Class 2

Flow Basics
Little’s Law
Flow Basics
e Inflow, Outflow (rates)
e Capacity, Utilization (Occupancy)
s Offered Load
e Resources: Servers, Highway
Little’s Law
e Little’s Law (Handout): Examples and Applications
e The customer/server/manager paradigm
e Scenarios: finite horizon, periodic, steady state
e Queueing/Inventory buildup diagrams
e If time permits: Brumelle’s formula, leading to K-P (but without K-P).
Recitation 2: Little’s Law and Capacity Analysis.

HW 2:

Solve the problems on “Capacity Utilization and Little’s Law”. You can solve most of the
questions already now, with mere common sense (and Little’s Law: L = AW). A capacity-
analysis example will be solved in today’s recitation.

Reading and “Viewing” Assignment:

Part 1: Hall, Chapter 2, on “Observations and Measurements”
Read Hall’s Chapter 2, as a review of today’s class and a preview of the next one.

Part 2: Kaplan R. and Porter M., “How to Solve the Cost Crisis in Health”,
HBR, September 2011

e The journal Harvard Business Review (HBR) is read by millions.

e Robert Kaplan, Professor at the Harvard Business School (HBS), is one of the most influ-
ential people, world-wide, in Accounting.

e Michael Porter, Professor at HBS, is one of the most influential people, world-wide, in
Strategy.

e They both have joined forces in order to discover, unsurprisingly I riust say, that doing
what we have been advocating at the Technion (especially, collecting operational data
(process maps) at the level of individual patient, e.g. via RFID systeins) is what MUST
be done, and will eventually be done, by every healthcare organiza%i()n, in particular
hospitals.

More specifically, the theme of Kaplan and Porter, as I understand it, is as follows: Mea-
suring Operational data is a prerequisite for understanding Financial Performance, and is
well correlated with Clinical performance.
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Service Engineering Created: April 1997
Last revision: April 2007

LITTLE’S LAW

A conservation law that applies to the following general setting:

input —® system [—* output

Input: Continuous flow or discrete units (examples: granules of powder measured in tons,
tons of paper, number of customers, $1000’s).

System: Boundary is all that is required (very general, abstract).

Output: Same as input, call it throughput.
Two possible scenarios:
e System during a “cycle” (empty — empty, finite horizon);

e System in steady state/in the long run (for example, over many cycles).

Quantities that are related via Little’s law (long-run averages, or time-averages):

e A = rate at which units arrive
(= long-run average rate at which units depart) = throughput-rate, whose units are
quantity /time-unit or #/time-unit;

e L = inventory/quantity/number in the system
(eg. WIP: Work-In-Process, customers);

e W = time a unit spends in the system = throughput time
(eg. hours) = sojourn time.

Little’s Law L =AW




Little’s Law for Retail calls, August 16th, 2001: US Bank

»: Throughput Rate, Retail, August 16™,2001; US Bank

Arrivals to queue Retail
16 August 2001
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L: Average Queue Length, Retail, August 16“‘, 2001; US Bank

# Customers in Queue (Average) Retail
August 16, 2601; US Bank
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S8 Guistomers i Ghise = Citie's Law)

Time 7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00
A 443| 639| 987| 1291| 1998 2166] 2278 2231| 2158| 2135] 2000| 1408} 1311] 1303| 1323| 1285} 1340
W 1.7] 32] 12| 15| 24| 28] 24 26| 20/ 13] 13 0.8 1.0 1.0/ 038} 08 1.5

A*W | 042| 1.14] 0.68| 1.06] 2.72| 3.42] 3.01| 3.18| 2.44] 1.55| 1.47| 0.64| 0.72| 0.72] 0.62| 0.59| 1.09
L 0.42] 1.14] 0.68] 1.06{ 2.72| 3.40 3.02| 3.17] 2.41| 1.59| 1.48} 0.64} 0.72} 0.72| 0.62] 0.57| 1.11

Time 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30
A 1258} 1235] 1157] 942{ 788 752| 803| 619] 485| 437| 421 386 3368| 311| 274 251 193
W 3.5] 36| 158] 42| 24| 49| 519] 100/ 35 17/ 13 211 33 1.4] 2.0| 14.3] 326

AW §2.422]| 2.45] 10.2]2.173| 1.06] 2.05/23.16] 3.43] 0.95] 0.41/0.314] 0.44| 0.62] 0.24| 0.30f 2.00] 3.50
L 2.37 2.4911017| 2.16] 1.07] 1.94}23.11) 3.58| 0.95] 0.40| 0.31] 0.45| 0.62] 0.24; 0.30f 1.83] 3.63




Little’s Law for Telesales calls, October 10th, 2001: US Bank

A: Throughput Rate, Telesales, October 10“‘, 2001; US Bank

Arrivals to queuve Telesales
10 October 2001
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Time 7:00 7:30 8:00 8:30 9:00 9:30  10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00
A 76 102 182 262 379 464 440 433 410 431 422 418 401 439 453 432 373
w 108.8] 123.8] 383.5| 403.7] 503.5| 522.5| 607.9| 602.1] 552.4] 521.1] 508.6] 468.8] 442.1| 467.3] 545.9] 483.1] 4421
AW 4.63] 7.01f 38.77] 58.76|106.01] 134.69| 148.60/144.84]125.82| 124.77] 119.23] 108.86] 98.48/113.98| 137.39| 115.93| 91.61
L 4281 6.91] 31.73] 54.36| 96.50{ 140.70} 168.10[{174.34| 166.14| 146.13] 154.48| 13747} 118.29]121.44| 144.07| 146.01} 119.83
Time 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30
A 405 427 298 242 182 134 132 134 112 105 105 87 80 55 45 28 30
w 419.2| 442.2| 458.8| 387.9f 4151 3567.1| 121.6] 179.8] 267.9| 445.7| 536.0{ 416.9| 403.9| 326.0] 463.6]/ 187.3 0.9
A*W1 94.31]104.89] 75.96| 52.15] 41.97| 26.58 8.92] 13.38] 16.67| 26.00f 31.27} 20.15] 17.95] 9.96f 11.59 2.91 0.02
L 107.86/101.22| 111.60) 82.93] 42.23| 32.32] 10.57| 13.24] 18.67] 21.07| 32.50] 24.10] 20.33| 10.69] 11.13 435/ 0.02
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Little’s Law for Russian calls, May 23rd, 2005: Israeli Telecom

,: Throughput Rate, Russian, May 23" 2005; Israeli Telecom

Arrivals to gueue Russian
23 May 2005
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L: Average Queue Length, Russian, May 23”, 2005; Israeli Telecom

# Customers in Queue (Average} Russian
May 23, 2005; israeli Telecom
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joseit Customers in Quous “=Little’s Law |

Time  7:00 7:30 8:00 8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00
A 12 12 22 46 59 59 36 52 43 56 81 61 80 46 67 56 50
w 16.9 1.3] 11.4] 166.0{ 148.9| 88.7] 79| 274| 0.7] 39| 203| 749|1254| 463] 41.4| 47.9] 377

AW 0.11] 0.01] 0.14] 4.24] 488 291 0.16] 0.79] 0.02{ 012| 0.81] 2.54| 557| 1.18] 1.54] 149 1.05
L 0.08| 0.04] 0.14] 3.97| 4.88] 3.18] 0.16] 0.79] 0.02| 0.12| 0.88f 257| 532| 144] 1.36] 1.67] 1.00

Time  15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30
A 57 52 62 70 75 79 68 68 60 55 55 56 56 43 27 14 6
w 65.7] 22.4f 79.2| 156.6] 118.6] 139.3| 143.6] 150.2 179.2] 151.3] 209.5{ 219.5| 224.7| 88.4| 33.7] 1070 Q.7

AW 2.08] 0.65] 273] 609 494| 6.11] 542 568| 597| 462 640! 6.83] 699} 211 051} 0.83} 0.00
L 2131 0.62| 234] 551} 582| 561| 6.03] 3.04| 8.63| 434 599 7.18] 6.85 261 051} 0.83} 0.00




Wy

A(T)=N # customers

time

L(®)

L(0)=0 L(T)=0

Note: Vertical cut = number of customers in the system.

S = Shaded area (units: customer x hours), measures total waiting.

W = N divides waiting among customers
(the customer’s view).

L= ;—, divides waiting over time
(the manager’s view).

/\:—]j\f—, implies L = A - W

(which adds the server’s view).
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5.2 Cars flow over a single-loop detector, that can measure Occupancy = % time

there is a car above the detector;
Flow = avg. # cars per hour.

System = Detector

L = Occupancy (E [Indicator])
A = Flow
W S time to traverse one detector

v
where V' = Velocity, £ = av. car length.

By Little’s Law:

Flow x car-length

Occupancy =

Velocity

Note: Occupancy = Density x car-length.

x 100%

5.3 Empirically, transportation flow reveals the following “flow vs. occupancy”
relation ("flow vs. deunsity” would look the same):

From “Causes and Cures of Highway Congestion”,
Chao Chen, Zhanfeng Jia and Pravin Varaiya, 2001

Flow (v/1/h) we, beeupancy (),

10/3/2060

3000 T T T T T T T
T T ! ! : Lang 1 e
Free F_low, . Congesti‘pn,
100 %: ——|—p Inefficient
2600 Efficiency ... ... ... .. Operation .
Maximum = 530 am :
Flow . Z !
4
2000 e /3;1,\,\' E
: (o]
300 oo e i
2 : y——i6:45am '
g : T ; ‘
{ d = 60 mpl ;
1000 b-oo - d . N ot :_}) [ :
b . ¢ Depth of!
! : i Congestion
P : :
500 [
. / i i ; ; ; i ;
o .05 0.1 0.15 0.2 0.25 0.3 .35

Critical Qeoupancy (63

Occupancy Level

a.4

Figure 6: Flow vs. occupancy on a section at postmile 37.18 on I-10W, midnight to noon

on October 3, 2000.
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The critical occupancy is the occupancy-level beyond which congestion starts
building up.

Note: For cach point on the curve, the slope of the line connecting it with the
origin is proportional (equal) to the velocity; indeed:

Flow Velocity Flow
Occupancy  Car-lenght’  Density

= Velocity

This explains the {(almost) straight line to the left of the critical occupancy: its slope
is the congestion-free velocity (60 miles/hr in California highways).

Note: with a single-loop detector covering N lanes, and assuming that traffic is
evenly divided among the lanes (though typically this is not the case), the Occu-
pancy should be calenlated by using Flow /N, instead of merely Flow.

Abandonment: Calls arrive at a call center at rate o. A fraction P, of them
abandons due to impatience. Individual abandonment rate is 6.

Let L,. W, denote. respectively, the average number of customers waiting to be
served, and the average queueing time (waiting for service). Then

a-Puy=0L,

But L, = oW, hence
Y =0 W

Thus. the abandonment rate s proportional to the average waiting time. This has
been confirmed empirically for new (potential) customers. Indeed, (P, W,) were
observed and scatterplotted. The slope (via regression) can be used to estimate
custoniers’ (average) patience.
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The data is from a bank call center. Each point corresponds to a 15-minute period of
a day (Sunday to Thursday). starting at 7:00am. ending at midnight. and averaged
over the whole year of 1999.

e Why a positive y-intercept?

e What about ezperienced customers?

Loan Application Flow from Muiay
S.Chopra, S.Deshmukh, J.

ing Business Process Flows. by R.Anupindi.
an Mieghem, E.Zemel, Chapter 3. (In Recitation. )

Process Flow: A supermarket receives from suppliers 300 tons of fish over the
course of a full year, which averages out to 25 tons per month. The average quantity
of fish held in freezer storage is 16.5 tons.

On average, how long does a ton of fish remain in freezer storage between the time
it is received and the time it is sent to the sales department?

W = L/X = 16.5/25 = 0.66 months, on average, is the period that a ton of fish
spends in the freezer.

How does one get L = 16.57 This comes out of the following inventory build-up
diagram by calculating the area below the graph:

Inventory/Queue Build-up Diagram.
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15. Little’s Law in the “Production of Justice”.

e 5 Judges “process” 3 types of files.

e System = “drawer” of a Judge.

Judges: Performance Analysis (A, W)
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Note: Recall that waiting-times are not truncated to 30 minutes, the latter being
SEEStat standard.
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Let 1, <1,.
Le H'ff‘; Lows: Finfe~ ‘l/?‘l'gau

a. V(¢ )=V{t,) then ontheinterval [7,,1,), L=4-W.
(‘) (N) {I 2) (wﬁAéErﬁpﬁ)

Vi) -V)
f, -1,

b. The absolute difference between Land A-W isgiven by} AW - L =

Explanation {for 'b' only as it is a generalization of 'a’}:

Recall that in an interval which starts with an empty system and ends with an empty system,
L=1-FE (W)
Let us force this condition on some interval [t;,t,) by treating all entities of Type 3 from
above (i.e. entities which arrive before t;) as if they arrived exactly at time t;; and treating all
entities of Type 2 from above (i.e. entities which depart after t,) as if they depart exactly at
time t; )
We now compute L according to Little's Law:
#entities that spent sometimein the system qujourntimes enclosed within|t,.1,)

L #entities that spent sometime in the sysiem

A E(W)
Next, recall how SEEStat computes the arrival rate and average waiting time and finds their
product:

A-E(W) # Arrivals during () Z sojourn times of entities lo arrive during 1,1, )
b= # Arrivals during 1,1,

But:

>: sojourn times enclosed within[l*1 , l‘Q) =

> sojourntimes of entitiesto arrive during[1,,1,) +V () =V (1,)
Hence:

L-A-E(W)= ‘V(zll)i};(lz)

Let us return to the example above:

g:i; ,E(W):w:]_‘ji -—>/1-E(W)22
7 4 4
L:é'3+7+2+’4+3+2:§1:3
7 6 7
And indeed:
V(tz)—-V(q)“_S«-lZm”}
t,—1, 7
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o V(18:30) -V (18:00) _ 1895
18:30-18:00 1800

=0.102 ,

This matches the difference presented previously, when putting L against - W .
Our analysis may well explain why, on this day, we see that Little's Law 'works properly".

Finally, we examine an interval where we previously found Little's Law does NOT work:
Consider October 10™ 2001 in Telesales of US Bank call center, during 11:00-11:30. It is

possible to compute the remaining work at both the beginning and the end of the interval.

We get {note how loaded the call center is):

V(11:00)=170,670 sec,
V(11:30) =154,634 sec.

Therefore:

154,634-170,670 _ ~16036 _
1800 1800

AW-~L= -8.91.

Comparing this result to the measured difference in the corresponding graph above {note
that you shouid compare it to the difference found in the graph with untruncated waiting
times), we get the exact same difference.
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Stochastic example: M/M/1

Poisson _gyene— server

arrivals EEEEEEE Q%mﬁdnﬂ
rate A @
rate pi

Model
Birth-and-death process, birth rate A, death rate p.
Assumption

p= w < 1, answers existence of stationary (limit) distribution :

m = (1-p)p*, k=0,1,2,... (geometric distribution).

Little: W =

Check out:

-
W = (PASTA) =) Elsojourn time/k customers in system] 7
=0
k1
= (memoryless property) = Y = + —| m
k=o LEH
11 1 1
= e L= =
woop pl-p
System = queue: =AW, Wy=W-1=1:&

L, - queue-length,
W, - waiting-time.
System = server:
1
L=X—,
1
L = p = probability that the system is not empty (customer waits)
= proportion of time when the server is busy (fraffic intensity).

20

Stochastic Model (& la Serfozo' )

{(A., D.,), n > 1} random variables; limits are a.s. (with probability 1)

.w A
m.m.ynmww%v&j ﬂ\ &ih.&ajg%
“Periodic” System (Serfozo, pg. 17)

A system is periodically empty if there exist strictly increasing random times 7, T oo,
such that

1. 7~ T ie. :wd £l = 1 as. (implied, for example, by 7,,/n — ¢).
nioe Tm

2. For all n, there exists ¢ € [7,,, Ty1) such that A(¢) = D(t), e L(t) =0.

Theorem. If a system is periodically empty, the ezistence of any two positive limits out
of (L, A, W) implies existence of the third, as well as the relation L = AW.

Typical application: 7, starts a “cycle” (eg. empty system; state 7), which gives rise
.0 a regenerative structure (eg. Markovian). o

ntroduction To Stochastic Networks, Springer 1999, Chapter 5
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