Empirical Models

- Case 1. Printing Shop Example (p.2-10)
- Case 2. Face-to-Face Service Operation Example (p. 11-20)
- Using Pivot Table Tool in EXCEL (p. 21-27)

Case 1. Printing Shop Example

Jobs at a printing shop from 9AM to 12:20PM

Customer	Arrival time	Depart queue	Depart system
1	9:03	9:03	9:23
2	9:10	9:23	9:55
3	9:40	9:55	10:35
4	10:05	10:35	10:50
5	10:15	10:50	11:20
6	10:40	11:20	11:35
7	11:50	11:50	12:20

- Q1 Calculate the average time spent in queue and in the system
- Q2 Plot the cumulative arrivals, cumulative departures from queue, and cumulative departures from the system
- Q3 For 9:00 12:20, determine the average number of customers in queue and in the system.
- Q4 From your answers to Q1 and Q3, verify Little's formula for the customers in queue and in the system in the time interval 9:00-12:20
- Q5 What would happen to the law, if you consider only the time interval 9:00-12:00?
- Q6 Determine the throughput and utilization over 9:00 12:20

Case 1 - Q1

- Q1: Average time spent in queue and in the system
- Define
 - $^{\circ}$ A^{-1} (n): time of the nth arrival
 - $_{\circ}$ D_{q}^{-1} (n): time of the nth departure from queue
 - D_{sys}^{-1} (n): time of the nth departure from system
 - $_{\circ}$ $W_{\mathrm{q}}(n)$: time in queue, for the nth customer to arrive. $W_{\mathrm{q}}(n)=D_{\mathrm{q}}^{-1}(n)-A^{-1}(n)$
 - $W_{\rm sys}(n)$: time in system, for the nth customer to arrive. $W_{\rm sys}(n) = D_{\rm sys}^{-1}(n) A^{-1}(n)$

Customer	Arrival time	Depart queue	Depart system
1	9:03	9:03	9:23
2	9:10	9:23	9:55
3	9:40	9:55	10:35
4	10:05	10:35	10:50
5	10:15	10:50	11:20
6	10:40	11:20	11:35
7	11:50	11:50	12:20

0	\overline{W}_{q} : average time spent in queue
---	--

 \overline{W}_{sys} : average time spent in system (queue + service)

 $\overline{W}_{\text{service}}$: average time spent in service ($\overline{W}_{\text{sys}} - \overline{W}_{\text{q}} = 26 \text{ min}$)

n	$W_q(n)$	$W_{sys}(n)$
1	0	20
2	13	45
3	15	55
4	30	45
5	35	64
6	40	55
7	0	30
Avg	19 min	45 min

Case 1 - Q2

 Q2: Plot the cumulative arrivals, cumulative departures from queue, and cumulative departures from the system.

Define

- A(t): cumulative arrivals from time
 0 to time t
- D_q(t): cumulative departures from the queue from time 0 to time t
- D_{sys}(t): cumulative departures from the system from time 0 to time t

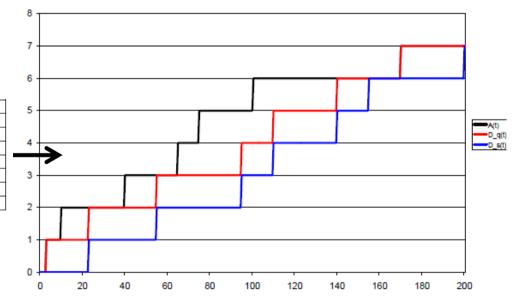
min	A(t)	$D_q(t)$	$D_{sys}(t)$
0	0	0	0
0.5	0	0	0
1	0	0	0
1.5	0	0	0
2	0	0	0
2.5	0	0	0
3	1	1	0
3.5	1	1	0
		:	
9	1	1	0
9.5	1	1	0
10	2	1	0
10.5	2	1	0
	-	:	
21	2	1	0
21.5	2	1	0
22	2	2	1
22.5	2	2	1

Case 1 - Q2 continued

• Q2: Plot the cumulative arrivals, cumulative departures from queue, and cumulative departures from the system.

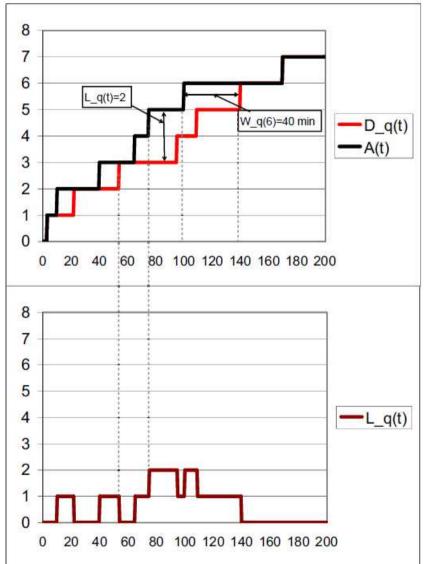
$$A(t) \ge D_q(t) \ge D_{sys}(t)$$
.

Customer	Arrival time	Depart queue	Depart system
1	9:03	9:03	9:23
2	9:10	9:23	9:55
3	9:40	9:55	10:35
4	10:05	10:35	10:50
5	10:15	10:50	11:20
6	10:40	11:20	11:35
7	11:50	11:50	12:20



Case 1 - Q3

- Q3 For 9:00 12:20, determine the average number of customers in queue and in the system.
- Define
- $L_q(t)$: number of customers in the queue at time t. $L_q(t) = A(t) D_q(t)$.
- $L_{sys}(t)$: number of customers in the system at time t. $L_{sys}(t) = A(t) D_{sys}(t)$.
- - $_{\circ}$ The numerator is the area below the graph of $L_{q}(t)$
- o $\bar{L}_{\text{sys}} = \frac{\int_a^b L_{\text{sys}}(t)dt}{b-a}$: average number of customers in the system



Case 1 – Q3 continued

Then,

•
$$\overline{L}_{\mathbf{q}} = \frac{\int_0^{200} L_q(t)dt}{200} = \frac{(13+15+10+5+30)\times 1 + (20+10)\times 2}{200} = 0.6651 \text{ cust}$$

•
$$\bar{L}_{sys} = \frac{\int_0^{200} L_{sys}(t)dt}{200}$$

$$= \frac{(7+17+10+15+30)\times 1 + (13+15+10+5+30)\times 2 + (20+10)\times 3}{200} = 1.575 cust$$

Case 1 - Q4

- Q4: Verify Little's formula for the customers in the time interval 9:00-12:20
- We have

$$\lambda = \frac{7}{300} = 0.035 \frac{\text{cust}}{\text{min}}$$

- $W_q = 19 \ min \ (from Q1)$
- $W_{sys} = 45 min \text{ (from Q1)}$

$$\rightarrow \widehat{L}_{q}^{[9:00,12:20]} = 0.035 \frac{cust}{min} \times 19 \ mins = 0.665 \ cust$$

→ same as the answer to Q3

$$\rightarrow \widehat{L}_{sys}^{[9:00,12:20]} = 0.035 \frac{cust}{min} \times 45 \text{ mins} = 1.575 \text{ cust}$$

→ same as the answer to Q3

Case 1 - Q5

- Q5: Does Little's formula hold for time interval 9:00-12:00?
- We have

$$\lambda = \frac{7}{300} = 0.035 \frac{\text{cust}}{\text{min}}$$

$$\overline{W}_{q} = \frac{0+13+15+30+35+40+0}{7} = 19 \text{ minutes}$$

$$\overline{W}_{\text{sys}} = \frac{20+45+55+45+64+55+10}{7} = 42.14 \text{ minutes}$$

$$\bar{\boldsymbol{L}}_{q} = \frac{\int_{0}^{180} L_{q}(t)dt}{180} = \frac{(13+15+\dot{1}0+5+\mathbf{10})\times 1 + (20+10)\times 2}{180} = 0.6279 \ cust$$

$$\overline{\boldsymbol{L}}_{\mathrm{sys}} = \frac{\int_0^{180} L_{\mathrm{sys}}(t) dt}{180}$$

$$=\frac{(7+17+10+15+10)\cdot 1+(13+15+10+5+30)\cdot 2+(20+10)\cdot 3}{{}_{180}}=1.6389\ cust$$

$$\rightarrow \widehat{L}_{q}^{[9:00,12:00]} = 0.035 \frac{cust}{min} \times 19 \ mins = 0.665 \ cust$$

Little's law doesn't hold

$$\rightarrow \hat{L}_{sys}^{[9:00,12:00]} = 0.035 \frac{cust}{min} \times 42.14 \text{ mins} = 1.475 \text{ cust}$$

Case 1 – Q6

- Q6: Throughput and utilization over 9:00 12:20
- Throughput rate

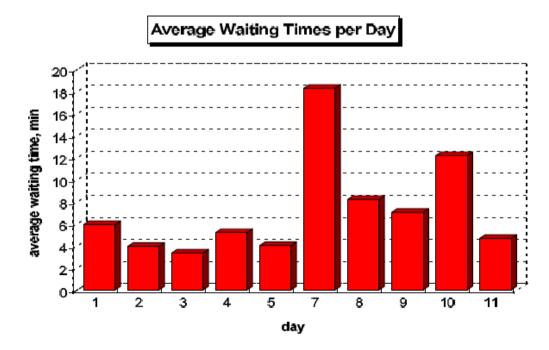
$$\frac{7 \text{ arrivals}}{200 \text{ minutes}} = 0.035 \text{ per minute}$$

Utilization

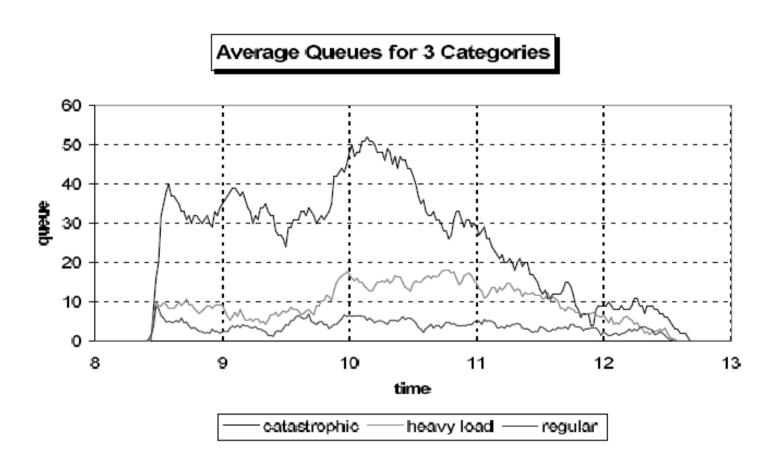
$$\rho = \frac{busy\ time}{200} = \frac{200 - 3 - 15}{200} = 0.91\ (91\%)$$

Case 2. Face-to-Face Service of a Bank

- Data from 12 days of work in a Face-to-Face service of a bank Several servers (maximum 5) work simultaneously at a single station
- Working days were divided into three categories (Data from Fridays (day 6, 12) is not considered because they are different from the others)
 - Catastrophic day: day 7
 - Heavily loaded days: days 8, 9 and 10
 - Regular days: days 1, 2, 3, 4, 5 and 11



Case 2. Queues (1)



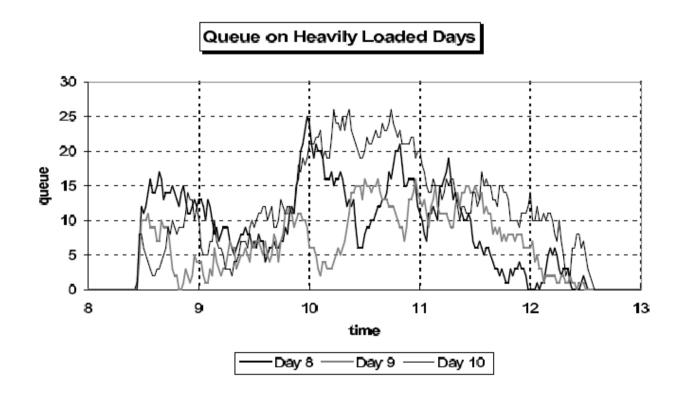
Common features and queue pattern for each day?

Case 2. Queues (2)

- Common features for different categories.
 - Sharp growth of the queues at the start of the day
 - At 8:30AM, the bank opens and there are people waiting at the door
 - Queue decrease before 9:30
 - Queue growth after 10:00
 - Gradual decrease to zero at the end of the day
- Average queue pattern for every category:
 - Catastrophic day (1 day)
 - Sharp increase when the day starts (40 customers shortly after 8:30)
 - Until 9:30, the queue goes down to 25 customers and then grows rapidly again
 - Approximately at 10:10, we get the record queue for all days of more then 50 customers
 - Then the queue gradually decreases to zero at the end of the day

Case 2. Queues (3)

- Heavily loaded days (Average of 3 days)
 - A sharp increase to 10 customers at the beginning of the day, and then oscillates between 5 and 10 customers until 9:45
 - After 11:00 the queue slowly decreases to zero
 - Sample path of each day:

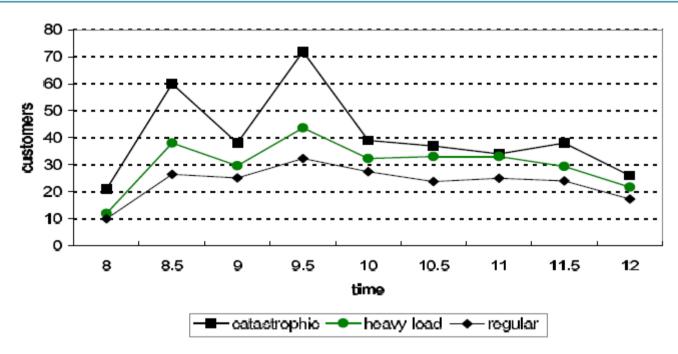


Case 2. Queues (4)

- Regular days (Average of 6 days)
 - jumps to approximately 10 at the beginning
 - decreases close to zero before 9:30
 - over almost the whole day, oscillates in "steady state" near 5
 - Sample path of each day:

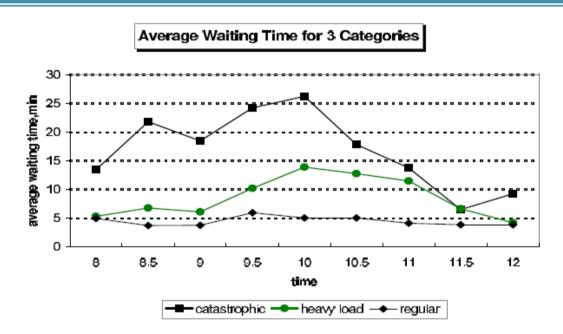


Case 2. Arrival Rates



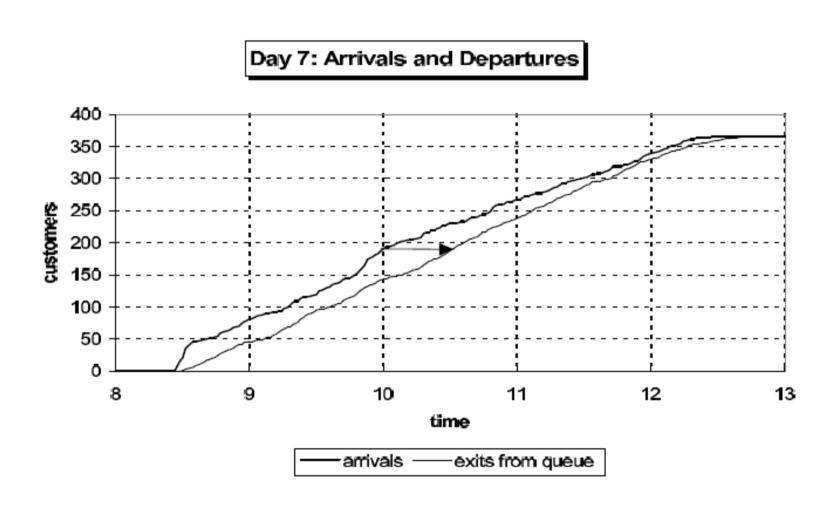
- We have maximum arrival rate at the same time interval (9:30–10:00) for all categories
- The maxima are "steeper" for the categories with a large arrival rate.
- Catastrophic day has two sharp peaks of arrivals: 60 customer between 8:30 and 9:00 and more then 70 customers between 9:30 and 10:00. Busy morning.
- **Heavily loaded days** has two maximums at 8:30-9:00 and 9:30-10:00 (approximately 40 customers). For other time intervals, except for the first and the last, the arrival rate is nearly constant (30 customers).
- For regular days, the variability of the average arrival rate is small.

Case 2. Waiting Times

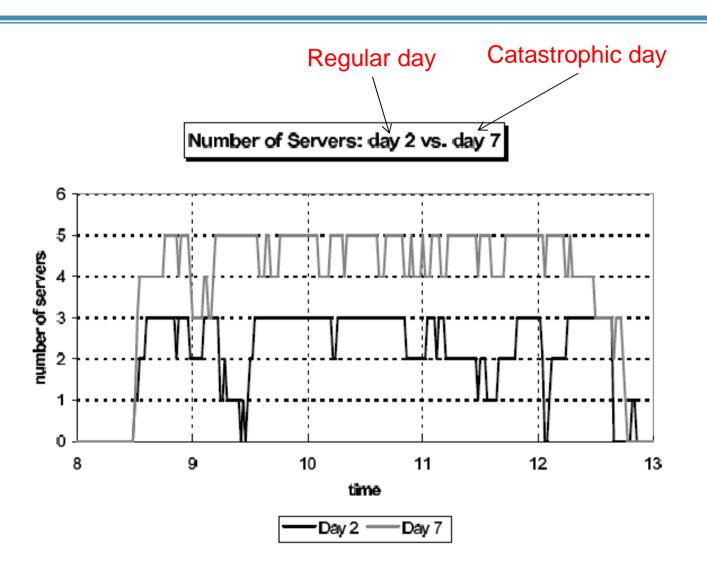


- For catastrophic and heavily loaded days, maximum value at [10:00, 10:30]
 - For a heavily loaded queueing system, the peak of the waiting time usually comes after the peak of the arrival rate (Slide 16)
- The patterns of the waiting times follow the patterns of queues (slide 12)
- For Catastrophic day, rapid decrease after 10:30
- For heavily loaded days, the average waiting time is relatively small until 9:30 (5-6 minutes). In the time interval 9:30-11:30 it is over 10 minutes with maximum between 10 and 10:30 (approximately 14 minutes). After 11:30 the waiting times are small.
- For regular days, the average waiting time does not change considerably (oscillates around 5 minutes) with time. The maximum takes place in the interval 9:30-10:00.

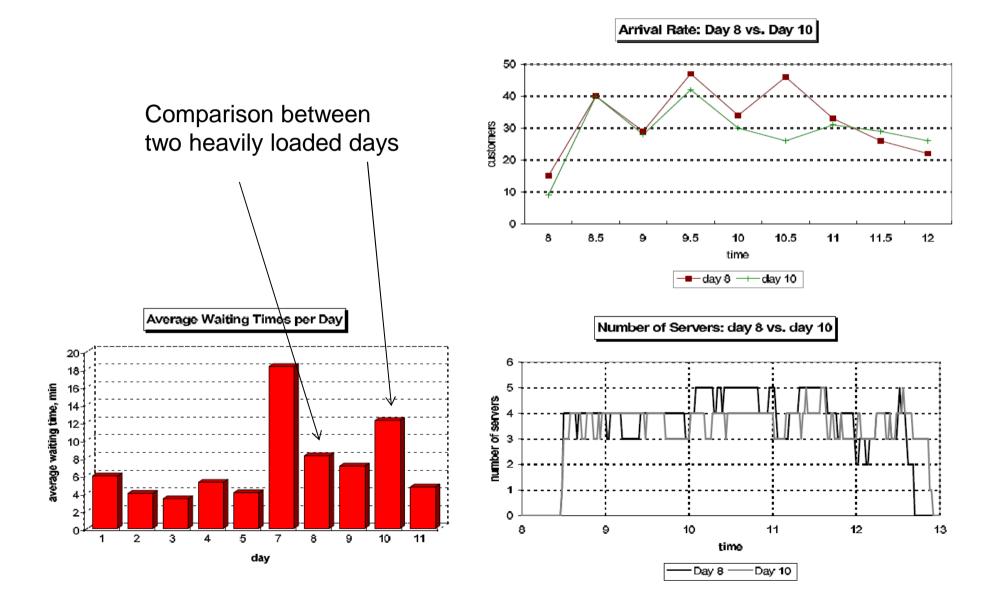
Case 2. Waiting Times - Estimate



Case 2. Staffing (1)

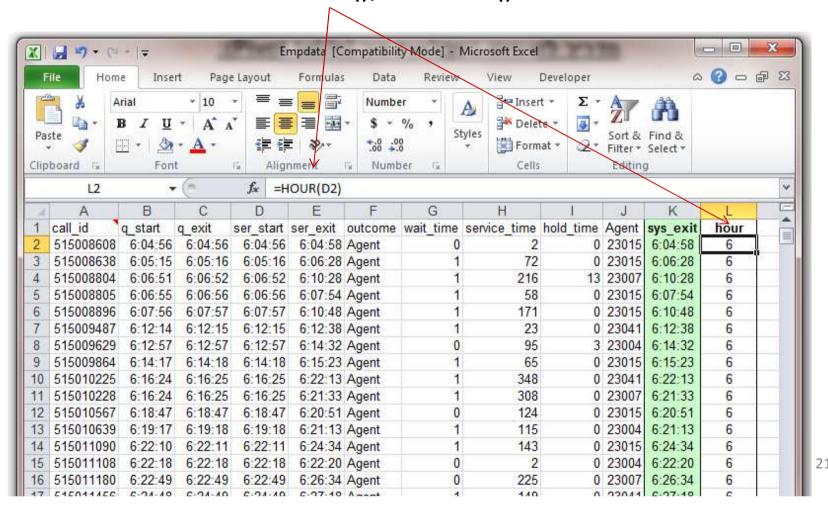


Case 2. Staffing (2)

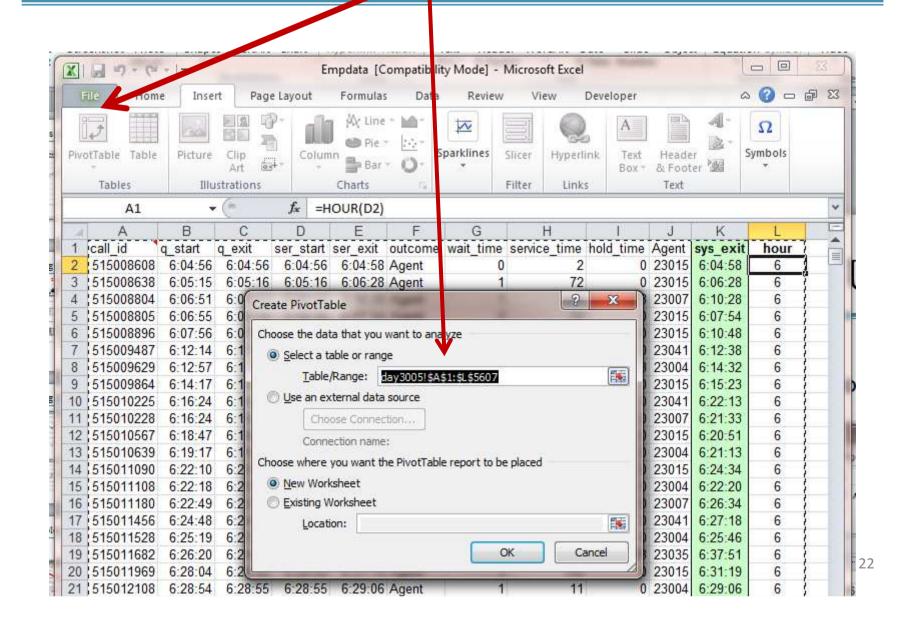


Using Pivot Table (1)

- Empdata.xls
 - Time functions: =hour(), =minute()

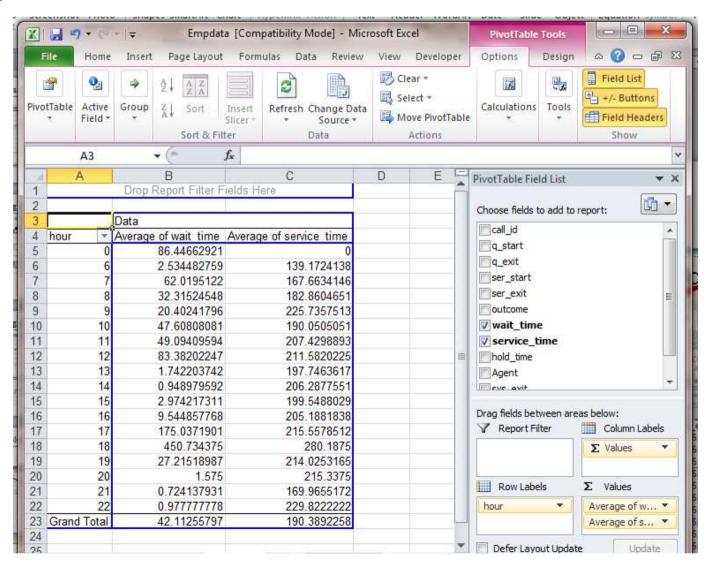


Using Piyot Table (2)



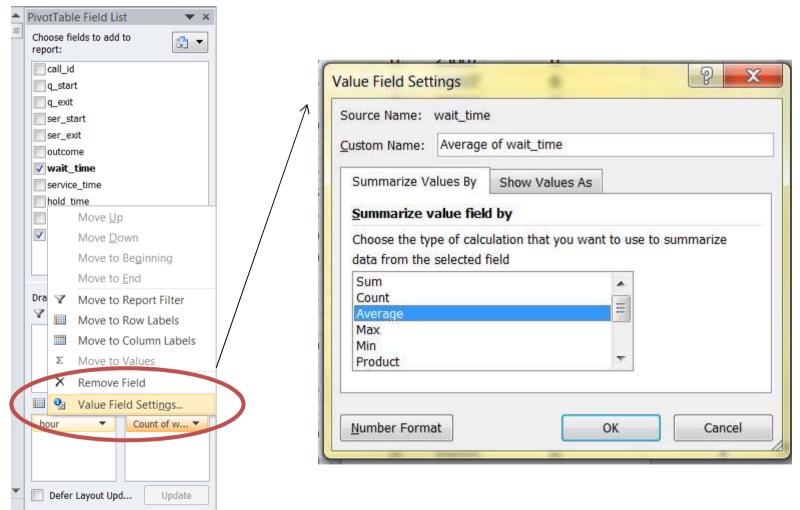
Using Pivot Table (3)

Drag fields to Column Labels, Row Labels and Values



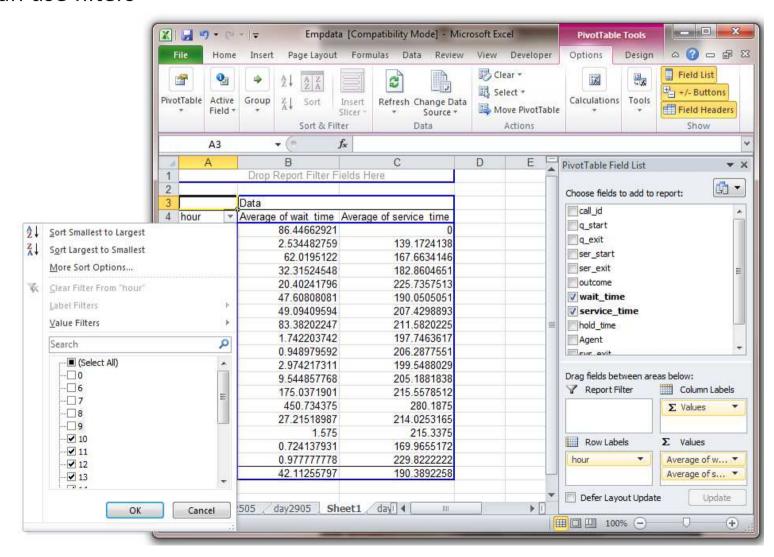
Using Pivot Table (4)

• Changing Value Field Settings: sum, count (default), average, max, min...



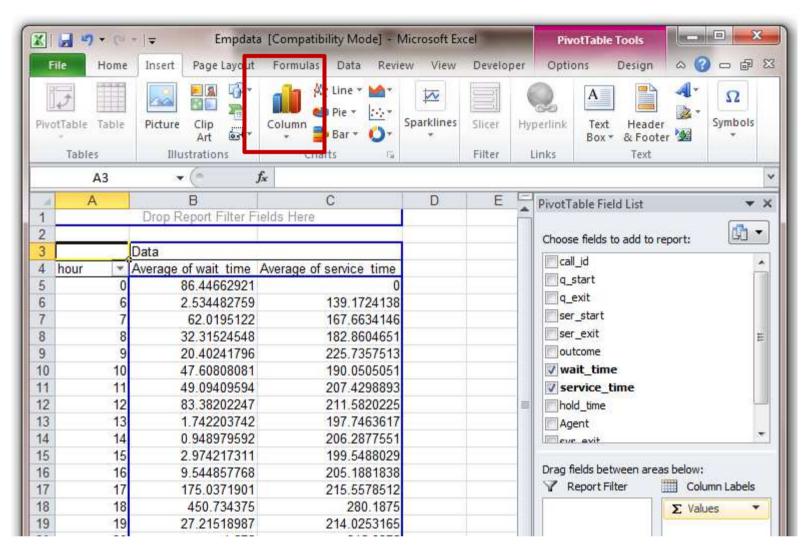
Using Pivot Table (5)

Can use filters



Using Pivot Table (6)

Drawing graphs using Pivot Table



Using Pivot Table (7)

Drawing graphs using Pivot Table

