Class 7

“Arrivalsi-Foreecasting;-and some-loose-ends-

Service Times; Phase-type Distributions

Arrivals: Review
e Poisson processes: review:

e Forecasting arrivals;

e The Offered Load.

Defining, Modelling and Designing Service Times

e What is "Service-Time”? via Empirical analysis of face-to-face, telephone services; hospitals,

e Service time is a Statistical Distribution: lognormal, exponential.
e Service time is a Process: Phase-type distributions.

e Beyond Means and Beyond CV's.

e Stochastic Ordering,.

e Subtleties.

Laws of Congestion: Old and New
The 0-th Law for (The) Causes of Operational Queues :
Scarce Resources and Synchronization Gaps (in DS-Project Networks);
The First Law of Conservation :
Little's Law for Customers, Service-providers and Managers.
Little's Law for the Offered Load (Utilization Profiles).
The Second Law of Completely Random Arrivals :
Levy/Watanabe Axioms of Randomness;
The Law of Poisson-Counting (Law of Rare Events);
The Law of Independent Memoryless (Exponential) Inter-arrivals;
The Brownian-Law of Rescaling & Centering Arrivals;
The Laws of Decomposition-Superposition.
The Third Law of Human Service-durations :
The Law of Phase-types for the Durations of Human Upaced Services;
The Empirical Law of Exponential /Log-Normal Durations.
The Fourth Law of Sampling :
Random Sampling: Wolff’'s PASTA = Poisson Arrivals See Time Averages;
Biased Sampling: Costs of Randomness; (Coefficient of Variation, or Form Factor).

Recitation 7. Statistical analysis of an arrival process.
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Service Engineering

Class 7

Service Times (Durations, Processes)

Why Significant? eg. +1 second of 1000 agents costs $500K yearly.

Why Interesting? Must accurately
Model, Estimate, Predict, Analyze, Design:

e Resolution: Sec’s (phone)? min’s (email)? hr’s (hospital)
e Parameter, Distribution (Static) or Process (Dynamic)?
e Does it include after-call work?
e Does it include interruptions?
— Whisper time, hold time, phones during face-to-face....

e Does is account for return services?

How affected by covariates? How affects performance?

e Experience and Skill of agents (Learning Curve)

e Type of Customer: Service Type, VIP Status

e Time-of-Day: Congestion-Level

e Human Factor: Incentives, pending workload, fatigue

e Heavy-Traffic: The ED and QED Operational Regimes (later)
How to calculate Offered-Load? (towards Stafling)

Contents: Service Times; Phase-Type Durations.
e Service duration = Statistical Distribution:
— Empirical: Histogram, CDF, Hazard Rates (Later);
— Parametric: LogNormal, Exponential, Others.
e Empirical Introduction, mainly via DataMOCCA.
e Motivating Examples.
— Designing an IVR/VRU.
— Pooling a Service Network.
— Long-term Care of the Elderly.

e Sample size.

e What is Service Time (Duration)?
A complex answer to a “simple” question:

— Single vs. multiple visits.

— After-Call Work (ACW); Utilization Profiles.

— Time- vs. State-dependency.

— Incentives (Call Center, Hospital)

— Averages do not tell the whole story: the need for Distri-
butions.

e Stochastic Ordering (of distributions).

e Service = Stochastic Process: Phase-type MJP.

e “Sufficient Statistics” in Heavy Traffic: ED, QED (later)
e Offered-Load (Work)
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Parametric Distribution of Service Times

Most common parametric distributions in service sys-
tems are Exponential and Lognormal.

Exponential Distribution:

Density: f(z) = de™*, z >0,

Mean: E[X] = A"},

Variance: Var(X) = A2,

Coefficient of Variance: C, = 22 ﬂx\w‘ = I,

Median: A~1n2.

An important property of the exponential distribution is that it is
memoryless. This means that if a random variable T is exponen-
tially distributed, its conditional probability obeys

Pr(T > s+t |T > s8)=Pr(T > t) forall s, > 0.

Lognormal Distribution:
Definition: X is a lognormal random variable if In(X) is normally

distributed with mean g and variance o2.

nr— )2
Density: f(z) = Hwﬂm-{u & =0,
Mean: E[X] = e#+o"/2,
Variance: Var(X) = etto°/2(e”” — 1),
Coefficient of Variance: C, = ve?” — 1,
Note that CV does not depend on g. For small ¢ (o < 0.5),0ne
can use CV =~ ¢.
Median: e*.

Local Municipalities Service Time

_.x_u artment| Station | Totat | Avg. Arrival | Avg.Service | sTD | Seimal L irization i.M.m..w
No. |C Rate Time
Time Time
(L/Hr) (Mins) (Mins) | (Mins) (Mins)
Water NIA 187 1.8 402 8.87 £ 10 8.15 54.68 13.3% 4.76
Tellers N/A 1328 12.6 + 0.5 5.82 + 0.4 8.55 49.37 30.8% 7.73
Cashier | NA 757 72404 664 £ 04 6.94 29.95 79.7% 3.89
Manager | N/A 190 1.8 £02 7.99 £ 1.0 B.44 38.97 24.1% 9.16
Discounts | N/A 317 3.0 £03 4.59 + 0.4 4.54 36.72 23.1% 3.65
e 1 57 N/A 780 + 1.70 7.61 3128 6.5% NIA
2 130 N/A 9.34 + 1.20 8.37 54.68 19.3% WA
3 336 N/A 9.04 + 0.80 8.93 49.05 48.2% N/A
4 208 N/A 993 + 1.00 8.82 49.12 33.0% NIA
— 5 417 NiA 897 + 0.70 8,35 49.37 59.4% NIA
6 144 NIA 9.53 4 1.20 8.75 41.70 21.8% N/A
7 156 NIA 8.03 + 1.10 7.96 35.27 19.8% N/A
8 67 NIA 374 & 0.70 3.58 2103 4.0% NIA
Cashier 9 757 N/A 6.64 + 040 6.94 29,95 79.7% N/A
Manager 10 190 N/A 199 + 1.00 8.44 38.97 24.1% NIA
Discounts 11 317 N/A 4.59 + 040 4,54 36.72 23,1% N/A

Service Time Histogram — Overall:

Range | Frequency
0-5 51.3
5-10 21.1
10-15 12.6
15-20 6.7
20-25 iR
25-30 23
30-35 11
35-40 0.6
40-45 0.3
45- 0.2

Frequency

60%
50% -
40% -
30% -
20%
10%

0%
[

510

*Service time ranges given with 90% confidence.

10-15 1520 20-25 25-30 30-35 3540 4045

AVG: 7.69 Mins
STD: 7.86 Mins
MAX: 54.68 Mins

Minutes

45-

]\_J



Service Times: Exponential (Phone Calls) LogNormal Distribution

Call-Duration Frequency - North:

P Empirically prevalent in call centers (overall, service types, indi-

vidual agents), but yet no theoretical explanation.

Awverage Call Duration;

40% 1.95 Mins.
BPractice 5
g 30% - —Theory Israeli Bank. Nov-Dec.
A“v B
8 20% - v 90
L= S0 - 248
acu\f " 549 i "
i Ten Rapuactaa
0% p———, s MV_
01 12 23 34 45 56 67 78 89 910 10- a M I
Minutes a _
2 4 i
I m il
T A i
Call-Duration Frequency — Central: y _ _m _ i E .
50% o ! wﬁ____.___m—m:mmmr_E.::zr.u:k.:_:...:..1..1:.: o
40% Average Call Duration: o 100 20 300 400 500 @3 700 BOD 200
2.01 Mins. Time
5 @ Practice
m 0% — Theory
g 20% Good in statistical models
[T 5 . o
. (eg. regression of log(service-time)).
10%
0% SIS Not so good for queueing models
01 12 23 34 45 56 67 78 89 910 10- (which typically “prefer” Exponential durations).
1‘553 - . . . . . .
The practical good news for service time distribution in queue-
Q: How to recognize “Exponential” when you “see” ing models
otie? CV is more important, if tail of distribution is similar one can use
A: Geometric Approximation exponential distribution.
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Service Times: Mixture Model

A mixture model represents the presence of sub-populations within
an overall population.

Finite mixture: Given a finite set of probability density func-
tions f1(z), ..., fa(z), and weights wy, ..., w, such that w; > 0 and
i, w; = 1, the mixture distribution can be represented by writing
the density, f, as a sum (which is a convex combination):

flz) = 5w, fi(z).

i=1
Moments:
EX]=pn= M@Ez
BI(X — )] = 0> = 3 wi(ii? + o) — 2.
i=1

Example: Service time distribution in a call center, Length-of-stay
in Maternity Wards.

Service Times: Mixture

LOS in Call Center as a mixture of LogNormals

7 A
(e Fitting Mixtures of Distributions for Agent service time
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Service Times: Mixture Service Times: Trends and Stability

A Mixture Distribution for LOS in Maternity Wards USBank Average Customer Service Time, Weekdays

Fitting Mixtures of Distributions for Patient length of stay in Ward (hours) (all wards) 2ed
Total for 2007,All days, Department of Maternity B Total _
| 275 |
|
| a 250 .
| m 225 2
“ -
| 200
m
| 175
Time(hours) [reselution 3) 150
| ﬁ Empireal —Tonl — Narmal [location=53 AB441 scalem 0s) —— Mormal {[otation=115.666 4cale=3 536561) “ Mar-01 Jun-01 Sep=-01 Dec-01 Mar-02 Jun-02 Sep-02 Dec-02 Mar-03 Jun-03 Sep-03
Fitting Mixtures of Distributions for Patient length of stay in Ward (hours) [—Retail —Premier —Business — Platinua|

Total for 2007,All days, Department of Maternity, Released (Home)

USBank Average Customer Service Time, Telesales

US Bank: Dynamics of average customer service time for Retail calls
(Sample Size)

Average service time Retail
Weak days

175

_ —Empirical —Total —L | — I —L o—i g ¥ e .“

Means
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Service Times: 5 Sec’s Resolution Service Times in Israeli Telecom

USBank. Service-Time Histograms for Telesales (MOCCA)

IL Telecom: Dynamics of the distribution of agent service time for Private calls
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| » Week days
_ w T.0

e

m. 6.0 1
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| 2 ’ Median = 107.00 (Sept-05)
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m : Mean =175.13 (Sept-05)

Std = 215.05 (Sept-04)
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L o Overall pattern seems close to LogNormal
@ 1.4 i 3
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& | . : s
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Service Times: The Human Factor, or
Why Longest During Peak Loads?

Service Times vs. Arrival Rates

Mean Service Time vs. Time-of-Day

Weas of LogiService Time)

Mean Serves Tive

ar

4

Regular Service (PS)

S ———

T T T -
T8 B W M N2 13 NS 8 W OW 02T 223 M
Tima of Day

Internet Consulting (IN)

7 R s e L T ) e
7T 8 § 10 M 12 13 W 15 18 17 18 19 0 2N 2 [/ M

T ot Dy

Regular Service (PS): Arrival Rate

120

100

CallsHr (Reg)
£ o @
b 3 hrd

53
P

0

7 8 © 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
At 10:00 & 15:00: longest services and peak arrival rates?

Possible Reasons:

1. Services are longer during congestion since customers start
with complaints.)

2. Agents are slower at times of peak loads.

3. Customers that arrive during peak hours require, for some
reason, longer service.

4. An additional (human) reason will be provided after we study
customers’ impatience.

16



Service Time # Contact-Time

Common (Often Too Common):

# Calls

e Customers routed for additional services
(vs. “First-Time-Resolution”);

e Servers interrupt face-to-face service with a phone-call
(vs. the increasingly prevalent “Central Call Center”);

e Agents place customers on hold,
eg. technical consultation with veterans;

e Agents can be engaged in non-phone activities,
eg. ACW Time (After-Call Work).

Reasons for Redials in a Cable Company

| Total: 2,400 calls -
20% of all ealls.

ik R & K N N W3
s %.\,%%XK%%\%
S S S S

Call Type

17

Calculating (Mean) Service Time

First approach:
Sum up components of the "service time”,
then add related activities of servers.

Second approach (Avoids Ambiguities):
Fix a time interval (eg. a shift).
Available Time - Idle Time
Number of Calls

Mean Service Time =

where

Available Time = # Agents X Interval Duration,
and

Idle Time is summed over all agents.

20



Israel Electric Company: 3 Centers

Israel Electric Company: 3 Centers

Service Performance

Service Time — Average:
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What is “Service Time” ?
Utilization Profile in 3 Call Centers Doing the Same Thing

Tel-Aviv:

% Activity
88
==

dldle
@Misc
@ Service
Jerusalem:
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80% 4 : ~ * -
80% - 3 & : = : Oldie
70% 4 : = =)
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L L e e
20% 4 i
10%
Pl = =t I iy I loe i B At OService
B8:00 9:00 10:00 11:00 12:00 13.00 14:00
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Beyond Data Averages
Short Service Times

Short Service Times: Time Series

Jan - Oct:

Log-Normal

21

- s s s W om a owm o =

Percent Calls w/Service < 10sec

22



wigjey pu apqeg ‘mmoqEpIY

£2

e

[ABRURIA UBD) S10100(] UIAT

Pl LK |

ase) Aq
‘unowgayy

Jnoy Agq

Sunaopy

\._) /.
/
s

on

iusuLds
intrg
-,y [ e e L ] it

At 13

IEREFEREREREEER PR 3#
I ettt
EMEREEERE |
ﬁﬂiél - j==§|.§. Ll e e s 8 e elelelelsleli e
ernmnnnnmnry PR RRARNARNRECRECERRENCERPCECERT
JH ol e & |cloileieelo e Bl Al B 2 el {ola
el B8] ool BB E[E[E[El B e el e e
¥lalel. o]l El2fE] £ R EE AR e D
el lelal el = | EeEEE e el
JZslel=l Je ~;§§|E|§ ol elele|olo| BB a{E B2 B olE el el el e
z§‘alg| - ;gh_z:’ E u:s]ﬁxaas@s]slggﬁgégg ;ELE‘E.IEBE'EI%E?
e suasanasce SO PR
j*ff T e ea el R
g AR BN NG E G L CREREEE R Car L

R e AL CEEECE R C R

Frequency

moowIMY *sa Sunuogy - awy | suopeaadgy

I<<AD
Lpey s0zis ajdwes

SINOH Z1'p :OLS
SINOH 80'Z (DAY

awy | suonriadgy

smeIEmsiy

e we A pA[pURL ST Jo MM (3G NqEL

SO, 9JIAIOS }I0US

srenpratpuy

a8eue\ uR) SI0300(],, USAH

10 ‘10%0%,] uRWNE] oY,

:SOUIL ], 9OTAIDG



Human factors: Learning and Forgetting

Service Time Trends of Individual Servers

Muat LogiSarvica Tira)
42 €4 48 48 B0 53 54

Service rate per hour

Service Times:

from Exponential to Phase-Type
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Figure 6: Daily learning curves of the 12 agents at site S

Classic learning models:

Assuming service times are lognormal distributed. y;;. - the service
time of the kth call during the jth day. n; - the total number of
calls served by this agent during the jth day. Define 2;; = log(y;t).

Then, the basic learning model is:

zji = a+blog(j) + €jx, €1 ~ N(0,07)

25

Static Model: Exponential Duration

Face-to-Face Services in a Government Office

Service Times Histogram:

40% ,_
30%

20%

Frequency

10% -

0%
01

AVG: 2.6 Mir

ns

STD: 2.6 Mins
N: 2261 (~450 per day)

2 23 34 45 56 &7 T8 88
Minutes

510 10411 11+

Dynamic Model: Phase-Type Duration

General

Hyperexponential

28
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Phase-Type Model of a Telephone Call

Figure 20: Phase-Type Model of a Telephone Call (# within phases: Mean/STD)

Aoy
g 4

e

065

015

Tasaward
wrcativn

62742

0.14

95 Procossing. ) 087
M

5 49 *
End of call
ot _ 573

066 02

013
043 Paperwark

mwn
LA 057
END
202/190

26

Service Times: Phase-Type Model

Late Connections

: L]
{: mnw.mﬁ,.w G m%_._wm:w
|

Customer's Query
22.0 @

Customer
248 @ Identification m

Date of Purchase of
Cable W

— Billing

G ?..M of nu_vgcn_m:b ' To Marketing
According to — __ (Sales)
22 Periodical Updates = wﬂ

Information Service

9

« Where doey

teservive start / end (recall 144)7

27



Phase-Type Service Times (Durations).

Service-Time = a sequence/collection of tasks, of an exponential duration.
There are K types of tasks, indexed by k=1,..., K.

my. = expected duration of task k; i = ()

qr = % of services in which k is first; g=(qx)

Py = % of incidences in which task j is immediately followed by k. P = [Py]
1— MML Py¢ = probability to end service at k.

q, T

1

I

Fact: service = finite number of tasks < 3[/ — P]~!
Indeed, [I — JH = expected number of “visits to k", given j was first.
(gl — P7")& = expected number of “visits to £”).

As will be articulated below, service-time duration is Phase-type (PI).
(Assuming independence among task-durations.)

Definition. Phase-type distribution = absorption time of a finite-space continuous-time
Markov chain, with a single absorbing state.

Formally: X = {X,,t > 0} Markov on states {1,2,..., K, A}, with infinitesimal generator

. 8 i o A absorbing (since gaa = 0)
Q=" o r=-=R1 (since @1 = 0)
ety -1
Alo .00 o 1,...K transient < AR (fact)
and initial distribution (of Xy) is given by (qi,...,q,0) = (g,0).

Recall:
P{X, =k} =3 q;lexp(tR)]jx = qlexp(tR)]k

Define: T =inf{t > 0:X; = A} has phase-type distribution, say ().
Claim:  Fr(t) =1=qetfl, t>0.

Proof. P(T > t) = P{X; # A} = ¥, q(e*®), = qe'®l.

Parameters:

density Jr(t) =qe™r

Laplace transform  [;° e = Fp(dt) = g[zI - R 'r
nth moment It Fe(dt) = (-1)"nlgR™™1

(mean = —qR'1)
Special Cases:
e Exponential (p) : R = [—p] and ¢ = L.
o Erlang: —[1]—[2] - [K]  iid tasks / phases (C*(T) = &).
e Generalized Erlang: exponcntial phases in series (tandem) (C* < 1).

e Hyperexponential: K tasks in parallel (mixture) (C? > 1),

q,
9z @

i
Qi

e Coxian: K phases; end at phase & with probability p.

mvmt @W"@
1-p, I-p,

e Minimum of exponential random variables is exponential.

® Max of exponential random variables is phase-type: e.g., X; ~ exp(1) iid.
This easily implies that E(max X;) = ¥; L, Var (max X;) = ¥; & bounded!

¢ Erlang mixtures:

q O.'

b ]

qx Ol.v

29



Importance of Phase-type distributions.

e Empirical + wishful thinking: homogeneous human tasks are exponential.

o Richness: the family of phase-type distributions is dense among all distributions on
[0,00). For every non-negative distribution G, there exists a sequence of phase-type
distributions F,, 3 F, = G.

(In particular, we can guarantee convergence of any finite number of moments.)

Dense subfamailies: Coxian, Erlang mixtures,

For Erlang mixtures, this can be explained by the following two facts:
1. The family of discrete distributions is dense.

2. Constants can be approximated by Erlang distributions. Therefore, discrete distri-
butions can be approximated by Erlang mixtures.

e Modelling, via the method of phases. For example, consider M/PH/1 queue (see HW).
M/PH/1: state-space is (i, k)
e, 025 (1K),

(7 = number in queue; k = phase of service) or 0;

Representation directly in terms of (q, P, m).

Denote here R =[I — P]"!  (as in Mandelbaum & Reiman).

Average work content  E(T)=gqRm (=X, ¢;Rumy).
my 0
Moments: E(T") = nlg(RM)"q, where M =
0 mpy
E(T%) _ 1+ CcT) - g(RM)?1
2(BE(T))? 2 (gRM1)?

30

Pooling Services: Municipality Service
System

Current state;

Service Station No. of | Arrivals | Occupanucy Average Average
Work per Waiting Time | Queue
Stations | Hour [Minutes Length
Collection -
Front Office 4 17.50 0.48 28.08 8.19
Collection -
Immigrants 2 8.43 0.76 30.92 4.34
Collection -
Back Office 6 3.20 0.13 13.45 0.72
Cashier 2 22.80 0.70 9.73 3.70
Assessment -
Front Office 4 11.73 0.50 15.58 3.05
Assessment -
Back Office 2 22.80 0.05 11.72 0.07
Land registry office 2-4 2.00

Recommended staffing in overloaded periods (using model):

Service Arrivals | Service | Reconunend | Percent of | Average | Probability | Spaces
Station per Time No. of Customers | Waiting of for
Hour | Time Clercks Served Time Waiting | Waiting
[Minutes]
Collection -
Front Office | 23.40 6.98 6 45 2.1-4.8 0-0.06 4-6
Collection -
Linmigrants 4.50 14 3 35 7.1-16.2 0.006-0.1 3-5
Collection -
Back Office | 11.80 12 4 59 7.3-16.8 | 0.007-0.27 6-9
Cashier 31.40 3.5 3 61 3-6.6 0-0.37 7-10
Assessment -
Front Office 16.00 10.9 6 48 3.53-8.1 0-0.09 5-7
Assessient -
Back Office 0.60 18.18 2 9 10-22.8 | 0.015-0.027 2
Total of 24 clerks.
av



Pooling Services: Municipality Queueing

Network (Server’s Perspective)

Figure 3 A Specialized Model with Task Repetition and Feedback

Py
(51 c2
2= G )
ik
3
i Pay
M) -5
Station 1 - Collection;
Station 2 - Assessment;
Station 3 - Cashier.
30

Pooling Services: Municipality Service

Times per Service Position

Server | Service Time Std. Utilization | Service Time | Total
Dept. ID | Avg. (Min) Deviation Yo Max. (Min) | Services
1 755+ 0.68 7.96 37 79.32 370
Collection - 2 5424033 6.27 68 105.20 951
Front Office 3 6.51 0,50 6.94 44 63.33 510
4 8.41+£0.75 «+ 8.90 42 58.15 n
Collection - 5 11.59 £ 0.80% | * 10.88 76 74.60 493
Immigrants 6 10,32+ 0.52 8.98 78 50.87 569
7 10.80 = 1.98 12.82 16 93.73 114
Collection - 8 907 £3.56 11.50 3 52.07 28
Back Office 9 18.32+£4.90 2034 10 113.57 47
10 2339+ 552 17.75 9 63.77 28
11 11.99+3.16 14,75 9 70.30 59
12 | 1673234 | 1608 28 88.68 128
Cashier 13 2514021 4.92 48 52,18 1460
14 386018 4.16 72 46.92 1416
15 13,74+ 1.07 12.02 62 69.68 340
Assessment- [ 16 | 10.88£0.92 | 1060 | 52 87.92 363
Front Office 17 6.66 £ 0.50 6.68 42 49.93 473
18 11.22 + 1.30 13.81 45 100.60 302
Assessment - 19 19.29 £ 5.64 19.99 8 78.27 34
Back Office 20 12.2£3.86 8.47 3 29.28 13
Total 7.24 £0.10 9.10 8075

* 90% confidence intervals
e 7364 distinct customers

Recall: Exponential = FE=0 (ie. CV=1)
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Pooling Services: Municipality Activity Pooling Services: Services Classification

Pareto
R Classification of Service. Tasks

Rank Service-Types by “Effort”.

Service Type Avg. | Transactions Time Cumulative .
Time | (% of Total) | Allocated (% of iﬂ&
(Min) (% of Total) |  Effort) A Server

1 | Tax Query 7.25 29.6 34 34
2 | Cashier Payment 44 42.8 26.3 60.3 e!}
3 [ Title Transfer 121 55 10.6 709 | T
4 | Water Query 5.6 8.3 735 78.25 .
5 | Owner Change 173 15 | 41 82.45 g
6 | Title Deed Verification 72 3.4 3.9 86.35 i i ?‘ wew ﬂ-
7 | Waivers & Discounts 12.4 14 2.8 89.15 . : LY “‘lﬂ uewnc
8 | Walter Disconnection 15.6 1.1 2.6 91.75 Mr.-ﬁ. e s * “
9 | Discount Application 137 0.8 1.8 93.55 s » x nﬁbﬂﬂl
10 | Update 104 L1 1.8 95.35 S ¥ %h
11 | Information 8.1 13 1.7 97.05 oy s . % \
12 | Measuring Device 5.9 1 0.9 97.95 r.i..
13 | Measurement Req. 12.5 0.4 0.8 98.75 ) v
14 | Payment Schedule 6.3 0.7 0.7 99.45 » &
15 | Account Change a8 0.7 0.4 99.85 v;s-—!- on
16 [ Cash Transfer — Rebate | 2.3 0.26 0.1 99.95 ﬁeu?;u
17 | Water Account Change 1.8 0.14 0.05 100 B

4 service-types require 80% of effort H!\vzg ..f.—l O*T;\—- S FCL

+ space constraints + poor service level @
= Redesign network as a single-station

Specialized vs, Flexible: Pooling : M h.
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Pooling Services: Municipality Server
Recommendation

Recommendations: Flexible clerks for all activities. Change
from Figure 3 to Figure 4.

Figure 3 A Specialized Model with Task Repetition and Feedback

€1

w Il

Poy

1 — Py

Figure 4 The Flexible Model, under Complete Pooling, that Corresponds

to Figure 3
¢i+ceatcea

Pooling Services: Municipality Server

Recommendation

State of system under recommendations:

Hour Arrival Occupancy | Waiting Average % Waiting
Rate Room | Waiting Time | More then
Size [Minutes] 10 Min

7:30-8:30 36.3 (69) 60 8-12 3.20 4.7
8:30-9:30 | 794 (82) 76 14-22 3.10 3.6
9:30-10:30 | 87.4 (78) 78 16-24 3.05 3.9
10:30-11:30 | 85.4 81) 76 | 15-22 2.85 3
11:30-12:30 | 64.5 (78) 72 12-18 3.00 3.7
12:30-1:30 24.5 (54) 46 6-8 2.70 2.7
1:30-2:30 24.2 (54) 46 5-8 2.70 2.6
2:30-3:30 | 30.6 (58) 51 69 271 2.2
3:30-4:30 11.3 (34) 30 4-5 2.65 3.4

Number of work-stations: 15.

Staffing change over time between 5 and 15.

e Guidance on matching available agent to waiting customer.

e Turnover clerks to achieve high occupancy.

Standardization of services and work procedures.

Possible separation between Russian speaking clerks.




On Pooling in Queueing Networks

Avishai Mandelbaum =« Martin 1. Reiman
Fuculty of Industrial Engineering and Management, Technion, Haifa, Israel
Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974

e view each station in a Jackson network as a queue of tasks, of a particular type, which

are lo be processed by the associated specialized server. A complete pooling of queues,
inlo a single queue, and servers, into a single server, gives rise to an M/ PH/ 1 queue, where the
server is flexible in the sense that it processes all lasks, We assess the value of complete pooling
by comparing the steady-stale mean sojourn times of these two systems. The main insight from
our analysis is that care must be used in pooling. Somelimes pooling helps, sometimes it hurts,
and its effect (good or bad) can be unbounded. Also discussed brictfly are allernative pooling

for lec 1!

plete pooling of only queues which results in an M/PH/ S system,

or partial pooling which can be devastating enough to turn a stable Jackson network into an
unstable Bramson network. We conclude wilh some possible future research directions.
(Service Facility Design; Flexible Server; Specialized Server; Service Operations, Efficicncy, Stability,

Ecanomics of Scale)

1. Introduction

A fundamental problem in the design and management
of stochastic service systems is that of pooling, namely
the replacement of several ingredients by a functionally
equivalent single ingredient. We analyze the pooling
phenomenon within the framework of queueing net-
works where in our case, as will be explained momen-
tarily, it can take one of three forms: pooling queues (the
demand), pooling tasks (the process) or pooling servers
(the resources). Here we consider pooling queues and
servers simultancously, but keep the task structure in-
tact, and we provide an efficiency index (5} to determine
when such pooling is or is not advantageous.

Our models are described in terms of customers who
seek service provided by servers. Service amounts to a
callection of tasks, of which there are a finite number of
types. Two main models are considered: in the first spe-
clalized model, each task type has a server and a queue
dedicated to it. For example, Figure 1 exhibils a
queueing nelwork in which every cuslomer requires a
service that constitutes three tasks, and the tasks are
carried oul successively, each by its own spedialized
server. Customers arrive at rate e, average lask dura-
tions are my and servers’ capacities are ¢ In the second
OO25-1909, 98/ 4407 /097 1805.00

Copyright © £, Instituss for Operations Kesand
and e Managriest i
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flexible model, servers are capable of handling all tasks
and they colleclively attend Lo a single queue of ser-
vices. For example, Figure 2 exhibits such a model,
which arises through pooling the tandem network from
Figure 1: cuslomers arrive at rate a, seeking the same
three-task service as before; they all join a single queue,
which is now attended by a single flexible server of ca-

pacity Z; €.

Cuslomer arrivals are assumed Poisson and task du-
rations exp (We on these distrit
tional io1 he Addendum.) As articulated in

§2, we allow a service Lo consist of a random sequence
of lasks in a way that the service duration has a phase-
Lype distribution (a phase corresponds to a task). The
specialized (unpooled) model turns oul to be a Jackson
network (Jackson 1957), as in Figure 3, and the flexible
(pouled) architecture is modeled by an M/PH/1 sys-
tem (Neuts 1981) as in Figure 4.

In addition to the above two main models, we also
consider briefly alt designs of pooling. For ex-
ample, Figure 5 depicts the network from Figure 1, with
ils queues pooled into a single queue and the servers
made flexible while still maintaining their individual
identities (see §5.3). Figure 6 depicts partial pooling of

MANAGEMENT SCENCE/ Vol 44, No. 7, July 1998 971

MANDELBAUM AND REIMAN
On Pooling in Cuueweing Netwarks

Figure 1 A Specialized Modsl with Tasks Allended by Speciatized Serv-

Figure 2 A Flexible Model with Complets Poaling inlo a Single Quoua
and a Single Flexible Servar

at+ata

—THE-O-O-

Figure3 A Specialized Modol with Task Repetition and Feedback

Figurad  The Flaxiblo Model, under Camplats Pocling, thal Correspands
to Figure 3

q+oatea

i __ : B

only queues and servers 1 and 2 (see §5.4). Figure 7
depicts a split of the service so that a customer, upon
complelion of a task, rejoins the queue (see §5.5), and
additional designs are possible as well. A common fea-
ture of our makdels is that service is unaltered. For ex-
ample, in Figures 1,2, 5, 6,and 7, service always consists
of tasks 1, 2, and 3 in succession,

1.1. Motivation
The present research arose from an analysis of a service
network consisting of several specialized departments,

97z

The network was redesigned as a pooled single depart-
ment, which was still responsible for the same services,
but whose servers were flexible enough to process all
tasks. In trying to analyze this transition, we found that
prevalent pooling models failed to cover our network
scenario.

Our medels provide a new simple framework that
helps in assessing the effects on pooling of utilization,
variability, and service desigin. While this is not aimed as
a review paper, our framework also relates, as it hap-
pens, rather disparate concepls and results, for example
(Bramson 1994, Jackson 1957, Klimov 1974, Neuts 1981,
Smilh and Whitt 1981, and Tcha and Pliska 1977), We
believe that the usefulness of the framework goes be-
yond the original motivating applications, perlaining to
the design of lelephone call centers (Brigandi et al.
1994), evaluation of ication ks (Smith

Figure 5 Gomplete Pooling of Quewes Only (Servers Are Made Flaxiblo
but Maintain individual identities.)

Masacement SaENCE/Vol. 44, No, 7, July 1998



Example: Phase-Type Service Times

Reference: “Length of Stay of Elderly People in Institu-
tional Long-Term Care”, Xie, Chaussalet & Millard, 2005.

Operational significance:

e “Most common causes of delay in discharge from hospi-
tal are patients awaiting placement in a nursing or residential
home and awaiting assessment of their needs.”

e Significant costs associated with maintaining elderly people in
care homes, hence relevant to “government agencies (funding,
planers), insurance companies, and purchasers and providers
of care.”

Elderly people go through three states, after being admitted to
long-term care:

e Residential home care (R);
e Nursing home care (IN):

e Discharge state (D).

29

Goal: Estimate the sojourn time in long-term care, both
duration and structure.

Data: “Paths” of 889 patients, some censored:
e 392 patients: R — D (219 censored);
e 451 patient: N — D (156 censored);
e 46 patients: R - N — D.

The states R and N are aggregated: Service time in each is
modeled by a Cozian (Phase-Type) distribution.

Summary: The above approach is potentially useful in other ser-
vice contexts. For example, estimating duration and structure
of

o Telephone or face-to-face services, in which case data cen-
soring is not important since observations are complete; aggre-
gation is significant, balancing complexity against goodness-of-
fit.

e Customers’ Impatience, in which case censoring is very im-
portant to account for (as will be explained in due time).

30
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A continuous time Markov model for the length of
stay of elderly people in institutional long-term care

H. Xie, T. J. Chaussalet and P. H. Millard
University of Westminster, London, UK

[Received January 2003. Final revision January 2004]

St y. The paper d ps a Markov model in continuous time for the length of stay of
elderly people moving within and between residential home care and nursing home care, A
procedure to determine the structure of the model and to estimate parameters by maximum
likelihood is presented. The modelling approach was applied to 4 years' placement data from
the social services department of a London borough. The results in this London borough suggest
that, for residential home care, a single-exponential distribution with mean 923 days is adequate
to provide a good description of the pattern of the length of stay, whereas, for nursing home
care, a mixed exponential distribution with means 59 days (short stay) and 784 days (long stay)
is required, and that 64% of admissions to nursing home care will become long-stay residents.
The implications of these findings and the ad ges of the proposed modelling approach in
the general context of long-term care are discussed,

Keywords: Length-of-stay modelling, Long-term care; Markov model; Survival

1. Introduction

In the UK, the National Audit Office has recently reported that the most common causes of
delay in discharges from hospital are palients awailing placement in a nursing or residential
home and awailing assessment of their needs (National Audit Office, 2003). Under the 1990
National Health Service and Communily Care Act and the Care Standard Act 2000, local
authorities in Greal Britain are responsible for the placement and finance of adults in publicly
funded residential and nursing home care that conforms to national standards, Discharge to
long-term carc is a central component of plans for acute hospital care and the demand for
long-term care is expectled to increase substantially as the population ages (Witllenberg et al.,
2001). In England, already 1 in 5 people aged 85 years or over live in a long-lerm care institution
(Laiho, 2001). In addition, the UK Government is planning to fine local authorities for failing
to provide vacancies in residential and nursing home care for hospital discharges. Therefore, it
is important for both health authorities and local authorities to have a sound understanding of
the patterns of the length of stay (LOS) and movements of residents in long-lerm care.

A recent survey showed that nearly 70% of the residents in residential and nursing homes were
publicly lunded and were there permanently (Netten et al., 2001). In earlier research, we lound
that older people who are placed in nursing homes are more likely Lo have complex problems.
Factors such as being male, immobile, dependent in feeding, urine incontinent, having open
wounds and taking multiple drugs are associated with nursing home care placements, whereas
older people who are admitted to residential home care are likely to be more independent (Xie

Address for eorrespondence: T. 1. Chaussalet, Department of Mathematics, Caver
Sci University of Westminster, 9-18 Euston Centre, London, NW1 3ET, UK.
E-mail. chausst@wmin.ac.uk

1 School of Computer

© 2005 Royal Stalistical Society 31 0964-1898/05/168051
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et al., 2002). Therefore, we would expect differences in the pattern of LOS in residential and
nursing home care.

Research in the UK shows that the mortality rate for residents in nursing home care is par-
ticularly high in the first few months and then gradually levels out (Smith and Lowther, 1976;
Bebbingtlon et al., 2001; Rothera et al, 2002). This observation supports the notion of phases
in residents’ stay in care homes. In the context of hospital geriatric departments, Harrison and
Millard (1991) and Taylor et al. (1998, 2000) have shown that, despite the greal heterogeneity
between individuals (Millard, 1988), compartmental and Markov models, which divide patients’
LOSs into short-stay and long-stay phases, capture successfully the behaviour of patients’ LOSs.
Similar results for residential and nursing home care can be expected.

We model the low of elderly residents within and belween residential and nursing home care
by using a continuous time Markov model, in which residents’ slay in care homes is modelled as
a two-phase process: short stay and long stay. First, we describe the model that we propose
and presenl a procedure for determining the model structure and eslimating parameters by the
method of maximum likelihood. We also show and discuss results thal are obtained from fitting
the model to a real data set.

2. A model for movement of elderly people in residential and nursing home care

The proposed conceptual model for the movement of elderly people in residential and nursing
care facilities is depicled in Fig. 1. In this model, elderly people can be admitted into residential
home care or nursing home care directly, either [rom the community or lfollowing discharge from
hospital. In each type of care, residents start their stay in the short-stay phase and either leave
care afler a shorl period of time or conlinue Lheir stay to become long-stay residents. People in
residential home care can move Lo nursing home care il their conditions deteriorate to such an
extent that residential home care is no longer adeguate. In this paper, we consider only those
residents who require local authority funding, and we exclude residents whose admissions are
meant Lo provide short respites for their carers. This restriction is imposed because most local
authorities have means of delermining suitable care placements for applicants requiring public
funds; therefore, these admissions will betler reflect residents’ physical conditions and needs.
Movements from nursing home care to residential home care rarely occur among residents
who are supported by local authority funds (Bebbington er al, 2001) and are not modelled.

Residential home care Nursing home care

Uum.wrmuum

Fig. 1. Markov model for movements of elderly _umu_umn in residential and nursing home care
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Discharges from institutional long-term care are considered permanent. They occur predom-
inately by death and, although a small number of residents are discharged to the community
or hospital, they are not expected to return to institutional long-term care. Discharges to the
community are rare for local-authority-funded residents, and these to hospital usually mean
terminal care (Bebbington et al, 2001).

We construct a continuous time Markov model of the flow of elderly people within and
between residential and nursing home care. The phases in cach type of care and the discharge
state form the system states. Given the Markov model that is described in Fig. 1, the generator
matrix Q is written as

qu @2 ‘@z 0 ! g
0 ' g5

e

q35 |+ ()

where g;; is the instantancous transition rate between state i and state j (i ), and the elements
in the main diagonal are defined such that row sums are 0, i.e. gz =—Y 4 gij.

3. Maximum likelihood estimation of model parameters

The actual states of the Markov model are not observable. We can only observe which type of
care a person is in. For example, at any time, we observe that a person is in residential home
care but we do not know whether she or he is in a short-stay (S;) or long-stay (S, ) state, This
is an aggregated Markov process, i.e. a Markov process in which system states are aggregated
into a number of classes (Fredkin and Rice, 1986). There are three classes in the model that
is outlined in Fig. 1, namely residential home care, nursing home care and discharge (denoted
by R, N and D respectively). We partition the matrix Q according to the class structure of the
model, i.e.

Qrr Qrnv Qrp
Q= 0 Qunv Qup ) 2)
0 0 0
where the submatrices correspond Lo those delimited by broken lines in equation (1) and the
subscripts represent system classes, For instance, Qg is the submatrix of transition rates from
states in R to states in NV, and Qg that of transition rates between states within R.

The theory of aggregated Markov processes has been motivated by and applied to the mod-
elling of ion channels in neurophysiological applications (Colquhoun and Hawkes, 1981, 1982;
Fredkin er al., 1985). Generalization and parameter estimation have been investigated by various
researchers, including Ball and Sansom (1989), Fredkin and Rice (1986) and Qin et al. (1997).
We adapt and modify the approach that was taken by these researchers to suit our modelling
needs and to deal with the existence of an absorbing state and censored observations.

3.1. Distribution of sojourn time in a class
Calculating the first-passage time (Cox and Miller, 1965) leads to the probability density func-
tion (PDF) of the sojourn time in a class, say class R (Colquhoun and Hawkes, 1981)

Jr(0) =~k extQrr)Qrr 1z, ©)
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Table 2. Determination of the number of states in ® and A”

Number  Results for residential home cave  Resulis for nursing home care
of states
AlC BIC AIC BIC
1 3430.651 3434.733 4879.295 4883.504
2 3433.142 3445388 4774.788 4787414
3 3437142 1457.553 4778.792 4799,835

Residential home care

Nursing home care

Discharge
Fig. 2. Structure of the Markov model for the Merton data set

(Fig. 2). The second-stage Markov model fitting procedure converged quickly with the start-
ing-point proposed in Section 3.3. One-dimensional views of the log-likelihood surface along
all parameter axes suggested that the maximum was well defined and that the log-likelihood
surface was relatively quadratic near the maximum. For each type of care, the close agreement
between the survivor curve that was derived from the estimated matrix Q (see equation (5)) and
the survivor curve that was estimated by the Kaplan-Meier estimator (Kaplan and Meier, 1958)
indicates that the Markov model provides a good fit to the data (Fig. 3). This is confirmed by
the probability plots (Fig. 4).

4.3. Results

The estimated parameters for the Markov model are summarized in Table 3. These results give
interesting insights into the survival patterns of elderly people in institutional long-term care
in the London Borough of Merton. A single state provides a good fit to the LOS pattern in
residential home care (R), thus indicating a constant rate of departure from R. The average
LOS for R is estimated by 1/(q13+ q15), i.¢. 923 days (about 2.5 years). On leaving R, about
79% of the residents will be discharged (permanently) and 21% of them will transfer Lo nursing
home care (A). Two distinctive states arc observed in A a short-stay state with an average LOS
of 59 days and a long-stay state with an average LOS of 784 days (about 2.1 years). The rate of
discharge from the short-stay state is about five times that from the long-stay state. This agrees
with empirical observations that initial EOZ&WV__ is higher for the first few months following
admission to nursing care (Smith and Lowther, 1976; Bebbington er al., 2001; Rothera er al.,

\_.\“-‘
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Fig. 4. Probability (P-P-) plot of the Markov model fitted survivar curves for (a) residential home care and
(b) nursing home care for the Merton dala set

Table 3. Estimated paramelers for the Merton data set

Parameier  Estimate  Standard 95% confidence
ervor interval

q13 0.000228  0,000034  (0.000162, 0.000293)

415 0.000855  0.000065  (0.000728, 0.000983)

qis 0.010874  0.002961  (0.005071, 0.016677)

q35 0.006138  0.000793  (0.004584, 0.007692)

45 0.001275  0.000135  (0.001010, 0.001340)

older people who have been placed in R by the local authority, 50% will stay more than 21
months, 25% will live longer than 3.5 years and 109 will be there after 5.7 years. Of those who
have been placed in N, 50% will stay for more than 8 months, 25% will live longer than 2.1 years
and 10% will still be there 4.1 years after they have been admilted.

5. Discussion

We have built a continuous time Markov model which captures the flow of elderly people within
and between residential and nursing home care. Using the framework of aggregated Markov
processes, we derived a procedure for fitting the model to observed data. By modelling the sys-
tem of long-term care as a whole, we captured the movements between facilitics and estimated
parameters by using the overall joint likelihood function. Using a real data sel we showed that
the LOS in residential home care can be approximated by a single-exponential distribution with
mean 923 days, whereas in nursing home care a mixed exponential distribution with short-stay
mean 59 days and long-stay mean 784 days is needed to provide a good fit. About 21% of
residential home care viacancies were created by transfers to nursing home care and 64% of all
admissions to nursing home care will becomg long-stay residents. In nursing home care, the
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mortality rate in the short-stay state is about five times that in the long-stay state. Thus, the
model quantifics the large heterogeneity in mortality rates that is widely observed in nursing
home care.

Extensive research in the UK has been conducted to identify the characteristics that are asso-
ciated with differences in survival patterns in long-term care. This rescarch has mainly focused
on identilying risk factors that are associated with mortality, e.g. Bebbington et al. (2001), Dale
et al. (2001) and Rothera et al. (2002). From the point of view of individual elderly people,
their doctors and social workers, the identification of risk factors that are associated with trans-
fer, carly death and long-term survival is of considerable importance. But, for planning, care
managers and budget holders need to know the overall pattern of LOS in long-term care. Qur
model complements other research in providing a full picture of the overall behaviour of LOS
in residential and nursing home care.

Methods that explicitly model the survival time (or the LOS in care) of elderly people have
cousistently shown that a mixture of exponentials gives a good fit to observed LOS data (Harri-
son and Millard, 1991; McClean and Millard, 1993; Taylor et al, 1998, 2000). Struthers (1963)
first reported that LOS in a hospital geriatric department in Southampton followed a combina-
tion of two cxponential curves: one had a *half-life’ of 2 months and the other had a half-life of
2 years, A mixed exponential distribution implics that a proportion of elderly people in residen-
tial and nursing home care will live substantially longer than the mean and the longer their stay
the longer their expected further stay will be. A large proportion of older people who have been
placed by the Merton Social Service Department in residential and nursing home care will stay
substantially longer than their expected LOS, 2.5 years and 1.5 years respectively. In residential
home care, 25% will live longer than 3.5 yeurs and 10% will live longer than 5.7 years; in nursing
home care, 25% will live longer than 2.1 years and 10% will live longer than 4.1 years. This
means that short-term decisions to increase the number of permanent admissions to residential
and nursing home care will have serious long-term financial and organizational conseguences.
Such action will result in, as time passes, a reduction in the places that are available for new
admissions since the number of beds occupied by residents admitted in carlier years increases.

The model that we have developed in this paper could help planning authorities to under-
stand the overall pattern of usage of resources for elderly people in their catchment area. Qur
model can be extended to cope with possible differences in survival pattern between nursing
care residents who are admitted directly and those who are transferred from residential care,
although we did not find significant evidence to suggest that such differences existed in the data
set that we used, Further work is needed to confitm our findings and to extend the model to
take into account the attributes of elderly people, e.g. their age, gender and physical and mental
conditions.

Given the importance of having vacancies in long-term care Lo run acute hospitals efficiently
and the significant costs that are associated with maintaining elderly people in care homes,
the findings of this paper should be of great interest to Government departments, insurance
companies, health and social services planners, and purchasers and providers of residential and
nursing home care.
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Comparing Service Durations Workload (Offered-Load)

First: Means, Standard Deviations, Medians Stationary System Workload (Offered Load):
R = X\ x E[S]
Overall | Regular |  New [Internet|Stock “minutes” of work (=service) that arrive per “minute”.
service |[customers )
T i 75 = T Example: )\ = 3000 calls/hour; E[S] = 3 min.
: Consistent time-units, eg. A = 3000/60 = 50 calls/min.
SD 240 207 154 485 [ 320 Workload R = 50 - 3 = 150 min of work per min.
: (If time-units hours? hence Workload in Erlangs.)
Med 114 117 64 196/ 169
i i ed e . Non-Stationary System Workload (Offered Load):
Then: Distributions (Stochastic Order?) Use R(t) from My /G /oo queue: R(t) = B\t — S.)] x E[S]
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Root Cause Analysis of Emergency Department Crowding and Ambulance
Diversion in Massachusetts

A report submitted by the Boston University
Program for the Management of Variability in Health Care Delivery
under a grant from the
Massachusetts Department of Public Health

October, 2002

Phase |

Phase | of these investigations involved formulation of a conceptual model that would
permit data collection and analysis germane to the problem of ambulance diversion. As
preparation for this study, a wide range of relevant medical publications, policy
statements and commissioned studies were reviewed. This was followed by personal
interviews with representatives in government, hospital administration, public health and
the Emergency Medicine community. Information was gathered from throughout
Massachusetts and from other key states. Particular attention was given to experience
in areas where crowding is particularly severe including metropolitan Boston, San
Francisco, Los Angeles and the states of Arizona and Florida. Overall, numerous
potential root causes of diversion had been articulated both in the medical literature and
lay press, but empirical data to support them were lacking. Available research tended to
be descriptive, documenting the extent of crowding without clear delineation of its
sources. Various solutions had been proposed and implemented, all without consistent
benefit. A partial summary of this analysis has been previously released by the
Massachusetts Health Policy Forum of Brandeis University.

An operations management perspective suggested straightforward input-throughput-
output analysis. Hospital utilization data provided by the Division of Health Care Finance
and Policy was therefore reviewed alongside diversion data provided by regional EMS
providers. Analysis of this information revealed the likely operation of mechanisms both
internal and external to emergency departments. In addition to simple supply/demand
imbalances for emergency care, diversion and utilization patterns suggested

bottlenecks and backlogs related to the competition of emergency and non-emergency
patients for similar resources. The interrelationships of hospital services then became
the focus of attention and patient care pathways were explored with administrators from
the two study hospitals.

Two paradigms for the quantitative study of interrelationships among hospital
departments were considered. The first involved an analytical approach wherein each
relationship was identified, its stochastic character estimated, and appropriate
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mathematical models applied. The second involved a simulation approach, wherein
stochastic relationships were embedded into computer software that translated real
patient flow inputs into utilization and capacity information. Computer simulation was
ultimately selected as the route of choice because of its scalability and adaptability.

Phase Il
Data Collection/Analysis Effort:

The study was performed at two hospitals in Massachusetts: Hospital A, a large tertiary
academic hospital, and Hospital B, a medium-sized acute care community hospital. The
following data were collected:

42 days of information covering:
: 6000+ admissions
+ 8000+ ED visits
: 2000+ staffing/capacity data points
+ 300,000+ patient movement/status data points

In order to analyze the relationship between diversion status and other factors within the
hospital environment all measures were split into observations at one hour increments.
The study period of 42 days, with 24 hours per day, yielded a total of 1008 full sets of
observations. The analysis required collection of patient flow data well beyond the usual
capabilities of contemporary hospital information systems.

Point-biserial coefficients of correlation, with diversion status as the binary variable,
were examined against a variety of factors. Comparisons when using full hours of
diversion versus partial hours as the “true” condition did not reveal significant
differences, so partial diversion hours were evaluated as the “true” binary throughout
the analysis for the sake of consistency.

It is important to note that in the real world the decisions to commence or cease
diversion status are, but their nature, highly subjective. Because the purpose of the
study was to examine the root causes of diversion, we did not approach the task from
the standpoint of critiquing or attempting to influence this inherent operational
subjectivity. As a result, any such analysis is itself subjective to a certain degree.

Because both hospitals straddled EMS regional borders and diversion rules vary by
region, each hospital's data was used for the sake of determining diversion status rather
than using centralized EMS data. Also, all diversions were considered equally rather
than separately analyzing the factors related to each individual diversion type.

Patterns of diversion were also examined as averages across the hours of the day and

the days of the week in order to ascertain relevant hour of the day and day of the week
patterns. This data analysis was performed separately for each of the hospitals.
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Hospital A:

There were a total of 22 episodes of diversion which started and ended within the
study, with an average length of 814 minutes. There was one episode that began prior
to the study and ended after the study began and so is not included in this calculation,
nor in any calculations which involve the beginning of diversion episodes.

The hourly diversion pattern shows diversion is highest in the evening hours, settles
back down during the early morning hours, and then stays steady until the mid to late
afternoon (see Fig. 1).

The goal of the project was to determine the drivers which create this pattern.

Hospital A - Avg Diversion Minutes by Hour
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Fig. 1

The following 3 hypotheses were tested to determine the drivers of diversions:

1=
2.
3

ED arrival rate is too high, leading to diversion when the ED becomes full.
ED processing of patients is too slow, causing backups that lead to diversion
ED arrival and processing rates are fine, but there are not enough beds in the
hospital to accommodate the admissions.
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There are seven sets of data (see Fig. 2), each representing a different view of
arrivals into the ED. The "Arrivals_0" category only includes new arrivals from the
hour in question. Each subsequent category, from "Arrivals_1" to "Arrivals 6"
includes one more hour's worth added to the total. In other words, "Arrivals_1"
includes arrivals from the current hour added to the armivals from the previous
hour, "Arrivals_2" includes all of "Arrivals_1" plus the arrivals from two hours ago,
and so on. This is what accounts for the stacked shape as each additional hour is
layered on top. Because average length of stay was 340 minutes, 6 hours is
used as the maximum lag. Correlation coefficients from each of these

cumulatives to Avg Diversion Minutes by hour are as follows:

Arrivals_0 =-0.073
Arrivals_1 = 0.001
Arrivals_2 = 0.078
Arrivals_3 = 0.165
Arrivals_4 = 0.259
Arrivals_5 = 0.359
Arrivals_6 = 0.460

Hospital A - ED Diversion vs. Arrivals to ER by Hour
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Fig. 2

There is also a possible corollary to hypothesis #1, that overall ED census is a
driver of diversion. When counting the non-boarding census and comparing it to
diversion status, however, the resulting point-biserial coefficient (r = -0.051)
makes clear that this potential explanation should be rejected as well.
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again points towards examining hospital capacity as the primary determinate of
diversion.

1B

The overall relationship between inpatient census and ED boarders in Hospital B
was similar to that of Hospital A. However, detailed analysis of admission
sources in Hospital B is not presented because scheduled demand played a far
smaller role than that observed in Hospital A.

During the study period, there were 1,158 weekday unscheduled admissions
(average: 38.6/day) and 208 weekday scheduled admissions (average: 6.9/day).
This suggests very little operational flexibili g the variability or timing
of scheduled arrivals. This likely reflects a fundamental difference between most
community hospitals and larger academic centers.

The findings at Hospital B are consistent with and reinforce those at Hospital A.
Specifically, there was no evidence that ED process times were temporally or
mechanistically related to ED diversion while the relationship between ED arrival
rate and diversion was weak. Instead, the data suggest that factors outside of the
ED that combine to increase boarders and limit ED capacity are more important.

mm i

Detailed flow analysis in two very different types of hospitals yielded similar
findings with respect to the root cause of emergency department crowding and
ambulance diversion. Neither increased patient inflow nor increased process time
could be strongly related to diversion status. Instead, diversion was seen as an
outflow problem, with busy emergency departments crowding as patients await
transfer to crowded inpatient services. This problem is exacerbated in hospitals
with large volumes of scheduled admissions, since these necessarily compete for
the same resources. The “collision” of scheduled and unscheduled patient flows
results in diversion patterns that are specific and reproducible. Because
scheduled patient flows are theoretically controllable, better understanding of this
phenomenon may suggest means of decreasing diversion. If the experience here
may be generalized, we conclude that institutions with small (or uncontrollable)
scheduled patient flows will require addition of resources on the inpatient side if
diversion is to be substantially reduced.
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