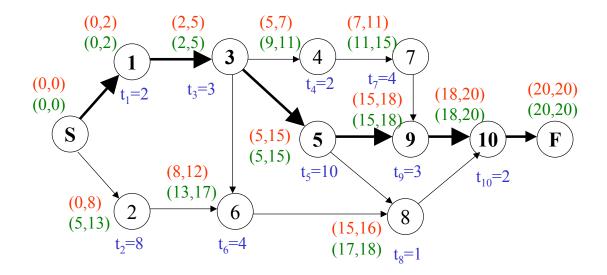

 $\mathbf{PERT} = \mathbf{P}$ rogram \mathbf{E} valuation and \mathbf{R} eview \mathbf{T} echnique.

 t_i – completion times of tasks.

Assume that t_i are **deterministic**.

How to calculate project completion time?

Critical Path Method: Forward Pass



Initialization: $(ES)_i = (EF)_i = 0$ for Start node.

Early Start: $(ES)_i = \max\{EF \text{ of all predecessors}\}.$

Early Finish: $(EF)_i = (ES)_i + t_i$.

Critical Path Method: Backward Pass

Initialization: $(LS)_i = (ES)_i$ for Finish node.

Late Finish: $(LF)_i = \min\{LS \text{ of all successors}\}.$

Late Start: $(LS)_i = (LF)_i - t_i$.

Critical Path(s): $(ES)_i = (LS)_i$ and $(EF)_i = (LF)_i$.

Slack: $(TS)_i = (LS)_i - (ES)_i = (LF)_i - (EF)_i$.

Start time of task i can be delayed by $(TS)_i$ without affecting project completion time.