Class B

Modelling a Service Station (I): Empirical/Deterministic Models;
Fluid /Flow Models/Approximations of Predictable Queues

» Introduction:
»»»» Legitimate models: Simple, General, Useful
- Approximations (strong}

------ Tools
® Scenario analysis

— vs. Simulation, Averaging, Steady-State

— Typical scenario, or very atypical (eg. "catastrophy”)
¢ Predictable Variability
----- Averaging scenarios, with small “CV”
----- A puzzle (the human factor = state depeundent parameters)
- Sample size required increases with CV
~ Predictable variability could also turn unpredictable
e Hall: Chapter 2 (discrete events);
e 4 Pictures:
— Cummulants
----- Rates (= Peak Load)
------ Queues (= Congestion)
— Qutflows (= end of rush-hour)
s Phases of Congestion: under-, over- and eritical-loading
o Scales (Transportation, Telephone (1976, 1993, 1999))

+ Simple Important Models: BEOQ, Aggregate Planning

e Queues with Abandonment and Retrials (=Call Centers; Time- and State-dependent 3's).

s Bottleneck analysis in a (feed-forward) Fluid Network, via National Cranberry

e Addendum
¢ (Skorohod’s Deterministic Fluid Model (of a service station): teaching note)

Recitation 5: Fluid models, with application to staffing.

HW 5: “Fluid Models”.
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Service Engineering

Class 5

Fluid/Flow Models;
Models/Apparoximations, Empirical/Deterministic

e Introduction

e Scenario Analysis: Empirical Models + Simulation.

e Transportation: Predictable Variability.

e Fluid/Empirical models of Predictable Queues.

e Four “pictures’: rates, queues, outflows, cumulative graphs.
e Phases of Congestion.

e Examples: Peak load vs. peak congestion; EOQ; Aggregate
Planning.

e From Data to Models; Scales.

e Queueing Science.

e A fluid modecl of call centers with abandonment and retrials.
e Bottleneck Analysis, via National Cranberry Cooperative.

e Summary of the Fluid Paradigm.

Keywords: Blackboard Lecture

e Classes 1-4 = Introduction to Introduction:
On Services, Measurements, Models: Empirical, Stochastic.
Today, our first model of a Service Stations: Fluid Models.

e Fluid Model vs. Approximation
e Model: Fluid/Flow, Deterministic/Empirical; eg. EOQ.

e Conceptualize: busy highway around a large airport at night.

Types of queues: Perpetural, Predictable, Stochastic.

Scenario Analysis vs. Averaging, Steady-State.

Descriptive Model (Inside the Black Box), via 4 “pictures”:
rates, queues, outflows, cummulants.

Mathematical Model (Black Box), via differential equations.

Resolution/Units (Scales).
e Applications:

— Phenomena:

Peaks (load vs. congestion); Calmness after a storm;
— Managerial Support:

Staffing (Recitation); Bottlenecks (Cranberries)

e Bottlenecks.

On Variability: Predictable vs. Stochastic (Natural/Artificial).



-

Types of Queues

“y e Perpetual Queues: every customers waits.

3 W : . , . :
— Examples: public services (courts), field-services, oper-

ating rooms, ...
— How to cope: reduce arrival (rates), increase service ca-
pacity, reservations (if feasible), .

— Models: fluid models.

/n e Predictable Queues: arrival rate exceeds service capacity
fsn-ve  during predictable time-periods.

— Examples: Traffic jams, restaurants during peak hours,
accountants at year’s end, popular concerts, airports (

e-

curity checks, check-in, customs) . ..

-------- How to cope: capacity (staffing) allocation, overlapping

J

shifts during peak hdurs, flexible working hours, . ..

— Models: Huid models, stochastic models.

2l» e Stochastic Queues: number-arrivals exceeds servers’ ca-

ca | . . . N . “
Go>100 pacity during stochastic (random) periods.

— Examples: supermarkets, telephone services, bank-branches,

en‘].ergeIz.cywcflepz—ll‘tmemts{:f?%g:m%«& ) WCE %

-------- How to cope: dynamic staffing, information (e.g. reallo-
cate servers), standardization (reducing std.: in arrivals,
via reservations; in services, via TQM) ...

— Models: stochastic queueing models.
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Economist.com

Crowded alrports

Landing flap

A tussle over Heathrow threatens a longstanding monopoly

TO DEATH and taxes, one can now add jostling queues of frustrated travellers at
Heathrow as one of life's unhappy certainties. Stephen Nelson, the chief executive of
BAA, which owns the airport, does little to inspire confidence that those passing
through his domain this Easter weekend will avoid the fate of the thousands stranded
in tents by fog before Christmas or trapped in twisting lines by a security scare in the
summer. In the Financial Times on April 2nd he wrote of the difficulties of managing
“huge passenger demand on our creaking transport infrastructure”, and gave warning
that “the elements can upset the best laid plans”.

Blaming the heavens for chaos that has yet to ensue may be good public relations but
Mr Nelson's real worries have a more earthly origin. On March 30th two regulators
released reports on his firm, one threatening to cut its profits and the other to break it
up. First the Civil Aviation Authority (CAA), which oversees airport fees, said it was
thinking of reducing the returns that BAA is allowed to earn from Heathrow and
Gatwick airports. Separately the Office of Fair Trading (OFT) asked the Competition
Commission to investigate BAA's market dominance. As well as Heathrow, Europe's
main gateway on the transatiantic air route, BAA owns its two principal London
competitors, Gatwick and Stansted, and several other airports.

hittp://www.economist.com/world/britain/PrinterFriendly.cfm?story_id=8966398 (1 of 3)4/9/2007 5:30:10 PM

The “Fluid View”
or Flow Models of Service Networks

Service Engineering (Science, Management)

December, 2006
1 Predictable Variability in Time-Varying Services

Time-varying demand and time-varying capacity are common-place in service operations. Some-
times, predictable variability (eg. peak demand of about 1250 calls on Mondays between 10:00-
10:30, on a regular basis) dominates stochastic variability (i.e. random fluctuations around the
1250 demand level). In such cases, it is useful to model the service system as a deterministic fluid
model, which transportation engineers standardly practice. We shall study such fluid models, which
will provide us with our first mathematical model of a servico-station.

A common practice in many service operations, notably call centers and hospitals, is to time-
vary staffing in response to time-varying demand. We shall be using fluid-imnodels to help determine
time-varying staffing levels that adhere to some pre-determined criterion. One such criterion is
“minimize costs of staffing plus the cost of poor service-quality”, as will be described in our fluid-
classes.

Another criterion, which is more subtle, strives for time-stable performance in the face of time-
varying demand. We shall accomumodate this criterion in the future (in the context of what will
be called “the square-root rule” for staffing). For now, let me just say that the analysis of this
criterion helped me also understand a phenomenon that has frustrated me over many years, which
I sumarize as “The Right Answer for the Wrong Reasons”, namely: how come so many call
centers enjoy a rather acceptable and often good performance, despite the fact that their managers
noticeably lack any “stochastic” understauding (in other words, they are using a “Fluid-View” of
their systems).

2 Fluid/Flow Models of Service Networks

We have discussed why it is natural to view a service network as a queueing network. Prevalent
models of the latter are stochastic (random), in that they acknowledge uncerlainty as being a central
characteristic. It turned out, however, that viewing a queucing network through a “deterministic
eye” animating it as & fluid network, is often appropriate and useful. For example, the Fluid View
often suffices for bottlereck (capacity) analysis (the “Can we do it?” step, which is the first step
in analyzing a dynamic stochastic network); for motivating congestion laws (eg. Little’s Law, or
?Why peak congestion lags behind peak load”); and for devising {first-cut) staffing levels (which
are sometime last-cut as well).




Some illuminating “Fluid” quotes:

o "Reducing letter delays in post-offices”: ”Variation in mail How are not so much due to random
fluetuations sbout o known mean as they are time-variations in the mean itself ... Major con-
tributor to letter delay within a postoffice is the shape of the input flow rate: about 70% of ail
letter mail enters a post office within 4-howr period”. (From Oliver and Samuel, a classical 1962
OR paper).

7 ... a busy freeway toll plaza may have 8000 arrivals per hour, which would provide a coefficient
of wariation of just 0.011 for 1 hour. This means that a non-stationary Poisson arrivals pattern
can be accurately approximated with a deterministic model”. (Hall's textbook, pages 187-8).
Note: the statement is based on a Poisson model, in which mean = variance.

There is a rich body of literature on Fluid Models. It originates in many sources, it takes many
forms, and it is powerful when used properly. For example, the classical EOQ model takes a fluid
view of an inventory system, and physicists have been analyzing macroscopic models for decades.
Not surprisingly, however, the first explicit and influential advocate of the Fluid View to queucing
systerns is a Transportation Engineer (Gordon Newell, mentioned previously). To understand why
this view was natural to Newell, just envision an airplane thiat is landing in E_w airport of a large
city, at aight = the view. it rushi-honr, of the network of highways that surrounds the airport, as
seen from the airplane, is precisely this fluid-view. (The influence of Newell is clear in Hall’s book.)

Some main advanitages of fluid-models, as I perceive them, are:

o They are simple (intuitive) to formulate, fit (empirically) and analyze (elementary). (See the
Homework on Empirical Models.)

e They cover a broad spectrum of features, relatively effortlessly.

o Often, they are all that is needed, for exawple in analyzing capacity, bottlenecks or utilization
profiles (as in National Cranberries Cooperative and HW2).

e They provide useful approximations that support both performance analysis and control. (The
approximations arve formalized as first-order deterministic fluid limits, via Functional (Strong)
Laws of Large Numbers.)

Fluid models are intimately related to Enipirical Models, which are created directly from mea-
surements. As such, they coustitute a natural first step in modeling a service network. Indeed,
refining a fluid model of a service-station with the cutcomes of Work (Time and Motion) Studies
(clagsical Industrial Engineering), captured in terms of say histograms, gives rise to a (stochastic)
meodel of that service station.

Contents

Scenario Analysis: Empirical Models + Simulation.
Transportation: Predictable Variability.
Fluid/Empirical models of Predictable Queues.

Four “pictures”: rates, queues, outflows, cumulative
7 ? 7
graphs.

Phases of Congestion.

Examples: Peak load vs. peak congestion; EOQ;
Aggregate Planning.

From Data to Models; Scales.
Queueing Science.

A fluid model of call centers with abandonment and
retrials.

Bottleneck Analysis, via National Cranberry Coop-

erative.

Summary of the Fluid Paradigm.




Conceptual Fluid Model

Customers/units are modeled by fluid (continuous) flow.

Labor-day Queueing at Niagara Falls

e Appropriate when predictable variability prevalent;
e Useful first-order models/approximations, often suffice;
e Rigorously justifiable via Functional Strong Laws of Large

Numbers.
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Abstract
Many acute hospitals in Australia experience frequent episodes of ambulance bypass.
An important part of managing bypass is the ability to determine the likelihood of it
occurring in the near future.

We describe the implementation of a computer program designed to forecast the
likelihood of bypass. The forecasting system is designed to be used in an Emergency
Department. In such an operational environment, the focus of the clinicians is on
treating patients, there is no time carry out any analysis of the historical data to be used
for forecasting, or to determine and apply an appropriate smoothing method.

The method is designed to automate the short term prediction of patient arrivals. It
uses a multi-stage data aggregation scheme to deal with problems that may arise from
limited arrival observations, an analysis phase to determine the existence of trends and
seasonality, and an optimisation phase to determine the most appropriate smoothing
method and the optimal parameters for this method.

The arrival forecasts for future time periods are used in conjunction with a simple
demand modelling method based on a revised stationary independent period by period
approximation queueing algorithm to determine the staff levels needed to service the
likely arrivals and then determines a probability of bypass based on a comparison of
required and available resources.

1 Introduction
This paper describes a system designed to be part of the process for managing Emergency Depart-
ment (ED) bypass. An ED is on bypass when it has to turn away ambulances, typically because all
cubicles are full and there is no opportunity to move patients to other beds in the hospital, or because
the clinicians on duty are fully occupied dealing with critical patients who require individual care.

Bypass management is part of the more general bed management and admission—discharge
procedures in a hospital. However, a very important part of determining the likelihood of bypass
occurring in the near future, typically the next 1, 4 or 8 hours, is the ability to predict the probable
patient arrivals, and then, given the current workload and staff levels, the probability that there will
be sufficient resources to deal with these arrivals.

Here, we consider the implementation of a multi-stage forecasting method [1] to predict patient
arrivals, and a demand management queueing method [2], to assess the likelihood of ED bypass.

The prototype computer program implementing the method has been designed to run on a hospital
intranet and to extract patient arrival data from hospital patient admission and ED databases.
The program incorporates a range of exponential smoothing procedures. A user can specify the
particular smoothing procedure for a data set or to configure the program to automatically determine
the best procedure from those available and then use that method.

For the results presented here, we configured the program to automatically find the best smoothing
method since this is the way it is likely to be used in an ED where the staff are more concerned
with treating patients than configuring forecast smoothing parameters.

Patients per Hour
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(a) Week beginning July 1, 2002
Arrivals averaged over 60 weeks from Mon 4/06/2001 to Sun 28/07/2002
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Figure 1: Hourly patient arrivals, June 2001 to July 2002

For the optimisation we assume no a priori knowledge of the patient arrival patterns. The process
involves simply fitting each of the nine different methods listed in Table 1 to the data, using the mean
square fitting error, calculated using (3), as the objective function. The smoothing parameters for
each method are all in (0, 1) and the parameter solution space is defined by a set of values obtained
from an appropriately fine uniform discretization of this interval. The optimal values for each
method are then obtained from a search of all possible combinations of the parameter values.
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From the data aggregated at a daily level, repeat the procedure to extract data for each
hour of the day to form 24 time series (12am—1lam, lam-2am, ..., I Ipm-12am). Apply the
selected smoothing method, or the optimisation algorithm, to each time series and generate
forecasting data for those future times of day within the requested forecast horizon. The
forecast data generated for each time of day are scaled uniformly in each day in order to
match the forecasts generated from the previously scaled daily data.

Output: Display the historical and forecasted data for each of the sets of aggregated observations
constructed during the initialisation phase.

The generalisation of these stages is straightforward. For example, if the data was aggregated to a

four-weekly (monthly) level, then the first scaling step would be to extract the observations from

the weekly data to form four time series, corresponding to the first, second, third and fourth week

of each month. Historical data at timescales of less than one day are scaled to the daily forecasts.

For example, observations at a half-hourly timescale are used to form 48 time series for scaling to

the day forecasts.

4.3 Output from the multi-stage method

Figures 2 and 3 show some of the results obtained from using the multi-stage forecasting method to

predict ED arrivals using the 60 weeks of patient arrival data described in Section3. The forecasted

data were generated from an optimisation that used the multi-stage forecasting method to minimise

the residuals of (3) across all the smoothing methods in Table 1.

Historical data: Mon 4/06/2001 to Sun 28/07/2002, 420 days
T
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Forecasted —— -
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Figure 2: Hourly historical and forecasted data 25/7/2002-31/7/2002

Historical data: Mon 4/06/2001 to Sun 28/07/2002, 420 days
T T
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Figure 3: Four-hourly historical and forecasted data 25/7/2002-31/7/2002
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Arrivals Process, in 1976

Custom Inspections at an Airport

Number of Checks Made During 1993:
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Fluid Models and Empirical Models

Recall Empirical Models, cumulative arrivals and
departure functions.
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For large systems (bird’s eye) the functions look smoother.

400
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customers

time

= cumulative arrivals — cumulative departures

24

Empirical Models: Fluid, Flow

Derived directly from event-based (call-by-call) measurements. For

example, an isolated service-station:
e A(t) = cumulative # arrivals from time 0 to time ;
e D(t) = cumulative # departures from system during [0, t];

e L(t) = A(T) — D(t) = # customers in system at ¢.

Arrivals and Departures from a Bank Branch
Face-to-Face Service

400
350 -
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200 4--eccenenen Ceaieeas

number in

"m<m»m3

150 4--r-remrn-- NEEREER A AR LR ............
100 ----------- SRR LR R T T LR

customers

time

ﬁgncac_m:é arrivals = cumulative departures

When is it possible to calculate waiting time in this way?

32
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Figure 6.6 Cumulative diagram illustrating deterministic fluid model. When a queue
exists, customers depart at a constant rate. Queues increase when the arrival rate exceeds

the service capacity and decrease when the service capacity exceeds the arrival rate.
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Fluid Models: General Setup

Mathematical Fluid Models

e A(t) — cumulative arrivals function.
e D(t) — cumulative departures function.
e A\(t) = A(t) — arrival rate.

e 0(t) = D(t) — processing (departure) rate.

e c(t) — maximal potential processing rate.

e ()(t) — total amount in the system.

Queueing System as a Tub (Hall, p.188)

Fauet {aryivals)

A

Figure 6.5 In 3 fluid model, the
customers can be viewed as a liquid that
hg‘%“giv sccumulates in & tub. Queues increase

when the fluid enters the twb faster than it
feaves.

25

Differential Equations:
e A\(t) — arrival rate at time ¢ € [0, 7.
e c(t) — maximal potential processing rate.
e 0(t) - effective processing (departure) rate.
e (J(t) - total amount in the system.
Then Q(t) is a solution of
Q(t) = At) = 8(1); Q(0) =qo, t€[0,T].
In a Call Center Setting (no abandonment)
N (t) statistically-identical servers, each with service rate p.

c(t) = pIN(t): maximal potential processing rate.
8(t) = - min(N(t), Q(¢)): processing rate.

Q(t) = At) — p- min(N(#), Q(1)), Q(0) =, t€[0,7].

How to actually solve? Mathematics (theory, numerical)
or simply: Start with ¢y = 0, Q(to) = ¢o.
Then, for ¢, = t,1 + At:

Qt) = @tac) + Altnor) - At = itV (tnr), Qftnr)) - At

3

33



Predictable Queues

Filuid Models and
 Approximations

for Time-Varying Queues with
Abandonment and Retrials

with
Bill Massey
Marty Reiman
Brian Rider

Sasha Stolyar

At

Sudden Rush Hour

= 50 servers;
= 110 for9 << 11,

p=1

A = 10 otherwise

Lambda(t) = 110 (on 9 <=t <= 11), 110 (otherwise). n = 50, mut = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25

90

_ ; _ . T T T T T
Q1-ode
80t - - = Q2-ode |
o o) Qi-sim
x X Q2-sim
........ variance envelopes
70 |
60 |
50 \
40t |
301 |
20k = -
S e
.......................... R
10+ % XX xg L |
............................ e
| e IR e
/: * * N % T ! L _ PR
0 2 4 6 8 10 12 14 16 19 %
time
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Time-Varying Queues with
Abandonment and Retrials

Based on a series of papers with Massey, Reiman, Rider
and Stolyar (all at Bell Labs, at the time).

Call Center: a Multiserver Queue with
Abandonment and Retrials

M ©)
I ) W (QqHANY
uZQp () Q4 (1) )
e *

Byt (Qq() —ny)*

By (1-yp) ( Q) ~np)™

Qu(t)

27

Primitives: Time-Varying
Predictably

A exogenous arrival rate;
e.g., continuously changing, sudden peak.

py  service rate;
e.g., change in nature of work or fatigue.

1y number of servers;
e.g., in response to predictably varying workload.

Q1(t) number of customers within call center
(queue-service).

B; abandonment rate while waiting;
e.g., in response to IVR discouragement
at predictable overloading.

1y probability of no retrial.

p?  retrial rate;
if constant, 1/u? — average time to retry.

Q-(t) number of customers that will retry (in orbit).

In our examples, we vary A; only, while other primitives
are held constant.

28



Fluid Model
Replacing random processes by their rates yields

QO(t) = (@ (1), Q¥ (1))

Solution to nonlinear differential balance equations

S Q7W = - Q7@ An)
+uf QS7(1) — 6 (V1) —ni)*
£Q0® = AaA - w@O® - n)t

— 12 Q@)

Justification: Functional Strong Law of Large Numbers,
with A: — A, ny — 1.

Asn T oo,

1
ZQ"t) — QW(t), uniformly on compacts, a.s.
n

given convergence att = O

ffusion Refinement

d { ~(1Y
Q1) =n QW + v QM) +o (Vi)
Justification: Funciional Central Limit Theorem

i 12 - @@ 4 09w, in Do, oo,
n

given convergence att = O.

QY solution to stochastic differential equation.

If the set of critical times {¢ > O : @MQS = n;} has Lebesque
measure zero, then Q1) is a Gaussian process. In this case, one
can deduce ordinary differential equations for

(1 _\

, Qv var Q'Y (¢) : confidence envelopes

& @

These ode’s are easily solved numerically (in a spreadsheet, via for-

ward differences).



Starting Empty and Approaching Stationarity

Lasmbaalt) =10, n =50, mul = 1.0, mu2 = 0.2, beta = 2.0, P{r
100 T T T T T T T T T

ol }
R
P Tl
£X%
% %X
%KX
5 %X 4
%%
P
i
o o 1
x x
: L L . L
10 12 14 16 18 20

time

Laniodal) = 110, n= 50, mut = 1.0, mu2 = 0.2, beta = 2.0, P{retrial) = 0.8
700 : : T T T T T T T

time

Numerical Examples

Qur numerical examples cover the case of time-varying behavior only for the external
arrival rate A;.-We make g! = 1, p? = 0.2, and Q1(0) = @2(0) = 0 but let n, 4, and ¢
range over a variety of different constants.

The first two examples, see Figure 2, that we consider actually have the arrival rate X
equal to a constant 110, with n = 50, m = 2.0, and ¢ = 0.2 and 0.8. This is an overloaded
system, see (8], i.e. @B: 1) > n for large enough , and equations Gv and (2) indicate that

O) = ¢ and Q) ~ gy as t — oo. Setting £-Q AST.V =% HSA t) =0ast— oo,
then ¢; and ¢, solve the linear equations

A plg—pn—Blg~n) =0 (12)
and
Bl —$)g1 —n) — pPga = 0. {13)

These equations can be easily solved to yield

g =n+ —s— and gy = 1,1[. G,NC
Substituting in ¢ = 0.2 and the other parameters indicated above yields ¢; = 200,
¢2 = 1200. This case corresponds to the graph of the left in Figure 2 and indicates
that this system is still far from equilibrium at time 20. With v = 0.8 (so the probability
of retrials is equal to 0.2) we obtain ¢ = 87.5 and ¢, = 75. This case corresponds to
the graph on the right in Figure 2. Here it appears that @@ has essentially reached
equilibrium by the time ¢ = 20, while Qw © Yas a bit more to go.

In general, the accuracy for the computation of the fluid approximation can be ow:wnr@@
by a simple test that om? umpEwmm a visual inspection 9ﬂ :6 graphs.



Quadratic Arrival rate

Assume A(t) = 10 + 20t — ¢*.

110

arrival rate

time

Take P{retrial} = 0.5, § = 0.25 and 1.

Lambedadt) = 10+20t%, 0 = 50, @il = 1.0, mu2 = 0.2, beta = 0.25, Plretrial) = 6.5 Lambdad = 1062012, n = 50, mul = 1.0, mu2 = 0.2, beta = 1.0,

350,
Qt-od e Qt-ode
— ~ode . 160, - -~ Qz-ode 5 —
300/ oo Qe-ode B © o Ql-sm - P o
o o Qism . - X % ooem < x,
* *x  Q2-sim . . - 140 variance enveloped ; . E
Variance envelope: - . [N - e %
250+ g %
150 . .
20 100
150 B
R ©
100 o -]
a
50 4
20
2 ¥ ] 2w 16 18 2

Figure 4. Numerical examples: 3; = 0.25 and 1.0.

QMS appears to peak roughly at the value 130 at time ¢ & 12. Since the derivative at a
local maximum is zero, then equation (1) becomes

N+ Q) 1 (QP(0) An) + B (QO() —nl) (15)

when ¢ =~ 12, as well as MSQV = WSQV = 130. The left hand side of (15) equals
106 + .2 - 130 = 132 which is roughly the value of the right hand side of (15), which is
50 + 80 = 130.

Similarly, the graph of QWQ appears to peak roughly at the value 155 at time ¢ = 16.5

which also implies QMEQV ~2 110 and equation (2) becomes

B0 -8 (Q0(0) — n) " & 2. (16)

The left hand side of (16) is 0.5 - 60 = 30 and the right hand side of (16) is about the
same or 0.2- 155 = 31.

The reader should be convinced of the effectiveness of the fluid approximalion after an
examination of Figures 2 through 5. Here we compare the numerical solution (via forward
Euler) of the system of ordinary differential equations for Q)(¢) given in (1) and (2) to
a simulation of the real system. These quantilies are denoted in the legends as Q1-ode,

»

Q2-ode, Q1-sim, and Q2-sim. Throughout, the term “variance envelopes” refers to

Q1) £ /Var [Q{(1)] (an

for ¢ = 1,2, where Var QMCQL and Var MQWCQL are the numerical solutions, again by
forward Euler, of the diflerential equations delermining the covariance matrix of the dif-
fusion approximation Q() (see Proposition 2.3). Setting QMSAS = @M:AS = 0 vields by

L



Sudden Rush Hour What if P, {Retrial} increases to 0.75 from 0.25 ?

Lambda(y) = 110 (on 8 <=t <= 11), 10 (stherwise). n = 50, mut = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.75
T T

90 T T T T T T
n = 5O servers; p=1
801
N = 110 foro9 <t <11, M\ =10 otherwise
70}
80}
s0f
aof
Lambda(t) = 110 (on 9 <= t <= 11), 110 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
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Figure 10 Chemical MCE Deill: Ardvals, Departures, and Erlang-R Approximations.

(a) Arrival and Departures in MCE Drill {(h) Erlang-R Approximetions {fluid and diffusion)
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one to use Frlang-R for off-line Planning of an MCE, Initial-Reaction at its outset (customized to

the MCE type, severity and scale), and subsequently online MCE Conirol until the event winds

up. We focus as before on stafling. To this end, we use data from a Chemical MCE drill. The MCE
took place in July 2010 at 11:00 am. and lasted till 13:15; its casualties were transported to an
Israeli hospital where our data were collected. The short horizon of MCEs (here 2 hours) and the
protocol of chemical events (periodic treatment of patients) renders the transient Erlang-R, with

its recurrent service structure, naturally appropriate.

Our data is for the severely wounded non-trauma patients. Pigure 10a depicts cumulative arrival

periods with no arrivals alternate with approximately constant arrival rates, with the rates decreas-
ing as time progresses. (Our hospital partners, experienced in managing MCEs, inform us that
this plecewise-constant pattern of arrival rate is typical of MCEs: it is attributed to the fact that
casualties are transported from the MCE scene by a finite number of ambulances, who traverse
back and forth.) The estimated arrival rate function (customers per minute) is as follows (1y, 4 is

an indicator function):

N

), w G 771} w1 {0 2)} ?L) 1 ) 8"%4 ¥ dra {44, 6‘}”3\} {* 0 O M } Lmo 117} {ﬁ}ﬁ

(16)
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the arrival rate and the number of physicians are scaled up by n while the Needy and Content

service rates remain unscaled:

, t o L
Q1(t) = Q10) + A (] T‘//\udu> — AS (/ NP ( ; Gy A cw\) du)
0 ) Jo S
o . Lo / (11
— Az (/ HLl—p)u (gégg’(\u,) A 5'“) daz) + Ay ([ 7d ( Q4 (u)) (iz;,> , (11
o 0 . N : 1 )
QI(t) = QI0) + Az (/ npis (ié;?gf(vz} A -S,,L> {qu> ------- Agy (/ nd ( 3'@&3) (iu) .
Jo 7 . 0 7 /o

THREOREM 6. (FSLLN) Through the scaling (11), we have

where Q9(+), the fluid approximation/model, s the solution of the following ODE:

N

t .
Q) = Q9 (0) + Ay — 1 /Q?G)(uf A8y ) +0Q0 (w)) du,
1) 1A 1\ )
o 3

(Qm'_/, W(O) 1/ (py/ (Q;“){M A Su) ------ (SQ ( )du

G

(12)

\

The convergence to Q9(+) is a.s. uniformly on compucts (v.0.c).

The theorem follows from Theorem 2.2 in Mandelbaum et al. (1998). We continue by developing
diffusion approximations for Erlang-R. These are used for calculating variances and covariances

which, in turn, yield confidence intervals for the number of patients in the system.

N

THEOREM 7. (FCLT) Through the scaling (11) and with the fluid limits (12), we have

..... () PR o
lim /7 L*—Q z( L Q) ﬁ,}} LW, 120, (13)
Fpey O s

where QWM (1), the diffusion model/approximation, is the solution of an SDE (Stochastic Differentiol
Equation), as given by (26) in the Internet Supplement, Section A.6. The convergence to QW(-)
is the standard Skorohod Jy convergence in D]0,00).

The theorem is a consequence of Theorem 2.3 in Mandelbaum et al. (1998). Our fluid and diffusion
models are easiest to apply when durations of critical-loading are negligible (the zero-measure
assumption in Mandelbaum et al. (2002)). They are thus natural as models for MCEs, during

which overloading constantly prevails. Formally:



Types of Queues

o Perpetual Queues: every customers waits.

— Examples: public services (courts), field-services, oper-
ating rooms, ...

— How to cope: reduce arrival (rates), increase service ca-
pacity, reservations (if feasible), . ..

— Models: fluid models.

e Predictable Queues: arrival rate exceeds service capacity
during predictable time-periods.

— Examples: Traffic jams, restaurants during peak hours,
accountants at year’s end, popular concerts, airports (se-
curity checks, check-in, customs) .. .

— How to cope: capacity (staffing) allocation, overlapping
shifts during peak hours, flexible working hours, . ..

— Models: fluid models, stochastic models.

e Stochastic Queues: number-arrivals exceeds servers’ ca-
pacity during stochastic (random) periods.

— Examples: supermarkets, telephone services, bank-branches,
emergency-departments, . ..

— How to cope: dynamic staffing, information (e.g. reallo-
cate servers), standardization (reducing std.: in arrivals,
via reservations; in services, via TQM) ...

— Models: stochastic queueing models.

‘Bottleneck Analysis

Inventory Build-up Diagrams, based on National Cranberry
(Recall EOQ,...) (Recall Burger-King) {inReading Packets Fluid Models)

A peak day: e 18,000 bbl's (barrels of 100 Ibs. each)
e 70% wet harvested (requires drying)
e Trucks arrive from 7:00 a.m., over 12 hours
e Processing starts at 11:00 a.m.
e Processing bottleneck: drying, at 600 bbl’s per hour
(Capacity = max. sustainable processing rate)
e Bin capacity for wet: 3200 bbl’s
e 75 bbl’s per truck (avg.)

- Draw inventory build-up diagrams of berries, arriving to RP1.

- Identify berries in bins; where are the rest? analyze it!
Q: Average wait of a truck?

- Process (bottleneck) analysis:

What if buy more bins? buy an additional dryer?

What if start processing at 7:00 a.m.?

Service analogy:
o front-office + back-office (banks, telephones)
m%wino E,M%E:cu
e hospitals (operating rooms, recovery rooms)

e ports (inventory in ships; bottlenecks = unloading crews,router)

e More ?

Qs
QD



Trucks
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wet berries walting in trucks {bbls}

1008 -

5600

4500

s
&
E=d

3500

3000 -

2500

1500 -

560 -

& ; ‘ . . :
7:09 9:00 11:00 15:00 18:00 17:60 19:00 24:00 Z25:00 1:08 300

Time

Area over curve =
1

~+1000 »m%{m@@ me%«m@ 7%/, = 40,533 bbl- hours
Divide by 75.

Truck hours waiting = 40,533/75 bbl/truck = 540
truckehours

Ave throughput rate =
[0-1+600-15 2 ?//Mié % 751="7.52 trucks/ hour

Ave WIP = 540/162/,=32.4 trucks (a “biased”

average)

Given that a truck waits, it will wait on average
32.4/7.52 = 4.3 hours { t‘t%@‘?g Law)

trucks in queue
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The Fluid View @ (tamaany

L

Predictable variability is dominant (Std << Mean)
The value of the fluid-view increases with the
complextity of the system from which it originates

Legitimate models of flow systems

— Often simple and sufficient; empirical, predictive
. Capacity analysis

Inventory build-up diagrams

« Mean-value analysis

Approximations

— First-order fluid approx. of stochastic systems
« Strong Laws of Large

umbers
(vs. Second-order diffusion approx., Central Limits)
— Long-run

+ Long horizon, smooth-out variability (strategic)
— Short-run

« Short horizon, deterministic (operational)

Technical tools

— Lyapunov functions to establish stability !

— Building blocks for stochastic models (M{O/M(t)/1)
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Stochastic Model of a
Basic Service Station

Building blocks:

e Arrivs

& Service durafions

uilding blocks one-by-one:

s Empirical analysis, which motivates

# Theoretical mode
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@ Scheduling Servers
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