Service Engineering

Recitation 13: Priority Queues
M/G/1 with priorities

e /{ customer classes, indexed by £k =1,..., K.
e Class k arrivals: Poisson, rate \g.

e Class k service times: S} - generally distributed, with m;, = E(Sy) and E(S?)
both finite.

e Setting the priorities: Set highest priorities to 1, then 2, .. .; lowest to K.
e Assume FCFS within each priority class.

e Non preemptive first (Later, preemptive-resume).

Steady state < p = p1+ -+ px < 1, where pr, = Apgmy.
Convenient notation: pp = p1 + -+ pp, 1 <k < K.

Note: p, = fraction of time allocated by server to class k.
1 — p = idleness/availability.

* E(WF) - expected waiting time of class k customer.

* E(L}) - expected number of waiting class k customers.
* E(U) - expected unfinished work in the system.

* E(R) - expected residual service time.

Calculation of E(W}). Non-preemptive regime

1. EW])=E(R)+mE(L)) = E(R)+pmEW,)
= E(W!)=E(R)/(1—p1) , as before (K = 1).

2. EW2)=ER)+ mE(L)+mE(L]) + miM E(W,)
wait due to class 1 & 2 in queue wait due to class 1,

arriving during wait of 2.
= E(W?) = E(R) + mE(W,) + p2 E(W2) + p1 E(W2)
= E(W;) = [E(R)+ pEW,)]/(1 = p1 — p2) =
? E(R)/[(1 = p1)(1 = p1 — p2)]

substitute E(W)
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EW}) = ., k>1

= (Induction)

_ E(R)
(1 = pr—1)(1 = pw)
The last equality can be derived via simple calculations.
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Calculation of E(W}). Preemptive regime

Now, Class k does not “see” classes k+1,..., K.
Recall: for M/G/1-like queues, E(U)=—— = E(W,)
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A Numerical Example
Non-Preemptive

Assume we have two classes k = 1,2, exponential service with rates p; = puy = 10
customers/minute, Ay =4, Ay = 3

When no priorities are applied we have that

p

———— = 14 seconds
u(1—p)

E(W!) = E(W2) = E(W) =

When non-preemptive priorities are applied we have

= 23.32 seconds

Preemptive

EWY = — P — 4 seconds
W)=

P pr 1
E(W?) = + — =23.32 4+ 4 = 27.32 seconds
(W) p(l=p)(L=pr—p2) 1—=pip



cu-Rule

CLASSICAL APPLICATION  Suppose that there is a cost Cj per unit time for each class-k
customer, that waits in queue. Consider the ”steady-state” cost

J=> CLE(L}).

Find a non-preemptive policy that minimizes J, i.e., assign the priorities to classes so that
to minimize J.

Remark: The cost J is derived from the "actual” cost, that is 3, f5 CxLE(t)dt.

Some intuition: Equal m’s = costliest first
Equal C’s = shortest processing time - first.

CiA C
OPTIMAL PRIORITIES ASSIGNMENT:  Highest priority to largest LI Ch g
Pk my

Conservation Law for multi-class M/G/1

For any work-conserving, non-preemptive strategy,
S EWE = (£B(R)  p<l.
— p>1.
Proof. Recall that the unfinished work is independent of strategy, therefore
B(U) = B(R) + S miE(L}) = B(R) + 3 puBOV])

Set the policy when all customers are routed into a common queue and served by the
single server on a First-Come-First-Serve basis, i.e., usual M/G/1.

E
Then it is known that E(U)=EW,) = 1(R) when p < 1.
—p
K ) o1&
= ZPkEG/Vf) =—— = Y ME(S))
k=1 L=p 23

When p > 1, at least one of the classes will have Equ — 00.



Proof of cu-rule: Assume that the classes are labelled in a "usual” way: highest prior-
ities to 1, then 2,...; lowest to K. By Little’s formula, rewrite the cost as

T =Y CuB(LY) = Y- CME(WS) = Y (Crpr) pr E(W)

By the Conservation Law, the quantity >, px E(W}) is constant. This will be a key to
the proof. Recall

E(R)
Q=pr—= =)L =p1 = = i)

E(W)) =

q

(1)
Denote
wy, = E(W)), k=1,2..K, Then J = (Crpk)prws.
k
Recall that by the priorities assignment we have

w1 S w9 S L WK (2)

Pick arbitrarily two adjacent classes i and j = i+ 1, and exchange the priorities
among them. The resulting average waiting times will be denoted by w; and the new

cost J = > (Crfir) pr Wi

We will show that J > .J and that will be enough for the proof. It is simple to derive
from formula (1) that
wy = wg, for k#1i,7.
as well as
w; > Wy, m]’ < wj.
Therefore, B
J = J = Cipi(pawi — pawi) + Cjpi(pjw; — pjw;) (3)

From the Conservation Law we have Y, prwi = > pxWys, hence
piw; + pjw; = pil; + pjw; = pw; — pjwy = —(piW; — pyw;) (4)
Combining (3) and (4), we have
J — J = (p; — piw;)(Cipti — Cypz) > 0,

since w; > w; and Cp; > Cjp;j.
End of the proof.
A Numerical Example

Assume we have two customer types k = 1,2, exponential service with rates pu; =
10, po =5 customers/minute, A\; = 4, Ay = 3, and C} = 3, Cy = 5 dolar/minute.

Calculating the C'u rule we have Cipu; = 10-3 = 30, and Cous = 5-5 = 25. Therefore
we should give priority to customer typel.



M/M/N with priorities

K customer classes, indexed by £k =1,..., K.

Highest priorities to 1, then 2,...; lowest to K.

FCFS within priority class.

e Non Preemptive first (Later, preemptive-resume).

Class k: Poisson arrivals, at rate A
Exponential service time: my; = 1/p equal for all classes.
(Note this is a restriction, relative to the M/G/1 model analyzed previously.)

Steady state < p 2 p1+ -+ prx < 1, where p, = ]%

Non Preemptive (Kella & Yechiali 1985)

Let E5 n be the probability of delay in a single class M/M/N system as given by the
Erlang-C formula:.

Eon

(W)Y & W)k (NN
_N!(l—P)lZ k! NI(1—p)

k=0

Then the average waiting time of the k% class is:

B\ 1 E27N
b (Wq) C ONp (1= p) (1= pra) ©)

where, as before, pr = S | pi, po = 0.
Proof

We will show that

1. P{WE> 0} =By, Vh=1,...,.K;

1 1
2. E(WFWF>0)=— .
( a1 ) Np (1= pr)(1 = pr-1)

Thus,

1 EZ,N
Np (1= pr)(1 = pre—1)

E (W;) - F (W;|W; > 0) P{WE >0} =



Step 1: A customer of class k is delayed if and only if upon its arrival all servers are busy.
The total number of customers in system and the number of busy servers are independent
of the policy as long as it is work conserving.

Step 2: Let us look at the system when all servers are busy. In that case we have a single
server system with service rate Npu.

As long as all servers are busy, queue of class k customers behaves like an M/G/1,
where G represents the busy period of an M /M /1 queue with arrival rate equal to >} \;
and service rate Np.

Denote by Sy this busy period. The first two moments of Sy are given by (Kleinrock
I, p. 215):

1
P = N
2
2 _

PR = = peay

2
Hence, L+ C7(5) = 1_ .

2 I — pr—

Recalling that pM/¢/' = X E(S), applying Khinchine-Pollatcheck and performing
straightforward calculations we get:

1 1+ C?(Sy) 1 1
k k — =
E (Wq Wy > 0) = E(Sk) - 1= pM/on 9 T Np (1= pp)(1 — pr_1)

Classical Application Suppose cost C} for one unit wait of class k£ and we wish to
minimize Y, Cp A\ E(Wy)

Optimal (Federgruen & Groenvelt 1988)  Highest priority to largest Cj.



Alternative Proof for Non-Preemptive Case can be provided via the the same
algorithm as for M/G/1 with priorities.

Waiting time (given wait) of class k customer can be divided into three components:

e Residual service time, which is exp(nu) distributed.
e Wait due to service of classes 1 — k that were in queue on arrival of a customer.

e Wait due to service of customers from classes 1 — (k — 1) that arrived during cus-

tomer’s wait.

Then
1 BV > 0) = — + LB w! > 0) = — EWHW}! >0
: ( q| q>)_@+m<q| q>)_@+p1( q| q>)
= EWHwW! >0)=i- !
o np 1—pr
1 1 A
2 2 1 2 2 2 1 2 2
2. EW2W?>0)= it (BE(LLWE > 0) + B(L2W? > 0)) + m-E(WHWq > 0)
wait due to class 1 & 2 in queue wait due to class 1,

arriving during wait of 2

1
= B(WZ|W?>0) = n—ﬂ+p1E(W;|Wq1 > 0)+pe EWZIWS > 0)+p E(W2 W, > 0)

J(L=p1r—p2) =

1
= B(WZ|W?>0) = [nu +p E(W] W, > 0)

_ nlu/[(l o)1= 1 — po)]

T
substitute E(W, W, > 0)

Then the formula:

1 1
B (WHWEF > 0) = —
( ! q>0) Np (1= pe)(1 = pr-1)

can be derived by induction similarly to M/G/1 case.




Preemptive Resume

In the case of preemptive resume we have the following recursive relation:
T . '
2(w;) = [AkW TV SNEW| A k=12, K,
i=1

where Ay = 3% | \; and W =8 is the average waiting time in a single class M/M/N

FCFS system with arrival rate Ay (i.e. ignoring arrivals from the lower classes i > k).
Proof
Let Lfl be the average number class ¢ customers in the queue.

Let Lglﬂk) be the average number of customers in a single class M /M /N FIFO queue
with arrival rate Ay (i.e. ignoring arrivals from lower classes i > k).

Note that the total number of customers in queue is independent of the policy chosen
and hence

Calculation of E(W}) = average wait of class k.

1. BW} =w, Y
2. L™ = L} + L2
= (M 4+ 2)W, " = ME(W2) + M E(WD)

= BEW2) = [0W," 7% = ME(W})] /2

k. E(W(f) [A W (1=F) -y )"LE(WqZﬂ /e




A Numerical Example

Non Preemptive

Assume we have a system with 10 servers, u = 1 (average handling time of one
minute) and two customers classes such that Ay =4 and Ay = 3.

We calculate Fy y = 0.222 using 4CC to obtain:

1 0.22
1y _ — _
FE (Wq) =10 1= 04) = 2.2 seconds
1 22
E (qu) = — 0 = 7.3 seconds

10 (1 —0.4)(1 —0.7)

Preemptive
Using 4CC we calculate:
W{=2 = 4.4 seconds

E(W,) = 0.09 seconds

E(W?) = (0.5133 — 0.006) /3 = 0.1691 minutes = 10.146 seconds.
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