Class 8

(Im)Patience; Hazard Rates.

Defining, Measuring and Modelling (Im)Patience

e Hazard Rate functions: dynamic characterization of a distribution.
e Censored Sampling; Estimating (Im)Patience.

e Laws of (Im)Patience for Service Systems with Abandonment :

The Law of Consistent Incentives: “Abandoning” Service-providers;

The Law of the “Fittest-survive” (and Wait Less - Much Less);

The Linear Law of Abandonment-rates for (non-optimizing) Customers;
Palm’s Law of Irritation (Survival-functions and Hazard-rates);

(The) Impatience/ “Loyalty” Index;

The Law of Information-shocks,

(or The Phases of Patience: Optimism, Facing Reality, Accepting Reality);
(or The Phases of Patience: Customers’ Heterogeneity).

The Adaptivity/Learning Cycle (Anticipation, Experience, Perception,...).

Recitation 8. Forecasting arrivals (demand for service).

HW T7:, “Statistical Analysis of Arrival and Service Processes”.

Recitation 9: Patience Estimation. Phase-Type Distributions.
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Please stay on the line until your call
is no longer important to you.”



Call Centers = Q’s w/ Impatient Customers
Service Engineering 14 Years History, or “A Modelling Gallery”

Class 8 ,

Customers’ (Im)Patience & Abandonment; Hazard Rates 1. Kella, Meilijson: Practice = Abandonment important

o 1 Toars Modaling Galley: . Shimkin, Zohar: No data = Rational paticnce in Equilibrium

e Customers’ (Im)Patience: Introduction. 3. Carmon, Zakay: Cost of waiting = Psychological models

e Understanding (Im)Patience: 4. Garnett, Reiman; Zeltyn: Palm/Erlang-A to replace Erlang-
Observing, Describing, Managing, Estimating, Modeling. C \ B as the standard Steady-state model

e Examples. 5. Massey, Reiman, Rider, Stolyar: Predictable variability =

o Abandonment and (Im)Patience: Theoretical and Practical Signifi- Fluid models, Diffusion refinements
cance.

6. Ritov: Sakov, Zeltyn: Finally Data = Ewpirical models
e Modeling (Im)Patience: Patience-Time and Offered-Wait (or

Time-Willing and Time-Required to Wait). 7. Brown, Gans, Haipeng, Zhao: Stalistics = Queueing Science
o Patience Distribution: Survival Function and Hazard Rate. 8. Atar, Reiman, Shaikhet: Skills-based routing = Control mod-
e Palm’s Law of Irritation. els
e Paying an Old Debt: Longest Service Times at Peak Congestion. 9. Nakibly, Meilijson, Pollatchek: Prediction of waiting =
e Estimating Exponential Patience. Online Models and Real-Time Situulation
o A Patience Index. 10. Garnett: Practice = 4CallCenters.com
e Probability to Abandon and Average Wait, or the 11. Zeltyn: Queueing Science = Empirically-Based Theory

“Law: P{Ab} = 6 - E[IW,],” and relatives.
12. Borst, Reiman; Zeltyn: Dimensioning M/M/N+G

o Bstimating Ceneral (Im)Patience (Kaplan-Meier).
o Some Human (Psychological) Aspects of (Im)Patience. 13. Kaspi, Ramanan: Measure-Valued models and approximations
o Adaptivity and Learning. 14. Jennings; Feldman, Massey, Whitt: Time-stable performance

e Next: Queues — Integrating the Building Blocks. (ISA)



Understanding (Im)Patience

Example: “A Catastrophic situation”

e Observing (Im)Patiecne — Heterogeneity:
Under a single roof, the fraction abandoning varies

from 6% to 40%, depending on the type of service/customer.

e Describing (Im)Patience Dynamically:
[rritation proportional to Hazard Rate (Palm’s Law).

e Managing (Im)Patience:

— VIP vs. Regulars: who is more “Patient”?
— What are we actually measuring?

— (Im)Patience Index:
“How long Expect to wait” relative to
“How long Willing to wait”.

e Estimating (Im)Patience: Censored Sampling.

e Modeling (Im)Patience:
— The “Wait” Cycle:
Expecting. Willing, Required, Actual, Perceived, ete.
The case of the Experienced & Rational customer.
— (Nash) Equilibrium Models.

Marketing Campaign at a Call Center

Average wait 72 sec, 81% calls answered (Saturday)
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Average wait 217 sec, 53% calls answered (Thursday)
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Avg. wait 376 sec, Max wait 1214 sec, 24% calls answered (Sunday)

Note: Systems'’s capacity about 100 customers per hour.
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BCMS SKILL REPORT
Switch Name: FDC/HAMPDEN

o Common ™ FPer-formance”

Date: 7:00 pm WED MAR 10, 1399
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Skill: 37
Skill Name: !BA AUTH1 Acceptable Service Level:
AVG TOTAL TOTAL
ACD SPEED ABAND AFTER FLOW FLOW AUXS  AVG
DAY CALLS ANS CALLS CALL 1IN aut OTHER STAFF
3/04/9% 637 0:1% 219 92:05 ] 0 4310:06 8.7
3/05/99 845 0:06 135 17%:58 1] 0 4299:43 11.3
3/06/9% 1330 0:11  3a3 280;22 ] 0 55%2:28 13,2
3/07/99 1213 0:12 358 226:20 0 0 4830:15 11.5
1/08/99 631 0:26 &z 150:50 v} 0 3743:04 - 7.9
3/09/99 570 0:40 487 148:41 (] 0 3979:04 6.7
3/10/93 512 0:29% 292 243:06 ] 0 7.9
SUMMARY 5742 0:18 2236 0:26 1:46 1321:22 1] Q keka,we 9.6
e amom =
Aerivals Rbandens 40 %
Switch Name: FDC/HAMFDEN Date: 7:00 pm WED MAR 10, 1999
Skill: 46
Skill Name: !BA AUTHORIZATION Acceptable Service Level: 30
AVG AVG AVG TOTAL TOTAL
ACD SPEED ABAND ABAND TALK AFTER FLOW FLOW RUX/ AvG
DAY CALLS ANS CALLS TIME TIME CALL 1IN ouT OTHER STAFF
1/04/99 1185 0:23 479 0:31 2:08 190:16 0 0 4213:22 B.4
3/05/39 1805 0:05 .308 0:04 1:38 337:20 0 0 4299:43 11.3
3/06/99 2437 0Q:12 642 0:12 1:51 444:03 o 0 5592:29 13.2
3/07/99 2250 0:13 558 0:14 1:46 326:33 [} 0 4830:14 11.5
3/08/99 1260 0:35 676 0:28 2:06 308:19 a 0 3743:04 i -
3/08/99 1126 0:40 651 0:34 2:10 250:40 o 0 35379:04 5.7
3/10/39 B30 0:30 472 0:32 2:16 162:13 0 0 3046:00 7.9
SUMMARY 10963 0:19 3788 ©0:22 1:55 2019:24 0 0
e =y
3oy
BCMS SKILL REPORT
Switech Name: FDC/HAMPDEN Date: 7:01 pm WED MAR 10, 1999
skill: 33
Skill Name: GA Authorization Acceptable Service Level:
AVG AVG AVG TOTAL TOTAL
ACD SPEED ABAND ABAND TALX AFTER FLOW FLOW AUX/ AVG
DAY CALLS ANS CALLS TIME TIME CALL IN ouT OTHER STAFF
3/04/99 1248 0:27 61 D:42 1:57 1330:04 o 0 4320:04 9.5
1/05/99 1521 0:14 37 0:20 1:58 353:48 o 0 6035:35 13.0
1/06/99 2388 0:20 130 0:34 2:10 550:16 0 0 6369:58 14.4
/07799 1748 0:14 66 0:30 2:08 432:16 0 0 4616:11 11,7
3/08/99 925. 0:18 50 1:00 1:53 191:06 0 0 3835:19 8.4
31/09/99 856 0:26 57 0:53 1:54 125:16 1] 0 4388:02 8.1
3/10/%% 959 1:15 125 1:55 1:48 186:44 ] 0 4198:39 8.9
SUMMARY 9645 0:25 516 0:57 2:02 2169:30 Q Q w*rEdw 108
. agam
®
1 ]
BCMS SKILL REPORT
Switch Name: FDC/HAMPDEN Jbate: 7:02 pm WED MAR 10, 1
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Example: QED Operation (at most times)

ACD Report: Health Insurance (Charlotte)

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents
Total [20,577| 19,860 3.5% 30 | 307 | 95.1%

8:00 | 332 308 7.2% 27 [ 302 | 87.1% 59.3
8:30 | 653 615 5.8% 58 | 203 | 96.1% 104.1
9:00 | 866 796 8.1% 63 | 308 | 97.1% 140.4
9:30 | 1,152 | 1,138 1.2% 28 | 303 | 90.8% 211.1
10:00 | 1,330 | 1,286 33% 22 | 307 | 98.4% 223.1
10:30 | 1,364 | 1,338 1.9% 33 | 296 | 99.0% 2225
11:00 | 1,380 | 1,280 7.2% 34 | 306 | 982% 2220
11:30 | 1272 | 1,247 2.0% 44 | 208 | 94.6% 218.0
12:00 | 1,179 | 1,177 0.2% 1 | 306 | 91.6% 218.3
12:30 | 1,174 | 1,160 1.2% 10 | 302 | 95.5% 203.8
13:00 | 1,018 | 999 1.9% 9 | 314 | 954% 182.9
13:30 1,061 961 9.4% 67 | 306 [100.0%| 163.4
14:00 [ 1,173 [ 1,082 7.8% 78 | 313 | 99.5% 1889
14:30[1,212| 1,179 2.7% 23 | 304 | 96.6% | 206.1
15:00 [ 1,137 [ 1,122 1.3% 15 | 320 | 96.9% 205.8
15:30 | 1,169 | 1,137 2.7% 17 | 311 | 97.1% 202.2
16:00 | 1,107 | 1,059 4.3% 46 | 315 | 99.2% 187.1
16:30 | 914 892 2.4% 22 | 307 | 95.2% 160.0
17:00| 615 | 615 0.0% 2 [328]83.0% | 135.0
17:30 | 420 420 0.0% 0 | 328 | 738% 103.5
18:00 | 49 19 0.0% 14 | 180 | 84.2% 5.8

"The Fittest Survive" and Wait Less - Much Less!

Erlang-A vs. Erlang-C

48 calls per min, 1 min average service time,
2 min average patience

probability of wait
vs. number of agents

average wait
vs. number of agents

1 v 50 Y
0.8 ..... 8 40 ""
Sos ..... ms
g £ :
mf M 20
.oa m B
0.2 N 510 p
mm 40 45 50 m_m 60 BS @m Lu 45 50 55 60 65 70
number of agents number of agents
If 50 agents:
M/M/n | M/M/n+M | M/M/n, A | 3.1%
Fraction abandoning 3.1% -
Average waiting time 208 sec| 3.7 sec 8.8 sec
Waiting time’s 90-th percentile | 58.1 sec | 12.5 sec 28.2 sec
Average queue length 17 3 7
Agents’ utilization 96% 93% 93%




Practical Significance
Abandonment and (Im)Patience

e One of two customer-subjective performance measures
(28— Redials).

e Lost business (present losses).
e Poor service level (future losses).
e 1-800 costs (present gains: out-of-pocket vs. alternative).

e Self-selection: the “fittest survive” and wait less (possibly
much less).

e Must account for (carefully) in models and performance mea-
sures. Otherwise, distorted picture of reality, hence misleading
goals and staffing levels:

— Over-Staffing (Efficiency): If one uses models that are
(im)patience-ignorant in order to determine staffing levels.

— Under-Staffing (Quality): If one uses performance mea-
sures (eg. average delay) of only those who got served,
ignoring those who abandoned. (The latter, in turn, could
also lead to unacceptable protocols.)

e Robust models, numerically but, even more importantly, with
respect to deviations in underlying model-assumptions (eg.
service-time distribution).

Theoretical Significance
Abandonment and (Im)Patience

e Queueing Theory: Extend classical queueing models to
accommodate call center features, notably Abandoument (and
Redials).

e Queueing Science: The classical scientific paradigm of
Measure, Model, Experiment, Validate, Refine, etc.

e Multi-Disciplinary Research, fusing
Operations Research + Psychology + Marketing, through
Models: Empirical, Mathematical (Software: 4CC), Simula-
tion, in
steady-state (Erlang-A), transience (Fluid), (Nash) equilib-
rium.

e Applications beyond Call Centers:

— VRU/IVR: Opt Out Rate (OOR) to a live agent;

— Internet: 60% and more abandon in mid-trasaction;

— Multi-Media Contact Centers: eg. Chatting (completely
open);

— Hospitals: Left Without Being Seen (LWBS); in Emer-
gency Departiments (ED) can reach 5-10% (and then?).

— Other services: Abandoning a bus station to take a
taxi, ... , more?

10



(Im)Patience in Models:
(Im)Patience-Time & Offered-Wait

Predicting Performance with Models

agents

. queue
arrivals \AH y——
R

abandonment

(lost calls)

e (Im)Patience Time 7 (random variable/distribuion):
Time a customer is willing to wait for service.

e Offered Wait V:
Time a customer must wait for service;
equivalently, waiting time of a customer with infinite patience.

e Actual wait W = min{7, V}.

e If 7 < V, customer abandons (after waiting 7);
otherwise (T > V), gets service (after waiting V');

11

Model Primitives:
e Arrivals to service (stochastic process, eg. Poisson)
e (Im)Patience while waiting 7 (r.v. = distribution)
e Service times (r.v., eg. Exponential, LogNormal)

e # Servers / Agents (parameter, sometimes r.v.)
Model Output: Offered-Wait V (r.v.)

Operational Performance Measure calculable in terms of
(r,V):

e eg.  Average Wait = E[min{r, V'}]
e eg. % Abandonment = P{r < V'}
e cg.  Average Wait of Served (ASA) = E[V|r > V]

Application: Staffing — How Many Agents?
(vs. When? Who?)

-+_]



e The Mathematical Model (Palm, Erlang-A)
» Base for software implementation (4CallCenters)

Designing a Call Center with Impatient
Customers

0. Garnett®  A. Mandelbaum*® M. Reiman !

March 26, 2002

ABSTRACT. The wmusl com model to support workforce mar it of telep call
centers is the M /M /N/B model, in particular its special cases M/M/N (Erlang C, which models
out busy-signals) and M/M/N/N (Erlang B, disallowing waiting). All of these models lack a
central prevalent feature, namely that impationt customers might decide to leave (abandon)
before their service begins.

In this paper we analyze the simplest abandonment model, in which customers’ patience is
exponentially distributed and the system’s waiting capacity is unlimited (M/M/N + M). Such
a wodel is both rich and analyzable enough to provide information that is practically important
for call center managers, We first outline o method for exact analysis of the MM /N + M model,
that while numerically tractable is not very insightful. We then proceed with an asymptotic
analysis of the M/M/N + M model, in a regime that is appropriate for large call centers
(many agents, high efficicney, high service level)., Guided by the asymptotic behavior, we derive
approximations for performance measures and propose “rules of thumb” for the design of large
call centers. We thus add support to the growing acknowledgment that insights from diffusion
approximations are directly applicable to management practice.

*Davidson Faculty of Industrial Engincering and Management, Technion, Haifu 32000, ISRAEL.

tResearch supported by the fund for the promotion of research at the Techuion, by the Technion
V.P.R. funds - Smoler Rescarch Fund, and B. and G. Grecuberg Rescarch Fund (Ottawa), and by the
Isracl Science Foundation (grant no. 388/99).

iBell Luboratories, Murray Hill, NJ 07974, USA.
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e Published in MSOM, 2003
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4CallCenters™

Personal Optimization Tools for Call Centers

Downloads:

I ACullCenters v2.01 (2ip file- S.4mb)
Desktop application offering personal profiling and optimization tools,

* For installation: Download the zip file, open it, activate setup.exe and follow the instructions,

* To uninstall the installed software: Go to Start/ Programs/4CallCenters v2.01Uninstall 4CallCenters v2.01

2. ACulCeners w201 - Hel i
Word d ining the 4CallCenter lication's help pages,

QSetup
Performance Profiler StaMng Query Advanced Profiling Advanced Queries _ What-ifAnalysis N

Performance Performance Profiler sllows you to determine and optimize the Performance Level of your Call Center. Enter your
Profiler call center's parameters below, then press ‘Compute’

(Your Call Center's Parameters “m.a:-n

% Number of Agents Answering Calls [ % Features: Abandona

| #  Average Time to Handle One Call (mmss) [aron o BasicInferval: 60 minutes

| #  Calls per 80 minute Interval [fin | * TargetTime: 0000 (mmss)
| # Averago Callors’ Patience (mss) [rron || change setings

compute | + asaroTavie | pewterows | cearmi | ppor | geen |

Average  Average WAnswer %Abandon Average
mﬁun._mou ou:en_.” %Answer %Abandon Speedof  Timein within within Queue
Fney Answer  Queue  Target  Targel  Length
Resulls
1

sU

-~ th e W
U300
2
H

Indicators

[Reasy [ snanoos | aareM

oG



80.0% =

—— 50.0% |

16 30.0%

10.0%

“hAbandon vs. Calls per Interval for various Number of Agents

Calls per Interval

Punawetns 3 E(8)= 1120wy
mﬂ.nlvu G oo Nela

\.wl./.wlwl.b..s).h _— \J \%y atan

13.

Fitting a Simple Model to

a Complex Reality

Erlang-A Formulae vs. Data Averages
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Measuring Patience: Censored Data

Israeli Bank Data

Statistics Average wait Interpretation
360K served (80%) 2 min ? must wait
90K abandoned (20%) 1 min ? willing to wait

Interpretation is wrong!

Both waiting times are censored:
e If customer abandoned. patience is known: = = W.

e If customer served, only a lower-bound known: = > W.

To estimate the distribution of 7 and V', must “un-censor”:
How? Later, via techniques from Statistical Survival Analysis.

Censoring prevalent:

e Recall “length of stay of elderly people in institutional long-
term care”, when we studied phase-type service times;

e Medical Trials (Source of Terminology): duration between suc-
cessive recurrences of a disease....

e Insurance: durations between accidents....
e Social Sciences: duration of marriage, time to find a job,...
e Marketing: duration between successive purchases of a prod-

uct, ...

13

Survival Function & Stochastic Order

Survival Function: S(t) = P{X >t} = 1— F(¢).

Stochastic Order:

t
XSY & P{X >t} <P{Y >t} & Sx(t) < Sy(t)
for all £.

Small Israeli Bank: Service Durations
Survival curve, by Types

A}

08

Survival

[

oe

i
Claim: X <Y = E[X] < E[Y].

st
Fact: Shorter (<) service times =

less abandonment and shorter waits.

14
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(Im)Patience:

Examples of Survival Functions

Small Israeli Bank: (Im)Patience Times

o |
— N
3 - NE
——= NW
-=-= PS
@ |
o
]
Z
z
=1
W
= |
(=1
o
(=]
|2
o] 3
[=]
T T T T T T T
0 500 1000 1500 2000 2500 3000
Time
st

Fact: Shorter (<) patience times =
more abandonment and shorter waits.

15

Modelling (Im)Patience: Hazard Rates

For X > 0, an absolutely-continuous r.v., define its
Hazard Rate function to be h £ f/S . namely

t)

h) & I t>0;
@)= = Fay 120
f = Density function of X,

S = Survival function of X (S =1—F)
F = Distribution function of X.

Intuition: P{X <t+ A|X >t} = h(t) X A.
In Discrete-Time: h(t) = P{X =¢t|X >}, t=0,1,...

Characterizes the distribution:

e Continuous time: S(t) = ml_a__.,.?znu t>0.

o Discrete time: S(t) & P{X > t} = [I'_o[1—h(i)], t =0,1,..

o Constant Hazard iff Memoryless (Exponential / Geometric)

Estimation: Natural in discrete-time.
In continuous-time, via discrete approximation:

1. Partition time into 0 = £y < t; < 3 < ... (dense “enough”);

2. Estimate m@; =4 mwwm”ﬂw.ﬁm_ﬁmﬁm_:mﬁ __w,.p._:u =010

3. Interpolate 2(0), h(ty), h(ts) .. ..

st

h
Ordering: Hazard-rate order ﬁNJ implies Stochastic order (<).

16
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Hazard Rate:
Natural Dynamic Model of (Im)Patience

e Palm’s Axiom (1940’s): Hazard Rate(t) o [rritation(t);
Estimated (Im)Patience based on a sample of unlucky cus-
tomers who called a broken communication-switch and got
stuck, till abandoning (hence no censoring).

e Constant hazard rate (Exponential (im)patience): benchmark;
e Increasing hazard rate (IFR): Impatience T while waiting;
e Decreasing hazard rate (DFR): Patience T while waiting;

e Other shapes: Bathtab (decreasing, then increasing), or vice
versa: both occur for (im)patience.

e More precise tail-description (vs. cdf, density).

Palm’s Law of Irritation (1943-53):

« Hazard-Rate of (Im)Patience Distribution

Small Israeli Bank (1999):
Regular vs. Priority (VIP) Customers

0.006

0.005

——— Regular Customers
Priority Customers

0.003

0.002

0.001

Observations:

e Who is more patient - Regular or VIP 7 (stochastically):
e Why the two peaks of abandonment (at outset, 60 seconds)?

— Possibly three phases of (im)patience;
— Possibly three types of customers;

— Actually human psychology.

18
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Old Debt: Longest Services at Peak Times 7

/

Figure 12: Mean Service Time

~

vs. Time-of-day (95% CI) (n =

42613)
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Distribution Fitting
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Survival Functions of (Im)Patience

_‘\
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Patience vs. Service Durations (Stochastic Order)
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Empirical Hazard Rates
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Summary of the Number of Censored and Uncensored Values

Failure Time: Unhandled Wait Time; Censored Time: Handled Wait Time

Failed Censored

Class Number of Cases Percent Censored
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Hazard Rate Function (PS)
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Hazard Rate Function (NW, NE)

Summary of the Number of Censored and Uncensored Values
Failure Time: Unhandled Wait Time; Censored Time: Handled Wait Time

group Number of cases Failed Censored Percent Censored
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NE 19483 2397 17086 87.70
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Hazard Rate Function (Case Quality, Online Banking)
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Estimating Average Patience: Warmup

Model: (Im)Patience 7 equals

e 2 minutes, with probability p;

e 10 minutes, with probability 1 — p.
What is E[7] ? (equivalently p ?)

Data: n, abandoned after 2 minutes.
ny got served (censored) after 3.4.....9.

- Naive estimator: Average Patience = 2 minutes, which
ignores those with the longer patience (who hence got served).

- Common-sense estimator: p = 25—
Ma+s

= E[r]=2p+10(1 — p) = 2. 4 10T = 2 4 8T

Natns Na+ns Ng+ns”

Note:
E[r] — 10, asng/ns—0;
E[r] =2, asng/ns— .

General Data: Data could conceivably consist of the times
{0,1,2,...,9,10}. Then, the 10’s are easy to accommodate, and
the {0, 1}'s are simply ignored (as it turns out - see the Kaplan-
Meier estimator later, if interested) .

23

Estimating Average Patience: Practice

(Im)Patience 7 is exp(@).
Assume customers’ (im)patience times to be i.i.d.

Estimate E[7]  (equivalently 6)?

Data: W, Wg, ..., cﬁwu n, times to abandon;
WP, We,...,Wi:  ng times till served (censored).

Geometric Approximation (Intuition):

(Im)Patience Times: Geom(p) (seconds).

(Estimate 1/p and deduce an estimator for 1/6.)

Every second flip a coin:
wp p Abandon (Success),
wp (1 —p) Wait one more second (Failure).

# Coin Flips (in total):

= S_WAT..ITEN__ITSW .T....._lg...w.w ,—\Qnamnh

= Total Waiting Time (Served + Abandoned).

e

# Successes = # Abandon = n,.

= p= M= # Abandon
Wiwar — Total Waiting Time *

: . —  Total Waiting Time
= HEstimator of Aver Patience = 1/p =
: verage Talience /p # Abandon

24
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Estimating Exponential Patience:
Maximum Likelihood Estimator (MLE)

Estimating Patience: Small Israeli Bank

Patience Times: exp(f) i.i.d.

Likelihood:
£(6) = (1 oexp {-ow2)) - (I exp {-0m})

Log-likelihood:
1(f) = log(L(0))
= zn_cmmIm.?ﬁw._....,_.ﬂ\na+S\w+...+$\.mb
= Ny _om% — 0 - Wiotat -

MLE § attains the maximum in [(6):

l av = ﬁn\% - Wiotar = 0,
% = wwn\g\wamﬁ. 1
H\m = E\._._chi\ﬁp .

Statistics Average wait  Interpretation
360K served (80%) 2 min ? Required to Wait
90K abandoned (20%) 1 min ? Willing to Wait

Both waiting times are censored.
If customer abandoned, patience is known: = = W.
If customer served, a lower bound is known: = > W.

Total Wait = 90K x 1 min + 360K x 2 min.

90K x 1+ 360K x 2

.. oo _ o8yt
Willing to Wait 0K 14+4x2=9 min!
Required to Wait = 0k W%Mmomﬁ, ak = 2.25 min.
Note:

Willing-to-Wait / Required-to-Wait =
9 /225 =360K / 90K = 4 =
% Served / % Abandoned

26
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Survival Functions:
Patience vs. Offered Wait

Small Israeli Bank

A Patience Index

Survival

1000

Time

E[W] =98 sec, Med[W] = 62 sec;
E[r] =803 sec, Med[r] =457 sec; (R in Figureis 7)
E[V] = 142 sec, Med[V] = 96.

Are these customers “Patient”?
What if “E[V] = 1,600 sec” (twice E[7]) ?

27

How to quantify (im)patience?
Willing to Wait E[7]
Theoretical Patience Index £ = = ;
eoretical Patience Index Expocted to Wait B[]’
where the last equality (Expected-to-Wait = Required-to-Wait) is
plausible for Experienced Customers.

We get a calculable quantity, but it still requires “un-censoring”.
To this end, “pretend” that both 7 and V' are exponential. Then,
the MLE of the “Theoretical Patience Index” is:

% served
% abandoned ’

[

Empirical Patience Index =

which is easily calculable from ACD data.

Patience index — Theoretical vs. Empirical

-
=
|
|

Theaoretical Index
~ “w - n (-] - « w

-

2 3 4 5 6 T 8 )
Empirical Index

28
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Patience Index: Willing to wait 10 min ( patient ? / impatient ?)

Time willing to wait

Time required to wait Law: P{Ab} o E[W,] (Often Enough)

Theoretical index =

~ Time willing to wait

~ Time expect to wait (if experienced) Here we prove for Exponential (Im)Patience.
) . Can be justified theoretically, and validated empirically, much
Index large = patient population more generally.

small = impaticnt

Claim. Assume a queueing model with exp(€) (im)patience.
E(R 2 5
= t "Pretend” exp Then,
P{Ab} = 0-E[W,].
Proof. Flow-conservation for abandoning customers, namely

__ Time in test /# abandon arrival-rate into queue = departure-rate out of queue,, implies:

e censored.
Time in test /# served ST T "
Empirical index = H r_MEm: i oﬁv Sepved By Little's formula:
abandon % abandon o -
% served / wait > 0 Finally, substitute (2) into (1) and cancel A. m

== - easy to measure
% abandon / wait > 0 (e25) )

Summary:
Mean Wait Mean Wait .
) . X Patience
Mean Patience = of Abandoning +  of Served X Tl
customers customers
2

30
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P{Ab} o< E[W,|: Empirical Validation

Small Israeli Bank: Yearly Data (4158 hours)

Hourly Data (4158 points) Ageregated

BB - ——

0.55
05
0.45
m 0.4
.me.um
2 o3

Z o028
W 02 =
0.15
a1 o
0.05} ¢,

——— .
100 150 200 250 300 350 400 o 50 100 150 200 250
Average waiting time, sec Average waiting time, sec

Estimating Average-(Im)Patience via Regression:

1/0 ~ 233 ~ 446 sec.

Large U.S. Bank

Retail Telesales
0.09 —— v

_oo8 o
mpﬂ —
weao 01
wcau .m.a& _
Wa.& mes. 4
Mn.au Wab._ _
SO . 8
* oot ...,... o0

% o 20 @0 a0 50 60 70 80 %0 o 10 0 S0 6 70 80

20 )
Average wail, sec (aggregated) Average wall, sec (aggregated)

Note: in Retail — many abandon during first seconds of wait.
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Queueing Science: Human Behavior

03

0%

Probability to abandon

Delayed Abandons (IVR)

A

Average wait (VRU + queue), sec

&0 (1] 150 a0 =

Probability to abandon

e o o ] o o
7] o * o o =~

=
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i = —

o
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Average waiting time, sec

Learning (Internet Customers)
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Examples of non-linear relations

2’2 B =2 B 2
LI N - S - M. N - )

probability to abandon

o
ra

el mixlura

[— ortang
=— delerministic
=== |ognormal

20 40 60 80 100 120
average waiting lime, sec

Patience distributions:

o D: Deterministic: 2 minutes exactly;

moderate loads

probability to abandon
(=]
9

e Er: Erlang with two exp(mean=1) phases;

= detarministic |
e lognormal |
— el mikhie

20 40 60 a0 100 1

average waiting time, sec

s LN: Logunormal, both average and standard deviation equal to 2;

e D-Mix: 50-50% mixture of two constants: 0.2 and 3.8,

33

Human Behavior: Mathematical Models

Linear patterns with non-zero intercepts

Israeli Bank: New Customers U.S. Bank: VRU part of Wait

0.z = 05
06 D48
04r
b c
ma.m i §oss
ma_». 1 & o3
k=]
£ S025 =
Fhe 1 % o2 -
2 2
Loa Lois N
0.1 e
0.1k —‘u_.\
0.05+ 7
e i . 4 .
(] 50 100 150 200 250 300 o 100 150 200 250

50
Average wailing time, sec Average wait (VAU + queue), sec

Left-hand plot & exp patience with Balking:
0 with probability p, exp(#) with probability (1 — p).

Right-hand plot ~ Delayed Abandonment:
c+exp(f). c> 0.

Formalizing Learning:
Experienced customers use actual offered-load in order to opti-
mize individual profits, which characterizes (unique) Nash-Equilibrium.
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Estimating General Patience:
The Kaplan-Meier Estimator

Assume patience and waiting times discreet (seconds).

Hazard rate:

hk)=P{r=k}/P{r >k}, k=0,1,2.

Survival Function:
S(k)=S(k—-1)-(1-h(k)), k=0,1... (S(-1)=1)

Ay = number of abandonment exactly at k seconds.

wne
nx = number of customers that arouieither served nor abandoned
before k seconds (nmumber-at-risk at time k).

Estimator of Hazard Rate: h(k) = Ag/nmk.

Estimator of Survival Function (Kaplan-Meier):
== k i
S(k) = .ﬁoﬁ — h(3)).

Estimating (Im)Patience Distribution: Real

Data

Empirical Hazard Rates of (Im)Patience Times
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The “Phases of Waiting” for Service

TIME IS

Time is Too Slow for those who Wait,
Too Swift for those who Fear,

Too Long for those who Grieve,

Too Short for those who Rejoice;

But for those who Love, Time is not.
(Henry Van Dyke 1852 - 1933)

Commeon Experience:

e Expected to wait 5 minutes, Required to 10

e Felt like 20, Actually waited 10 (hence Willing > 10)

An attempt at “Modeling the Experience”:
Time that a customer expects to wait
willing to wait

1

2 ((Im)Patience: 7)
3. required to wait

4

5

(Offered Wait: V')
actually waits (Wy = min(7, V))

perceives waiting.

Experienced customers = Expected = Required
“Rational” customers = Perceived = Actual.

Thus left with (7, V).

37

Perceived vs. Actual Waiting: an Example

200 Abandonment in Direct Banking
(Students’ Project)

Reason to Abandon | Actual Abandon | Perceived Abandon | Perception

Time (sec) Time (sec) Ratio
Fed up waiting 70 164 2.34
(77%)
Not urgent 81 128 1.6
(10%)
Forced to 31 35 1.1
(4%)
Something came up 56 53 0.95
(6%)
Expected call-back 13 25 1.9
(3%)

38

22



Estimate Mean Patience that is exp(6).

1. Via Py, = 0EW,

;H.Mw _ EW, “total waiting time” / N
T Pay #abandon/N

Customers’ (Im)Patience in Call Centers:
Summary

“ total time in test ”
# uncensored (observed)’

e (Im)Patience time are, in general, non-exponential; Use the above to estimate mean patierics , B(R)

e Most tele-customers are very (surprisingly) patient; 2. Note: We get this way the MLE (mawimum likelihood estimation) of
a censored exponential mean.

e Hazard and survival estimators are very informative concern-

ing qualitative patterns of (im)patience 3. Via Regression of Pyy’s over EW, ’s.
(abandonment peaks, comparisons, ... ); 4. Via " Geometric Intuition”.
e Kaplan-Meier can be problematic for estimation of quantita- Suppose measurements are as follows :
tive n:ma@nﬁ@mﬁ% (eg. mean, variance, median). e m abandoned, with time-to-abandon W, Wg, ..., W&
E[r] = 5° S(z)dx, where S(z) - survival function of patience. e n served, with time-to-service W, W3, ..., W$ seconds

However, S(z) is not reliable for large . . ) . . A ,
Approximate exponential patience with Geometric Patience :

Every second flip a coin, with
Practical Question: Can we apply models with exponential

(im)patience as a useful approximation? Rropabitiy L 08 HuMcel = Saniad,

probability 1 — p for failure = stay one more second.
Practical Answer: A definite " YES”, even in the sense of
“"Must Apply”. In other words, a model that wrongly assumes
exponential (im)patience is far better than a model that ignores A. Total # of coin flips

(im)patience (which, surprisingly, is prevalent in practice). WO WE b WA W+ W+ + WS
= Total Waiting Time (served + abandoned).

Q. What is 1/p = mean patience.

# successes = # abandonment = m.
# abandon 5 'Total Waiting Time

= p= = 1/p=
P= Total Waiting Time % # abandon
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Queues = Integrating the Building Blocks
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Delays = Integrating the Building Blocks

Exponential Delays:
Small Call Center of an Israeli Bank (1999)

min

Wty e

Delays:
Medium-Size Call Center of an Isracli Bank (2006)
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Relative frequencies, %
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Service Engineering December, 2003

Hazard Rate Functions

Examples via Phase-Type Distributions

Definition. If T is an absolutely continuous non-negative random variable, its hazard rate
function A(t), t > 0, is defined by

_ @
hit) = G0k t>0,
where f(t) is the density of T and S{t) is the survival function:
S(t) = [ fu)du = P{T > t}.
Note that P{T <t+A|T >t} =h(t) A.

If T is a diserefe non-negative random variable that takes values ¢; < tg < ... with corresponding
probabilities {p;, ¢ = 1}, then its hazard-sequence {h(t;)} is defined by

i B B,
Bt PiziPi S(ti—)’ B

Note that P{T = |T > t;.1} = h(t;).

Why estimate the hazard rates of service times or patience?

s The hazard rate is a dynamic characteristic of a distribution.
(One of the main goals of our note is to demonstrate this statement).

s The hazard rate is a more precise “fingerprint” of a distribution than the cumulative
distribution function, the survival function, or density (for example, unlike the density, its
tail need not converge to zero; the tail can inecrease, decrease, converge to some constant
ete.)

¢ The hazard rate provides a tool for comparing germ distribution in question
t some “bench k": the exponential distribution, in our case.

® The hazard rate arises naturally when we discuss “strategies of abandonment”, either
rational {as in Mandelbaum & Shimkin) or ad-hoc (Palm).

Why do phase-type distributions constitute a convenient class of models for service
times 7 As discussed in class:

e dense;
o structurally informative;

s meta theorem: homogeneous unpaced human service\task durations are exponential.

Why is it convenient to illustrate the concept of hazard rate via phase-type exam-
ples?

1#

o Small number of phases suffices to illustrate the various modes of hazard-rate behavior.

¢ Simple intuitive explanations of hazard-rate patterns can be demonstrated. (In contrast,
try to develop intuition for the hazard rates of normal or lognormal random variables!)

Limitations: Which patterns of hazend mte cannot be dlustrated by phase-type distributions?
Answer. We shall see below that the hazard rate of a phase-type distribution has a limit as
t — oo, This limit can be shown to be neither 0 nor co. Henee, phase-type distributions can
not belong to heavy-tail distributions with hazard rates that converge to zero (recall Parelo) or
to distributions with hazard rates that converge to infinity (recall the Normal distribution).

Hazard-rate representation for Phase-Type distributions

Let T be phase-type distributed. Animate T' by an absorbing Markov jump-process
X = {X;, t >0}, on a finite state-space S, with an absorbing state A. Then the hazard-rate
function of T', hgr(t), has the representation:

he(t) = Y qaP{Xi =T >t}, t>0
iES

where g is the transition (absorption) rate from state i, that is
P{Xiye = AlXi =i} = gia-e+ole), i€S.

The representation above demonstrates the dynamic approach to the hazard rate of phase-type
distributions: the hazard rate at time t is determined by the conditional distribution of the
underlying Markov process X.

For convenience, denote
Bi(t) = P{X; =i|T>t}, t>0, i€S.

Remark. Ast T oo, the functions {P(t), i € S} converge to, what is called, the quasi-
stationary distribution of X. It can be expressed in terms of eigen-values related to the matrix
@ (generator of X, restricted to S), and gives rise to a representation for the limit
hr(eo) = Y gea Pi(oo)
€S

In the examples that follow, Pi(oco) will be calculated directly.

General description of our (static) simulation.

‘We consider four examples of phase-type distributions. For each example, 10,000 independent
realizations were simulated in Excel. The theoretical hazard rates were plotted and compared
against estimates of the hazard rate, based on the simulation data. (The method used for hazard
rate estimation is described in the Technical Appendix, at the end of the handout.)

In the examples below, the probabilities P;(t) for all non-absorbing states i € § were caleulated
explicitly. We then tried to illuminate the connection between FPj(t) and the hazard rate, based
on the representation above,

(Crbinurd ot tne END)
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Adaptive Behavior of Impatient Customers in
Tele-Queues: Theory and Empirical Support * 2

Ety Zohar, Avishai Mandelbaum® ® and Nahum Shimkin®

November 12, 2000

Abstract

We address the modeling and analysis of abandonment from a queue which is invis-
ible to its occupants. Such queues arise in remote service systems, notably the Internet
and telephone call centers, hence we refer to them as tele-queues. A basic premise of
this paper is that customers adapt their patience (modeled by an abandonment-time
distribution) to their service expectations, in particular to their anticipated waiting
time. We first present empirical support for that hypothesis, and propose an M/M/m-
based model which incorporates adaptive customer behavior, In our model, customer
patience (and pussibly the arrival rate) depend on the mean waiting time in the queue.
We then characterize the system equilibrium and establish its existence and uniqueness
when the growth rate of customer patience is bounded by that of the mean waiting
time . The feasibility of multiple system equilibria is ilustrated when this condition is
violated. We also discuss a decision-theoretic model for customer abandonment, and
relate it to our basic model. TFinally, a dynamic learning model is proposed where
customer expectalions regarding their waiting time are formed through accumulated
experience. We address cerlain issues related to censored-sampling that arise in this
framework and demonstrate, via simulation, convergence to the theoretically antici-
palted equilibrivm.

Key words: Exponential (Markovian) Queues, Abandonments, Equilibrium Analysis, Invis-
ible Queues, Performance-Dependent Behavior, Tele-services, Tele-queues, Call Centers
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[14] for a recent literature review). In particular, patience is unallered by pussible changes
in congestion. Such models, however, can not accommodate the following scatierplot, that

exhibits remarkable patience-adaptivity.
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Figure 1: Adaptive (IN) customers — abandonment probubilily vs. average offered wait (of
cust s with positive wails). Each point corresponds to a 15-minule period of a day (Sun-

day to Thursday), starting at 7:00am, ending at midnight, and uveraged over the whole year
of 1999.

The data is from a bank call center [25] (see Section 3 for elaboration and further empirical
analysis). We are scatterplotiing abandonment fraction against average delay, for delayed
customers (positive queueing time) who seek technical Internet-support. It is seen that
average delay during 8:30-8:45am, 17:45-18:00, 18:30-18:45 and 23:30-23:45pm is about 100,
140, 180 and 240 seconds respectively. Nonetheless, the fraction of abandoning cuslomers
{among those delayed) is remarkably stable at 38%, for all periods. This stands in striking
contrast to traditional queueing models, where patience is assumed unrelated to system
performance: such models would predict a strict increase of the abandonment fraction with
the waiting time, as in Figure 2. The behavior indicated in Figure 1 clearly suggests that
customers do adapt their patience to gystem performance.
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Appendix — Censored Sampling | via _«m\o\n? - Heven (Kn ¥

The need for accommodating censored data arose first in Section 3. Based on the call center
data in [25], we sought to estimate patience — the distribution of the time a customer is
willing to wait, and relate it to offered wait - the time a customer if forced to wait. As
explained in Section 3, these two quantities actually censor each other. Then, in Section
6, censored data arose again. Simulated customers sought to estimate the system's offered
wait, based on their individual service history where some samples of the offered wait were
censored by abandonment. In both Sections 3 and 6, one is required actually to estimate
only means, as opposed to the full fledged distribution. (The latter is needed, for example,
to support our first observation in Section 3, regarding the non-exponentiality of palience.
See [25], Section 6, especially Figures 12 and 14, for interesting hazard-rate estimators of
patience and offered wait.)

Techniques for analyzing censored data have been developed within the well-established
Statistical branch of Survival Analysis ([27] is an elementary exposition, and [12] is advanced
measure-theoretic). As will be explained in the sequel, our needs for such techniques vary
from the rudimentary to the unexplored.

In Section 3 we estimated mean patience and mean offered-wail via the means of the
corresponding classical Kaplan-Meier (KM) estimator (A.19). KM generalizes the empirical
distribution [unction to accommodate censored samples (see page 46 in [27], or page 4 in
[12]). Tt is a non-paramelric estimator, proven to have desirable properties, and common
enough to be incorporated in essentially all respectable statistical packages. In Section
6 we used again KM, and then continued with a simpler parametric estimator, namely
the maximum-likelihood estimator (MLE) of the mean of an exponential distribution; it is
defined in (A.20) and referred to in our paper as the censored MLE (CMLE). The rest of
the Appendix is devoted to a description of KM and CMLE, tailored to the estimation of
palience and offered wait.

The KM setup for estimating patience is as follows. We are given a sample {W;} of N
wailing times [rom a call center. Some of the calls end up with abandonment (W; = T;) and
the others with a service (W; = ;). Denote by M < N the number of distinct abandonment
times in the sample. Let T < 7% < ... < T™ be the ordered observed abandonment times,
and A the number of abandonment at T%, namely those who abandon after exactly T*
units of time. The Kaplan-Meier estimalor WE. t > 0, estimates the survival lunction

31

F(t) = P(T > t), where T is the time to abandon (patience). Tt is given by

m

wau:-:._
k"mm... w_lm.

where By denotes the number of customers still present at T*, that is neither served nor

abandoned before T*. The estimator for mean patience is then based on the tail-formula

BT = NWE&. (A.19)

In the above we estimated patience, which was censored by offered wait. Similarly, KM
can be used Lo estimate the offered wait, by switching the toles of V; and T;. This estimate
was used both in Section 3 and 6, in the latter by individual customers in order to estimate
the system’s offered wait that affects their patience.

A simpler alternative for estimating offered wait takes a parametric approach. As above,
let. {Wy, W, ..., Wy} denote the collection of all waiting times, both abandoning and served.
Assuming that offered wait is exponentially distributed, the standard parametric (maximum
likelihood) estimator for its mean is given by ([27], page 22)

1

3w, (A.20)

e =1

E(T) =

where N, is the number of service experiences that ended up with a service, i.e. were not
censored by abandonment. If T is not exponential, the estimator (A.20) is biased enough to

be inconsistent.

Remark. On Independence: KM assumes independence for the observations whose distribu-
tion is to be estimated. Such an independence is plausible for patience (T}'s). It also applies
for offered wait (V;’s), if these are sampled during independent sparsely-timed visits to the
queue, as in Section 6, Such independence can nol hold for successive offered loads, that are
in fact highly dependent. In this case one is taken out of the KM paradigm. The effect of
such dependence has been ignored in Section 3, as well as in [25], and it is the subject of
ongoing research.

Remark. On Robustness: The KM (Kaplan-Meier) estimalor is very sensilive to censored
data at the upper tail of the sample. For example, if the longest wait in a customer's history
ended np with an abandonment, the KM estimator of the offered wait has a positive mass at

infinity, hence its mean is infinily; similarly if one is interested in patience, and the longest

32
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wait ended up with a service. The consequence is that in estimating patience and offered
wait, one of the resulling two KM’s must be defective, and common practice is to simply
truncate it at its last observation. (There are some parametric tail-smoothing techniques,
but to the best of our knowledge they are ad-hoe.)

Another alternative is to use medians, rather than means, as more robust, estimators of
a location-parameter. For example, the analogue of Figure 4 for NW customers, but with
medians rather than means, is the following:

“ _
350 ——— ° :
2452300

; 300 — |
220 — —
g
5 200 g
W 150 -~ I.I § 15151530
=

100 |- S — ]

prhiiel]
50 —
0 - : . - _ .
0 50 100 150 200 250 300 350 400

M [Offered Wait | Walt>0], sec

Figure 9: NW customers. M|patience] vs. M[offered waitjwait > 0f; M[] stands for the
median of the Kaplan-Meier estimator for the corresponding distribulion.

The flatness, to be compared against the slope in Figure 4, can be attributed to in-
sensitivity of NW patience to congestion, due to their unfamiliarity with the system. As
mentioned in Section 3, replacing the medians in Figure 9 with means yields stalistically
unreliable scatierplots — this is, in fact, the subject of ongoing research.

Two final comments (or reservations) on the use of medians. First, in the coniext of
this paper the the mean seems to be a more natural descriptor of human perception of past
performance, and is also more amenable for analysis. Hence the median is not appropriate as
a basis for an adaptive theory as developed here. On the Lechnical side, one should note that
with ample censoring it is also possible for the KM median to be undefined; this happens, for
example, when the whole upper half of the sample consists of customers who were patient
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Rational Abandonment from Tele-Queues:
Nonlinear Waiting Costs with Heterogeneous Preferences '

Nahurmn Shimkin? and Avishai Mandelbaum®
May 27, 2002

Abstract

We consider the modeling of abandonment from a gueueing system by impatient cus-
tomers. Within the proposed model, customers act rationally to maximize a utility function
that weights service utility against expected waiting eost. Customers are helerogencous, in
the sense that their utility function parameters may vary across the customer population. The
queue is assumed invisible to waiting customers, who do not obtain any information regarding
their standing in the queve during their waiting period. Such circumstances apply, for exam-
ple, in telephone centers or other remote service facilities, to which we refer as lele-queues.
We analyze this decision model within a multi-server queue with impatient customers, and
seek to characterize the Nash equilibria of this system. These equilibria may be viewed as
stable operating points of the system, and determine the customer abandonment. profile along
with other system-wide performance measures. We provide conditions fur the existence and
unigueness of the equilibrium, and suggest procedures for its computation. We also suggest
a notion of an equilibrium based on sub-optimal decisions, the myopic equilibrium, which
enjoys favorable analytical properties. Some concrete examples are provided to illustrate the
modeling approach and analysis. 'I'be present paper supplements previous ones which were

restricted to linear waiting costs or heterogeneous customer population.

Key words: Tele-Queues or Invisible Queues, Abandonment, Impatient Customers, Nash Equilib-

rium, Telephone Call Centers, Contact Centers, Multi-server Queues

UThis research was partially supported by the Israeli Science Foundation, Grant 388/99-2, by the Technion
V.P.R. fund for the promotion of sponsored research, and by the Fund for Promotion of Research at the Technion.
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Queue Lengths and Waiting Times |
for Multiserver Queues with
Abandonment and Retrials!

Avi Mandelbaum William A. Massey
Technion Institute ; Bell Laboratories
Haifa, 32000, ISRAEL Murray Hill, NJ 07974, U.S.A.
avim@tx.technion.ac.il will@research.bell-labs.com
Martin I. Reiman Brian Rider
Bell Laboratories . Courant Institute

Murray Hill, NJ 07974, U.S.A. New York, NY 10012-1185, U.S.A.

marty@research.bell-labs.com riderb@cims.nyu.edu

Alexander Stolyar

Bell Laboratories
Murray Hill, NJ 07974, U.S.A.
stolyar@research.bell-labs.com

April 7, 2000

Abstract

‘We consider a Markovian multiserver queueing model with time dependent parame-
ters where waiting customers may abandon and subsequently retry. We provide simple
fluid and diffusion approximations for both the queue length and virtual waiting time
processes arising in this model.

These approximations, which are justified by limit theorems where the arrival rate
and number of servers grow large, are compared to simulations, and perform extremely
well.

Keywords: Call Centers, Fluid Approximations, Diffusion Approximations, Mul-
tiserver Queues, Quenes with Abandonment, Virtual Waiting Time, Queues with Re-
trials, Nonstationary Queues.

1Submitted to the Selected Proceedings of the Fifth INFORMS Telecommunications Conference.
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