Priority Queues

Service Engineering - Recitation 13

- Review: M/G/1 without Priorities (p.2)
- M/G/1 with Priorities (p.3-7)
- A Numerical Example (p.8)
- *c*μ-Rule (p.9-11)

January 16, 2014

M/G/1 without Priorities

Recall the Khintchine-Pollaczek Formula:

$$E(W_q) = E(S) \cdot \frac{\rho}{1-\rho} \cdot \frac{1+C^2(S)}{2}$$

Expected residual service time (where $\rho = \text{Prob.}$ of arriving to a busy server (PASTA+Little))?

$$E(R) = (1 - \rho) \cdot 0 + \rho \cdot E(S) \cdot \frac{1 + C^{2}(S)}{2}$$

M/G/1 with Priorities

- K customer classes, indexed by k = 1, ..., K.
- Class k arrivals: Poisson, rate λ_k .
- Class k service times: S_k generally distributed, with $m_k = E(S_k)$ and $E(S_k^2)$ both finite.
- **Setting the priorities:** Set highest priorities to 1, then 2,...; lowest to *K*.
- Assume FCFS within each priority class.
- Non preemptive first (Later, preemptive-resume).

M/G/1 with Priorities (2)

Steady state $\Leftrightarrow \rho \stackrel{\Delta}{=} \rho_1 + \dots + \rho_K < 1$, where $\rho_k = \lambda_k m_k$. Convenient notation: $\bar{\rho}_k = \rho_1 + \dots + \rho_k$, $1 \le k \le K$.

Note: $\rho_k =$ fraction of time allocated by server to class k. $1 - \rho =$ idleness/availability.

- $E(W_q^k)$ expected waiting time of class k customer.
- $E(L_a^k)$ expected number of waiting class k customers.
- E(U) expected unfinished work in the system.
- E(R) expected residual service time.

Non-preemptive regime

1.
$$E(W_q^1) = E(R) + m_1 E(L_q^1) = E(R) + \rho_1 E(W_q^1)$$

 $\Rightarrow E(W_q^1) = E(R)/(1-\rho_1)$, as before $(K=1)$.
2. $E(W_q^2) = E(R) + \underbrace{m_1 E(L_q^1) + m_2 E(L_q^2)}_{\text{wait due to class } 1 \& 2 \text{ in queue}} + \underbrace{m_1 \lambda_1 E(W_q^2)}_{\text{wait due to class } 1, \text{ arriving during wait of } 2.}$
 $\Rightarrow E(W_q^2) = E(R) + \rho_1 E(W_q^1) + \rho_2 E(W_q^2) + \rho_1 E(W_q^2)$
 $\Rightarrow E(W_q^2) = [E(R) + \rho_1 E(W_q^1)]/(1-\rho_1-\rho_2) = E(R)/[(1-\rho_1)(1-\rho_1-\rho_2)]$
 $\Rightarrow E(W_q^k) = E(R) + \underbrace{E(R) + \rho_1 E(W_q^k)}_{\text{q}} + \dots + \underbrace{E(R) + \rho_1 E(R)}_{\text{q}} + \dots + \underbrace{E(R)}_{\text{q}} + \dots +$

Non-preemptive regime (2)

where

$$E(R) = (1 - \rho) \cdot 0 + \sum_{k} \rho_{k} \cdot m_{k} \cdot \frac{1 + C_{k}^{2}(S)}{2} = \frac{1}{2} \sum_{k} \lambda_{k} E(S_{k}^{2})$$

$$\Rightarrow \mathbf{E}(W_q^k) = \frac{\frac{1}{2}\sum_{j=1}^K \lambda_j E(S_j^2)}{(1-\rho_1-\cdots-\rho_{k-1})(1-\rho_1-\cdots-\rho_k)}, 1 \leq k \leq K.$$

Preemptive-resume regime

Now, Class
$$k$$
 does not see classes $k+1,\ldots,K$.
Recall: for M/G/1-like queues, $E(U) = \frac{E(R)}{1-\rho} = E(W_q)$

$$E(W_q^k) = \frac{E(R^k)}{1-(\rho_1+\cdots+\rho_k)} + \sum_{j=1}^{k-1} \lambda_j m_j [E(W_q^k) + m_k]$$

$$= \frac{E(R^k)}{1-\bar{\rho}_k} + \bar{\rho}_{k-1} [E(W_q^k) + m_k]$$

$$E(W_q^k) = \frac{E(R^k)}{(1-\bar{\rho}_k)(1-\bar{\rho}_{k-1})} + \frac{\bar{\rho}_{k-1}}{1-\bar{\rho}_{k-1}} m_k$$
where $E(R^k) = \sum_{j=1}^k \rho_j \cdot m_j \cdot \frac{1+C^2(S_j)}{2} = \frac{1}{2} \sum_{j=1}^k \lambda_j E(S_j^2)$

$$E(W_q^k) = \frac{\frac{1}{2} \sum_{1}^k \lambda_j E(S_j^2)}{(1-\bar{\rho}_{k-1})(1-\bar{\rho}_k)} + \frac{\bar{\rho}_{k-1}}{1-\bar{\rho}_{k-1}} E(S_k)$$

A Numerical Example

Assume we have two classes k=1,2, **exponential** service with rates $\mu_1=\mu_2=10$ customers/minute, $\lambda_1=4$, $\lambda_2=3$

No priorities:

$$E(W_q^1) = E(W_q^2) = E(W) = \frac{\rho}{\mu(1-\rho)} = 14$$
 seconds

Non-Preemptive priorities:

$$E(W_q^1) = \frac{\rho}{\mu(1-\rho_1)} = 7$$
 seconds $E(W_q^2) = \frac{\rho}{\mu(1-\rho_1)(1-\rho_1-\rho_2)} = 23.32$ seconds

Preemptive-resume priorities:

$$\begin{split} E(W_q^1) &= \frac{\rho_1}{\mu(1-\rho_1)} = \text{4 seconds} \\ E(W_q^2) &= \frac{\rho}{\mu(1-\rho_1)(1-\rho_1-\rho_2)} + \frac{\rho_1}{1-\rho_1} \frac{1}{\mu} = 23.32 + 4 = 27.32 \text{ seconds} \end{split}$$

$c\mu$ -Rule

Suppose that there is a cost C_k per unit time for each class-k customer, that waits in queue. Consider the "steady-state" cost

$$J = \sum_{k} C_{k} E(L_{q}^{k}).$$

Find a non-preemptive policy that minimizes J, i.e., assign the priorities to classes so that to minimize J.

- Simple Case 1: If $m_1 = m_2 = ... = m_k$, order by cost.
- Simple Case 2: If $c_1 = c_2 = ... = c_k$, shortest process time first.

$c\mu$ -Rule (2)

Optimal priorities assignment: Highest priority to largest

$$\frac{C_k \lambda_k}{\rho_k} = \frac{C_k}{m_k} = \frac{C_k \mu_k}{m_k}$$

A Numerical Example:

- Assume we have two customer types k=1,2, exponential service with rates $\mu_1=10,\ \mu_2=5$ customers/minute, $\lambda_1=4,$ $\lambda_2=3,$ and $C_1=3,\ C_2=5$ dollar/minute.
- We have $C_1\mu_1 = 10 \cdot 3 = 30$, and $C_2\mu_2 = 5 \cdot 5 = 25$. \rightarrow Give priority to type 1.

$c\mu$ -Rule (3)

Add abandonments? $\frac{C_k'\mu_k}{\theta_k}$ - longest patience first

Idea:

- Before we minimized $J = \sum_k C_k E(L_q^k) = \sum_k C_k \lambda_k E[W^k]$.
- Now we minimize $J' = \sum_{k} [C_k^1 \lambda_k E[W^k] + C_k^2 \lambda_k P_k(Ab)].$
- Using $P_k(Ab) = \theta_k E[W^k]$,

$$C_k^1 \lambda_k E[W^k] + C_k^2 \lambda_k P_k(Ab) = C_k^1 \lambda_k E[W^k] + C_k^2 \lambda_k \theta_k E[W^k]$$
$$= (C_k^1 + \theta_k C_k^2) E(L_q^k) = C_k^{'} E(L_q^k)$$