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How to Approximate a Histogram by a Normal Density

Lawrence D. BRowN and J. T. Gene HWANG (formerly Jiunn T. HWANG)*

Which normal density curve best approximates the sam-
ple histogram? The answer suggested here is the normal
curve that minimizes the integrated squared deviation
between the histogram and the normal curve. A simple
computational procedure is described to produce this
best-fitting normal density. A few examples are pre-
sented to illustrate that this normal curve does indeed
provide a visually satisfying fit, one that is better than
the traditional X, s answer. Some further aspects of this
procedure are investigated. In particular it is shown that
there is a satisfactory answer that is independent of the
bar width of the histogram. It is also noted that this
graphical procedure provides highly robust estimates of
the sample mean and standard deviation. We demon-
strate our technique by using data including Newcomb’s
data of passage time of light and Fisher’s iris data.

KEY WORDS: Graphical approximation; Least squares
approximation; Robust estimation.

1. INTRODUCTION

The composition of a numerical random sample is
conveniently pictured by its histogram. For many classes
of data one expects the underlying population to be
approximately normal, and hence the histogram of the
sample also to be approximately normal. If so, it may
be further convenient to smooth the histogram by ap-
proximating it by a suitable normal density curve.

Figures 1 and 2 illustrate this process with two historic
sets of statistical data. The data in Figure 1 are Newcomb’s
classical measurements of the passage time of light. (See
Stigler 1977.) The data in Figure 2 are measurements
of iris sepal width for 150 plants of three species, as
presented in Fisher (1936). (See also Andrews and
Herzberg 1985, pp. 5-8.) In each case the approxi-
mating normal density curve is chosen in the common-
sense fashion—its mean, w is X, the sample mean, and
its standard deviation o, is s, the sample standard de-
viation as defined by s = (n — 1)~ 'Z(x;, — X)*

In each figure the approximating normal density pro-
vides a reasonable visual fit to the underlying histogram;
however, in both cases (and particularly in the first) the
visual fit can be significantly improved by using a dif-
ferent value of u and o This fact is displayed in Figures
3 and 4.

The intent of this article is to describe a method of
choosing u and o so as to provide the best fit to a given
histogram. The “‘fit” will be measured in a least square
sense. This is mathematically convenient; it enables
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mathematical precision in our answer, and it appears
in examples to provide a normal density that does in-
deed provide a visually satisfying fit.

Finding the best u, o in the above sense requires the
solution of a pair of simultaneous transcendental equa-
tions. These can easily be solved numerically. We used
Gauss on an IBM PC, but any other standard program-
ming language will suffice.

The bar width of the histogram has an influence on
the choice of the approximating normal density. How-
ever, for small to moderate bar widths (those below,
say, 0/3), this influence is very minor. For a given set
of data the best approximating normal density con-
verges to a limiting answer as the bar width converges
to zero. This limiting answer therefore provides a nor-
mal density that is a good fit for any histogram drawn
from the data, so long as the bar width is not too large.
The simultaneous equations needed to calculate this
limiting answer are somewhat easier to compute, to
manipulate, and to solve than are the corresponding
equations that take into account the bar width.

One other feature of this limiting answer may also
be of interest. The approximating normal density is of
course determined by values f, & computed from the
data, as described in Theorems 3.1 or 4.1 or Corollary
3.1. These values @ and & are highly robust estimators
of the corresponding population values u and o. This
desirable robustness property is not shared by ¥ and s.

2. NORMALIZING THE HISTOGRAM

A normal density curve encloses an area of one. For
this reason it is appropriate before fitting to a histogram
that the histogram itself should be rescaled so that it
encloses an area of one. To do this, let

&o = left endpoint of first histogram bar,

&y = right endpoint of last histogram bar,

b = bar width, & = &, + bj,

M = (&, — £o)/b = number of histogram bars,

n = sample size, and

n; = number of observations in the jth bar interval.

A scaled histogram is given by
h(ty=C-n; if & <t=¢,j=1,...,M, (2.1)

with C = (bn)~! to give area one.

3. FITTING A HISTOGRAM WITH A NORMAL
DENSITY

The basic mathematical results to be derived are ac-
tually valid for fitting any nonnegative function by a
normal density. Thus we let g(-) denote a nonnegative
function on the line. In our applications g will be an
area one histogram, but that is not required in Theorem
3.1. The objective as mentioned in the introduction, is
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Figure 1. Histogram of Newcomb’s Data and a Normal Density
With the Same Mean and Standard Deviation.

to find u, ¢ to minimize

D @) = [ (euot) - g0V dt. (1)

where ¢, , denotes the normal density with mean u and
standard deviation o. In a slightly different nonpara-
metric approach Rudemo (1982) proposed a similar cri-
terion. Here is the first result.

Theorem 3.1.  Values (u, o) minimizing (3.1) must
exist. Any such values satisfy
[« wetga =0, 32
and

4o\ f (1 - (t;—z’“‘)j%,a(t)g(z) dt = 1. (3.3)

Figure 3.  Histogram of Newcomb'’s Data. Solid curve shows best-
fitting normal density. Dotted curve is N(X, s?) density as in Figure 1.

Proof. Note that

e~ (—myno?),

QD#.U(l‘) =

It is clear that the function D(u, o) is differentiable in
both u and o and satisfies

lim D(u, o) = fgz(t) dt + f(p%)a(l‘) dt

p—> £
lim D(u, o) = fgz(t) dt uniformly in u
lim D(u, o) = % uniformly in u.
o—0

Also, inf{D(u, 0): (u, o)} < [ g*(t) dt. Hence D(u, o)

Figure 2. Histogram of Fisher’s Iris Data and a Normal Density
With the Same Mean and Standard Deviation.
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Figure 4. Histogram of Fisher's Iris Data. Solid curve shows best-
fitting normal density. Dotted curve is N(X, s2) density as in Figure 2.



achieves its minimum, and all points of minima must
satisfy
aD oD
—=0=—
o do
The derivatives may be calculated inside the integral
sign. Hence

0 = = D(u. 0)
o

is equivalent to

0= [ (¢ = W00 - g0) dr. ()

By symmetry,

[~ wewa=o (3.5)
Combining (3.4) and (3.5) yields (3.2). Similarly,
0= D, o)
T e WO

is equivalent to

oﬁﬂ%@igwmmwrmwne@

Now, @2 , = (¢,.on3)20V 7 so that

f<(t ;u)z B é)#?i,o(’) g - _Fj\—/—_}' (3.7)

Substituting (3.7) in (3.6) and rearranging terms yields
(3.3).

For a general g Equations (3.2) and (3.3) may be
moderately awkward to solve numerically. When g is a
histogram, they can be reduced to a more convenient
form, as follows.

Corollary 3.1. When g is a scaled histogram (2.1),
then Equations (3.2) and (3.3), which describe the op-
timal u, o, become

M

2 nf[goftﬂ(fj) - un.cr(gj—l)] =0 (38)

j=1

and

M
4V Cnlt 0un) ~ 61 unlg ] = 1. (3.9)
=
Proof. The formulas follow from the facts that

&j
L]__l (f - /‘L)(P#.O’(t) dr = [QD#,a(tj)]g—l
and

b -w
J;,_l T Puoln) dl

9]
B J;/ﬂ GD#’G(Z) dt — [(t - M)QD#,U(I)E;_’,

Equations (3.8) and (3.9) involve only sums and not
integrals. They are consequently much more tractable
for numerical solutions than are (3.2) and (3.3).

Unfortunately, it appears that the system (3.8)—(3.9)
may have multiple roots. If this occurs then not all
solutions to the system will correspond to the desired
minimum of D(u, o). However, multiple roots appear
not to be a serious problem in several examples we have
investigated. (Furthermore, as a referee points out, one
way to ameliorate the multiple root problem is to, dur-
ing the iteration to a solution of (3.8)—(3.9), take a step
only when the distance (3.1) is reduced. Otherwise, cut
the step in half repeatedly until there is a reduction.
Stop if there is no significant reduction, since this in-
dicates one is already near a local minimum.)

4. AN ASYMPTOTIC SOLUTION

The solution provided by Corollary 3.1 naturally de-
pends on the bar width b used to construct the histo-
gram. However, as b decreases, the values («, o) min-
imizing D(u, o) converge, say to (u*, o). Whenever
b is not large (as compared to o), (u*, o*) can be used
in place of the minimizing (u, o) in order to provide a
satisfactory fit to the histogram. Here is a precise result
describing this convergence.

Theorem 4.1. Consider a sample consisting of the
values {x; i = 1, ..., n}. Let b, = 0. For the given
sample consider the scaled histogram #h,, say, con-
structed with bar width b,. Let D,(u, o) denote the
corresponding squared error measure (3.1), and let (u,,
o) denote the parameter values yielding its minimum.
Then there is a subsequence k' such that (u,., o) con-
verges. Let u*, o denote the limit of any convergent
subsequence. Then u*, o* satisfy

(5 = u)pueor(x;) = 0 (4.1)

n
=1

4&%2 (1 - E%)gomﬁ*(xj) 1. (4.2)

Proof. Let Gi(1) = J" .. h(f)dt. Then (except for
t € {x}) G (t) = F, (1), the sample cdf. It follows that

0= | (¢~ W00, (Oh0)

- f (t - I"L)qD;L'U*(t) dﬁ‘n(t)7

which is the left side of (4.1). Similar convergence holds
in (3.3), which converges to (4.2). The assertions of the
theorem thus follow from Theorem 3.1 and standard
convergence arguments.

The solutions to (4.1) and (4.2) are as easily com-
puted numerically as those to (3.8) and (3.9). (4.1) and
(4.2) depend only on the data, not on the bar width b
of the histogram. Thus one may compute the values
w*, o* directly from the data, and expect the corre-
sponding normal density to provide nearly the best fit
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to the histogram produced from the data, unless M is
small.

5. EXAMPLES

Figures 1 and 2 illustrate the process of fitting a his-
togram with a normal density having u = X, o0 = s.
Figures 3 and 4 show these same histograms fitted by
the least squares solution of Corollary 3.1. For com-
parison the normal density curves of Figures 1 and 2
are also shown on these plots. [A referee suggests we
could also have compared the solution of Corollary 3.1
with that produced from a conventional robust proce-
dure such as a 25% trimmed mean for w and the ap-
propriate mean absolute deviation (MAD) for . Those
values turn out to be close to what Corollary 3.1 pro-
duces, but not identical; and of course Corollary 3.1
yields a better fit in the sense of (3.1).]

Figure 5 is another illustration; the histogram this
time is the population histogram of the Poisson prob-
ability function with A = 2.5. This histogram of course
possesses more regularity than one would expect from
a statistical sample. It is also somewhat skewed. Be-
cause of the central limit theorem this histogram is cus-
tomarily compared to that of a normal u = 2.5, 0> =
2.5 density. Figure 5 also shows the best-fitting normal
density as computed from Corollary 3.1.

Table 1 summarizes numerical results related to Fig-
ures 3 to 5. For comparison it also gives the values of
w*, o* for the asymptotic (as b — 0) best fit for the
Newcomb and Fisher data. Note that in each case u*,
o™ are rather close to the optimal u, o found from
Corollary 3.1.

6. ROBUSTNESS PROPERTY

The estimators o = w™ and & = o* obtained by
solving (u*, o*) in (4.1) and (4.2) seem to be quite
robust. To examine [, we carried out a simulation study
in which x;, 1 < i =< n, are iid standard Cauchy random
variables with n = 20, 30, 50. We compared the perfor-
mance of 4 with x. One thousand n vectors of Cauchy
random variables are generated in each case of Table
2. Although the theoretical value of the standard de-
viation of x is infinite, the numerical values are included
for comparison. As expected the numerical values of x
fluctuate a lot, as illustrated by the simulation standard
deviations in Table 2.

Since the estimators (fi, &) are location and scale
invariant, the above simulation provides useful infor-

204+ ; \

See

Figure 5. Histogram of the Poisson (A = 2.5) Distribution. Solid
curve is best-fitting normal density. Dotted curve is N(2.5, 2.5) density.

mation for other parameter configurations as well. If
instead of observing the Cauchy random variable x;, we
observe a + bx,, then the bias of 4 and its standard
deviation will be multiplied by & and |b|. This also in-
dicates that { is an unbiased estimator for this Cauchy
example. Indeed it must be unbiased for any symmetric
model since the distributions of @ + bx; and a — bx;
are the same.

Technical difficulty arises in solving (4.1) and (4.2).
Newton’s method, simultaneously applied to both u and
o (in which a gradient matrix is calculated) does not
work well. Instead, by fixing o*, we solve u* from (4.1)
via a one-dimensional Newton method and then plug
such a value of u* into (4.2) and solve o* in (4.2), again
via a one-dimensional Newton method. The procedure
is iterated until numerical convergence is attained. The
initial points for u* and o* are taken to be the median
and interquartile range of the data.

This stepwise Newton method works well because for
a fixed o*, a precise determination of w* is very easy
to obtain from (4.1). There was also usually no problem
in solving o* from (4.2) during the simulation study. A
referee also argues that this works well since u and o
are nearly orthogonal. However, occasionally, it did
happen that the solution strayed off to infinity. This is

Table 1. Values of X, s; of u, o From Corollary 3.1; and of u*, o* From Theorem 4.1
(where appropriate)

* *

Histogram X S “w o I [
Newcomb 26.2121 10.7453 27.3801 5.0687 27.2946 4.6726
(as in Figs. 1 and 3)
Fisher 30.5530 43728 30.3892 4.2042 30.1748 4.0583
(as in Figs. 2 and 4) .
Poisson (A = 2.5) 25 1.58 2.07 1.53
(as in Fig. 5)
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Table 2. Simulated Bias

m = 20 30 50
w* .00190 —.0069 014
(.340) (.289) (.223)
X 46 -1.83 276
(40.42) (59.46) (37.18)

NOTE: The simulation standard deviations are reported in parentheses.

due to the fact that D has a “local maximum” at infinity,
in the sense that it converges to a constant. Therefore
in the simulation we restricted the region of o* to be
(0, max x; — min x;) and when it overshot we generated
a new initial point U(max x; — min x;) where U is a
uniform random number over [0, 1].

The result shows that u* has a fairly small standard
deviation.

7. RELATION TO ROOTOGRAMS

Velleman and Hoaglin (1981) discussed the “rooto-
gram” procedure derived from Freeman and Tukey
(1950). Essentially, this procedure examines the resid-
uals between the square root of the histogram and the
square root of a fitted normal density. The resulting
differences are called double-root residuals. (Actually,
a small correction factor is introduced into the formulae
to avoid difficulties with small cell counts.)

Velleman and Hoaglin suggested either visually fit-
ting the best normal density or using some robust es-
timator of u and o to produce this fit. Alternately, it
would be possible to extend the ideas of the current

article to produce the normal density which minimizes
the sum of squares of their double-root residuals. We
believe that the method of the present article, based on
ordinary residuals, will generally produce a better visual
fit. (On the other hand, the double-root residuals may
be preferable for other purposes. It may result in more
efficient estimation under appropriate assumptions. Also
the double-root residual produces a convenient test of
goodness of fit. This is because the sampling distribution
of this sum of squares is probably very well approxi-
mated by a y? distribution.) The rootogram is also re-
lated to minimum Hellinger distance estimation. See
Simpson (1987) for more on this topic.

[Received November 1991. Revised September 1992.]
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