

קורס הסמכה – מוסמכים (חורף תשע"ד – 2014):

הנדסה מערכות שירות (096324)

מרצה: פרופ' אבישי מנדלבאום, תעשייה וניהול, חדר 518, דואר אלקטרוני: 8294504
 מתרגלות: ניצן כרמל, תעשייה וניהול, חדר 413, דואר אלקטרוני: 8292922
 אתר הקורס: <http://ie.technion.ac.il/serveng2014W>

רקע:

- מערכות שירות מהוות כ- 60-80% מהכלכלה המערבית.
- יש בעות ובעונה אחת גם שוני מהותי וגם קשר הדוק בין מערכות שירות למערכות ייצור, תקשורת, תחבורה, ...
- יותר ויותר מהנדסי תעשייה עוסדים עם או במערכות שירות כמהנדסים (להבדיל ממנהלים או מדענים).
- תהליכי השירות הופך לעתיר טכנולוגיה.
- סטודסטיות משחקת תפקיד דומיננטי במערכות שירות.
- ⇨ הגע הזמן להציג, בפקולטה להנדסה תעשייתית וניהול, קורס בהנדסה שירות וניהול, וזאת תוך דגש תיאורטי על מודלים סטודסטיים, ודגש מעשי על שירות עתיר טכנולוגיה (טלפון, אינטרנט).

הקורס יוקדש למסגרות חשיבות, מודלים וטכניות שנמצאו שימושיים לצורך תכנון, ניתוח, עיצוב ותפעול של מערכות שירות. בנוסף ללימוד התיאוריה, התלמידים יבצעו שימושות המישימות אותה ומאשרות את תקופותה.

מדגים של נושאים:

- הקדמה למערכות שירות בכלל ותורמים בפרט (אנשים, שיחות טלפון, טפסים, פרוייקטים וכו').
- מודלים אנליטיים, סימולציה וקירובים (נוולים ודיפוזיה): שימושיהם כתומכי החלטות אסטרטגיות, טקטיות ואופרטיביות.
- שיטות מדידה (I,S,ACD,CTI בקבלה קהלה; ACD,CTI בטלפון) ; ומה ניתן להגע (QIE) ?
- תופעות: חוקי הצף, אמידה מותה, PASTA, יתרון לנודל, מומחיות לעומת גמישות (cross-training) וועוד.
- שיטות חייזוי וניהול של ביקוש במערכות שירות, למשל: חייזוי מספר שיחות במוקד טלפון.
- סטביליות במערכות שירות (או: חלופות לסקרים – הלקוח מצבייע ברגליון).
- איניות תפעולית של השירות. תיכנון המבוסס על חוקי הצף, למשל: איש מוקד טלפון.
- ממשקים רב-תחומיים: חקר ביצועים, הנדסה תעשייתית וניהול, סטטיסטיקה, פסיקולוגיה, סוציאולוגיה ושיווק.
- למשל, חקר הסבלנות תוך המתנה לשירות, או CRM.
- עיצוב (תקן) וברית מערכות תורמים.
- הצגת ישומים מתחומיים מגוונים: התמקדות על הממשק ללקוח-מערכת במוקדי שירות פנים-אל-פנים, טלפון-אל טלפון ומכتب-אל-מכtab; עיצוב הארגון; השתלבות כ פעילותויות קיימות (למשל TQM, ReEngineering).

הצון הסופי יתבסס על תרגילים ובחינות גמר.

משמעותם של קורס סטודנטים להסמכה ומוסמכים מרקם מגוון, בפרט תעשייה וניהול (חקר ביצועים, סטטיסטיקה, מערכות מידע, כלכלה, הנדסה תעשייתית), הנדסת חשמל, מדעי המחשב ומתמטיקה. **מספר המשתתפים מוגבל !**
 דרישת הקדם היחידה היא חשיפה למודלים/תהליכיים סטודסטיים (למשל כמו בקורס 094314): תהליכי פואסון, תהליכי קפיצה מركוביים.

ספריו עזר:

- Hall, R.W., "Queueing Methods for Services and Manufacturing", Prentice-Hall, 1991.
- Fitzsimmons, J.A. and M.J., "Service Management: Operations, Strategy, and Information Technology", McGraw Hill, 4th Edition, 2004 (or previous editions, which are also OK).
- (Lovelock, C.G., "Managing Services: Marketing, Operations and Human Resources", Prentice-Hall, 1992.)

זמן הרצאה: יום ה', 11:30-13:30, 14:30-15:30, חדר 215, תעשייה וניהול.

זמן התרגילים: יום ב', 11:30-12:30, חדר 215, תעשייה וניהול.

יום ה', 15:30-16:30, חדר 215, תעשייה וניהול.

מועד בוחינות: א – 13.2.2014

ב – 25.3.2014

10.11.2006 DailyMail גיליון 4331 יומן | עורך הראשי: יהודה קונפורטס | עורך: אור עקבי | סגן עורך: יובל בן טוב
ויל ועורך אחריו: פלי הנמר | עורך טכני: מילאן קומפונטס | מילאן קומפונטס | עורך: אור עקבי | סגן עורך: יובל בן טוב

הפקולטה למדעי השירותים

זו לא טעות דפסות; על פי החזון של 'בם', בדומה לתעשיית ה-IT שעבירה מחומרה לשירותים, סבורים ביום כי גם האקדמיה צריכה לשנות את דפוסי הלימודים שלה ובעתיד יצאו מהקמפוסים האקדמיים מומחים ואנשי אקדמיה בתחום השירותים והנדסת השירותים • את מול הוצאה בפני הסגל האקדמי של מוסדות אקדמיים בישראל התוכנית הבינלאומית של 'בם' לעידוד מוסדות אקדמיים ליציר מומחים לשירותים

ד"ר שטיארט פלדמן, סגן נשיא
חטיבת המחקר של 'בם' העולמית
לתחומי מדעי המחשב

יהודיה קונפורטס, מערכת DailyMail, אנשים ומחשבים

הידימה המכעת קובעה של הקרן סטודנטים באקדמיה היא הפער הקבוע תמיד בין החומר האקדמי הטהור לבן המיצאות בשוק. בכך הוא שאקדמיה לא יכולה להסביר לעולם את המקצועות המקצועיים בשוק, אבל באיזשהו מקום מצפים ממנו, כי המוסגרות הלימודיות, המחלקות והפקולטות יילו תוכניות למודיעות שתואמות את המגמות בכלכלת העולמית ולו רק כדי לספק את הצפיה הטבעית מהאקדמיה, כספק ראשי של כוח אדם למשק הלאומי.

אחדת המגמות ריוויר בולטות הקשורות במדינת מערבית היא המ עבר למשק מוניה י"צ'ר - תעשייה קומבינטורית לשירותים. בתחום זה נמצא כמעט全面 בכל מגזר משק פרטיזן וציבור. חלוקם של השירותים באופן הפעיל של הארגונים הולמים וגילדים, ותעשייה ה-IT באופן טבעי להם.

סוד גליי הוא כי, שכמעט 50% מההכנסות של 'בם' באתות השירותים, בכל תחומי שהוא, יבמ היה הוליצה בתחום זה, אבל ביום היא אינה בזדהה במערכת.��ו כל חברות מיחשוב גודלה ותוכלו לזרות אצלה מעבר ברור לשירותים, אבל אם תסרקו את האמצעי של פיטורי עובדים בענף ה-IT בעשור האחרון, ברור שהוא מגע מכיוונים של תפעול ותחזוקת מערכות מורשת, מקצועות מסורתיים שקשורים יותר לחומרה ועוד.

לעומת זאת, חל גידול מושגים במספר העובדים בתחום השירותים. הצמיחה העולמית של התחום יוצרת דרישות מומחים, אשר באים מדים פילנויות שנות באקדמיה, ומורים את נושא החדשנות בשירותים, כולל הטכנולוגיה. הצפיה היא שהמוסדות האקדמיים יישו שניים מסוימים במינון של הלימודים הקשורים במדעי המחשב, למשל, ולמדו יותר את תחומי השירותים. כך גם במקצועות של מינהל ומקצועות ספציפיים.

זו אינה משימה קלה והיא אינה נועשית ביום אחד. בэм, בrama העולמית, לקחה על עצמה להעמיק את השטוף' עם המוסדות האקדמיים בכל מדינה, לקידום העיסוק בתחום אקדמי ומוכרו חדש של מדעי השירותים והנדסת השירותים.

אתמול (ה') נערך באודיטוריום של 'בם' בפתח תקווה, מפגש מיוחד במיון שבו התארחו כמה עשרות מרצחים ואנשי אקדמיה ממוסדות אקדמיים בישראל, כדי לשמעו מפי חברי 'בם' העולמי, שהגיעו במיוחד להעמק את היכולת של מדעי השירותים בכל הפקולטות אוניברסיטאיות, ועלஅ את כמה וכמה במדעי המחשב.

פיי בורטמן, מנהל תפעול עסקית ביחידת הטכנולוגיה של 'בם' (GTU), אמר כי מדובר במהלך ארוך טווח, שדורש הרבה מאוד תרilibים ושינויים בתפיסה האקדמית. תפקודה של 'בם', אמור בורטמן, הוא איננו למד את האינובייסיטאות מה למד ("את זה הם יודעים טוב יותר מאיותנו"), אלא למת לראשי המוסדות הללו כלים, יעד ולחוק איטם מידע לריבוני, שיאפשר להם לפתח תוכניות למדויים, שיוציאו בסוף דבר לשוק ווגרים שיכולים לפעול ולנהל את תחומי השירותים מבוססי הטכנולוגיה, כמו בכל המגזרים והתחומים של החיים.

מנכ"ל 'בם' ישראלי, מאיר ניסנסון, אמר בדיון הפתיחה של 'בם', כי 'בם' פועלת במדינות כמו ישראל לטוויה ארוך. "באמנו לאן ב-1949 ונדבר האחרון שאפשר היה לאנשים אוטוטו בו זה באופטוניזם", אמר ניסנסון, "במשך כל השנים, האקדמיה ריתה אחד המקרים העיקריים לכוח האדם שאט מעסיקים בתחום המחקה והפיתוח, ולא הרמה הגבוהה של האוניברסיטאות והבוגרים המוכשרים שייצאו לשוק, לא היינו מצליחים להגיע לאן שהגענו".

כעת, שוב פונה 'בם' ל"ספקן חומר האגלם" - הנון האנושי, ומיצעה להם ללקת יד ביד להקשר מדעי שירותים. ישראל איןנה הריאשונה שהחולכת לכיוון זה. מדובר בAGMA כל עולמית, מסתבר, ובכונס נספר לסל האקדמי שהגיא, כי שורת אוניברסיטאות ברחבי העולם כבר נעתו למאיץ של 'בם', והן משלבות הוראה בתחום מדעי השירותים בסוגרת פקולטות שונות - בין אם כקורס, לימודי תעודה או אפילו לתואר אקדמי. מומחים בתחום השירותים במעבדת המחקה של 'בם' בחיפה מלמדים השנה לראשונה קורסים בנושאים

Service Engineering (096324) Winter 2014

[Overview](#)
[Lectures](#)
[Recitations](#)
[Homework](#)
[References](#)

Overview

The subject of this course are **Service Networks**, specifically their Science, Engineering and Management. Service networks are models of telephone and Internet services, or banks and insurance, hospitals, airports, supermarkets, some transportation systems, and even more. (Course applications will emphasize telephone-based services.) Our main theoretical framework for the course is **Queueing Theory**. However, the subject matter is highly multi-disciplinary, hence alternative frameworks (Statistics, Psychology, Marketing) will be useful as well.

The theory is at the level of an undergraduate course in Stochastic Processes. Home assignments will be theoretical, empirical and practical.

Empirical analysis will involve real data from a call center that serves one of the Israeli banks. Further data resources are from the Technion SEE Center (SEE = Service Enterprise Engineering)..

Practical analysis will be based on two tools: SEEStat and 4CallCenters. The first tool, developed at the SEECenter, provides an online graphic-based interface with transactional data (call centers, hospitals); the second tool supports workforce management (staffing).

For more details, see Service Engineering of Service Networks.

Staff

Teaching staff	Office	Office Hours	E-mail	Telephone
Instructor: Prof. Avishai Mandelbaum	518 (Bloomfield)	By appointment	avim@tx	(829)4504
Teaching Assistant: Nitzan Carmeli	413 (Cooper)	Thursday, 9:30-10:30	nitzany@tx	(829)2922

Time schedule

Lecture times:

Thursday, 11:30-13:30, 14:30-15:30
Cooper 215.

Recitation time:

Monday, 11:30-12:30, Cooper 215.
Thursday, 15:30-16:30, Cooper 215.

Syllabus

- Hebrew syllabus ([PDF](#)) ([WORD](#))

Service Engineering (096324) Winter 2014

[Overview](#) [Lectures](#) [Recitations](#) [Homework](#) [References](#)

Course schedule

[Lecture 1 : Introduction to Service Engineering](#)

[Lecture 2 : Flow Basics; Little's Law](#)

[Lecture 3 : Measurements - The First Prerequisite](#)

Lecture 1: Introduction to Service Engineering

[Back to Top](#)

Handouts

- ... Course Description ([PDF](#))
- ... Rules of the Game ([PDF-44KB](#))
- ... Syllabus ([PDF](#))
- ... Lecture 1: Introduction (Combined) ([PDF-1.65MB](#))
- ... Service Engineering of a Call Center ([PDF-60KB](#)) ([PPT-640KB](#))
- ... Service Engineering of an Emergency Department ([PDF-60KB](#)) ([PPT-640KB](#))
- ... Data-Based Service Engineering (Science, Management) in Call Centers, Hospitals, ... Plenary Lecture, 16th IE&M Conference, March 2010, Israel ([PDF-11.5MB](#))
- ... Lecture 1: Web Summary

Related Material

- ... **Service Engineering (Science, Management): A Subjective Mini Course** ([PDF-273KB](#))
- ... **Restaurants = Hospitals = Production-Lines??** The New Yorker, August 2012 ([PDF-326KB](#))
- ... **Service Research in Hospitals: Science, Engineering, Management** ([PPT-2.16MB](#))
- ... **ענפי המסחר והשירותים : מוביל כלכלת ישראל** ([PDF-336KB](#))
- ... **הפקולטה למדעי השירותים** ([PDF-112KB](#))
- ... IBM Almaden Services Research. Service Science, Management and Engineering, [SSME](#) ([Link](#))
- ... **vs. הנדסת שירותים** ([PDF-170KB](#))
- ... **Service Engineering in Germany - Methodical Development of New Service Products**, by Bullinger, Fähnrich and Meiren ([PDF-72KB](#))
- ... Industrial Metamorphosis (on Services and Manufacturing), October 2005: The Economist ([PDF - 200KB](#)), Haaretz ([PDF - 230KB](#), Hebrew)
- ... **Innovation in Retail Banking**, by Frey, Harker & Hunter ([PDF-225KB](#))
- ... **דו"ח מבקר המדינה 353' לשנת 2000 - השירותים** ([לzip](#)) ([PDF 1.5MB](#))
- ... Service Operation: an Example ([BofA, USA](#)) ([PDF-121KB](#))
- ... Service Operation: Additional Examples ([PDF-158KB](#))
- ... **The Global Call Center Report: International Perspectives on Management and Employment**, headed by Holman, Batt, and Holtgrewe, 2007 ([PDF-2.66MB](#))

- ... [Call Centers in Israel, 2008 \(PDF-127KB\)](#)
- ... [מוקדי שירות טלפוני בישראל - נתח שוק ומאפייני תעסוקה \(PDF-542KB\)](#)
- ... [Readings for Introduction to Service Engineering \(Link\)](#)

Lecture 2: Flow Basics; Little's Law

Handouts

- ... [Syllabus \(PDF\)](#)
- ... [Little's Law \(PDF-2.68MB\)](#)
- ... [Lecture 2 : Web Summary](#)

[Back](#)

[to](#)

[Top](#)

Related Material

- ... [Rooting Out Waste in Health Care by Taking Cue From Toyota Assembly Lines \(Link to Video\)](#)
- ... [Traffic Measurements and Predictions \(Link\)](#)
- ... [Readings for Measurements, Little's Law \(Link\)](#)
- ... [Randolph Hall et al. Modeling Patience Flows Through the Healthcare System. Chapter 1 from the book "Patient Flow: Reducing Delay in Healthcare Delivery" \(PDF-670KB\)](#)

Lecture 3: Measurements - The First Prerequisite

Handouts

- ... [Syllabus \(PDF\)](#)
- ... [Lecture 3: Measurements \(Combined\) \(PDF-8.5MB\)](#)
- ... [Call Center Measurements, Data Models and Data Analysis \(PDF-98KB\)](#)
- ... [DataMOCCA: Data Models for Call Center Analysis \(PDF-240KB\)](#)
- ... [SEE Networks \(superset\) \(PDF-3.4MB\)](#)
- ... Previous versions:
 1. [Full 2009S \(PDF-8.3MB\)](#)
 2. [Class2012W \(PDF-4.7MB\)](#)
- ... [Lecture 3: Web Summary](#)

[Back](#)

[to](#)

[Top](#)

Related Material

- ... [The Production of Justice \(Link\)](#)
- ... [How to Solve the Cost Crisis In Health Care, By Kaplan and Porter \(PDF-3.5MB\)](#)
- ... [What is Value in Health Care, By Porter \(PDF-691KB\)](#)
- ... [DataMOCCA: Data Model for Call Center Analysis. Volume 1: Model Description and Introduction to User Interface \(PDF-933KB\)](#)
- ... [KeyCorp Service Excellence Management System, From Interfaces \(PDF – 2.4MB\)](#)
- ... [RFID for Patient Flow Management in Hospitals: An IBM Pilot \(Link\)](#)
- ... [Tracking Your Wi-Fi Trail, by Christine Negroni, New York Times \(PDF-28KB\) \(Link\)](#)
- ... [‘Taming of the Queue’ healthcare waitimes guarantee in Canada \(Link\)](#)
- ... [AT&T Universal Card Services \(Measuring too much ,#PDF-1.43MB\)](#)

הנדסת מערכות שירות - חוקי המשחק

דרישות קדט: עבר במודלים סטטיסטיים או קורס שקול הנitin בפקולטה אחרת.

ציון הקורס

ציון הקורס יקבע על סמך **תרגילים** במהלך הסמסטר ומבחן מסכם באופן הבא :

- במהלך הסמסטר ינתנו 10 תרגילים וכן **תרגיל-פרויקט** שיוגש שבוע לאחר תום תקופה מוגדר. התרגילים יוגשו בקבוצות של 3 סטודנטים (לא פחות ולא יותר). סטודנטים החוזרים על הקורס יכולים להציג רק לסטודנטים חוזרים אחרים או להגיש עצמאית.
- התרגיל הראשון מהו % 2 מהציון הסופי (ציון תקף). התרגיל-פרויקט מהו % 8 מהציון הסופי (ציון תקף). שאר התרגילים הינם מגן ומהווים כל אחד % 5 מהציון הסופי - מתוך תרגילים אלו יבחרו 8 התרגילים הטוביים ביותר (עד מаксימום של 50% מהציון).
- התרגילים יוגשו בתחילת הרצאה. ביום ההגשה, 10 הדקות האחורונות של השעה השנייה תוקדשנה לשאלון קצר על תרגילים מייצגים שהוגשו באותו יום. (יש להתייחס לשאלון כאילול משורי הבית).
- ציון התרגיל יחשב כציון מגן רק לסטודנטים שעברו את השאלון על התרגיל בהצלחה. סטודנט שלא עבר את השאלון או שלא נכח בשאלון קיבל ציון 0 על אותו תרגיל. (סטודנטים במילואים מתבקשים לשוחח מראש עם המתרגל).
- את התרגילים יש להגיש מהודקים (נא לא להגיש תרגילים בתוך ניילונים). התרגילים יוגשו מודפסים, אלא אם נאמר אחרת (למשל בתרגילים המתמטיים). בנוסף להגשת התרגיל, יש להעלות את קובץ התרגיל באתר הקורס ב- Moodle ע"י אחד מחברי הקבוצה. לא יתקבלו תרגילים לאחר מועד ההגשה.
- העתקות בתרגילים (מפרטנות של סמסטרים קודמים או מקבוצות אחרות) יגררו את הפסקת הקורס עבור הסטודנטים המעתיקים והעברת המקרה לבית דין משמעתי.

שונות

- הודעות לסטודנטים (לגביו תרגילים, שינויי במועד הרצאות ועוד) יועברו באמצעות הדואר האלקטרוני בהतבסס על רשימת התפוצה של הקורס.
- ספרי העזר של הקורס חסומים להשאלה בשלב זה. בהמשך הקורס נשתדל שככל קבוצה תוכל להשאיל את הספר העיקרי (Hall).
- החומר של הרצאות והתרגילים יחולק בתחילת כל הרצאה. את שיעורי הבית וחומר עזר נוספים לקורס ניתן להוריד מאתר הקורס : <http://ie.technion.ac.il/serveng2014W>

17/10/2011

סטודנטים יקרים,

ברצוני להפנות את תשומתיכם לבכט למספר כללי התנחות אוטם החלטנו להניג בפקולטה החל מן הסמסטר הקרוב כ- 'ברית מחדלי'. בהעדר הנהיה אחרת של המרצה בסילבוס או בעל פה, אלה הם כללים מחייבים. מרצה רשאי לחייב בכלליים הנדרשים בכתותה.

רשימת הכללים מופיעה בעמוד הבא. הרשימה אינה באה להחליף את רשימת כללי המשמעת הטכניונים המופיעים בקטלוג. הכללים נועדו ליצור נורמה אשר תhapeוך את חוזית הלימוד לנעימה יותר, ולשמר אותנו כקהילה.

ברכת שנת לימודים פוריה,

פרופ"ח עופר שטריכמן סגן דיקן להוראה

for $\omega \rightarrow \infty$

התנהגות בחרדי הרצאה:

א. באופן כללי אין כניסה לכיתה לאחר תחילת השיעור, ואין יציאה מהכיתה לפני סיום השיעור. החריגה היחידה לכל זה מותרת בחרדי הרצאה הבאים (חדרים בהם יש דלת אחורית):
חדרים 100 (אודיטוריום) ו 112 בבניין בלומפילד, וחדרים 214, 215 ו 216 בבניין קופר.

החריגה היא תחת המגבלות הבאות:

1. יש להיכנס/לצאת מהחדר האחורי של הרצאה בלבד, תוךפתיחה שקטה של הדלת, ובלוי להפריע לאחרים.
2. הנכנסים מותבקשים לשבת סמוך לדלת.
3. מי שידוע מראש שעליו לצאת מותבקש לשבת על יד הדלת האחורי, ואחרים מותבקשים לא לצאת לפני תום השיעור.

החריגה מתקבלת מותווך תקווה שהיא לא תנוצט לאחוריים מיוחדים. בפרט, אישור בחזרה מהפסקה הוא לא לגיטימי.

שבועיים הראשונים לסמינר כלל זה ייאכף במתינות.

ב. אין לעסוק בדברים אשר אינם שייכים לשיעור. בפרט: אסורה אכילה, קריאת עיתון, עבודה על מחשב, כתיבת מסרונים וכו'. דיבור עם סטודנטים אחרים בזמן השיעור אסור.

ג. יש לכבות טלפונים ניידים לפני הכניסה לחדר הרצאות.

ד. אין להשאיר אשפה מסווג כלשהו בכיתה בתום הרצאה.

פניה למרצים:

א. בכיתות גדולות (מעל 50 סטודנטים), אני מזערו את התקשרות בדו"ל עם מרצים. הכוונה לפניה למרצה היא הגעה לשעת קבלה.

ב. בנושא המטרייד רבים – יש לפנות למרצה דרך נציג/ת הסטודנטים.

ג. אני הקפידו על צורת פניה מכובדת (פרופ', ד"ר וכו').

Service Engineering, Science and Management
(or: Queueing-prone Service Networks)
Contents & Assignments

Class 1

Logistics and “some rules of the game”; Who can/should attend this course;
Why study Services in IE&M?
Introduction to Service Engineering.

Introduction to Service Engineering

- Review and Preview of some Readings: On Services, and The Service Economy.
- Introduction to “Service Engineering”.
- Service-nets = Queueing-nets: via examples (consulting) and I.E. projects (production of justice, queues of ships, operating rooms).
- (Optional) Service Engineering of a Call/Contact Center.

Recitation: Introduction to databases.

HW 1: Reading and Executive Summary

Assignments are both handed out in class and are downloadable from the course's web site.

This first assignment has several goals: first, to ensure the formation of study-groups as soon as possible; second, to help you start a weekly procedure of “division of work”, which typically culminates in the weekly group assignment (the readings can be divided among group members and then, in a joint meeting, each one can summarize one's material for the others); thirdly, to get you acquainted with our text-sources and web site; and finally, to help you start the course with the conviction that “Queues in Services are Here to Stay”, in fact enough so as to deserve the attention that they are going to get. **All 3 parts of the assignment are due next class.**

1. Form a study group (3 students).
2. Read the Hebrew syllabus of our course, downloadable at
http://ie.technion.ac.il/serveng2014W/Hebrew_syllabus_2014W.pdf

Read Hall (H): Chapter 1, pages 1–18: Introduction.

(There are 13 copies of H at the IE Library, and 5 at the Central Library. My goal is to have each group check-out a copy on a permanent loan for throughout the semester.)

Read Fitzsimmons J. and M. (FF): Chapter 1, pages 1–18: The Role of Services in an Economy. (There are 7 1994-edition copies, 2 2nd-edition and 2 3rd-edition copies.)

Read “diagonally” the article “Innovation in Retail Banking”, by Frei, Harker and Hunt, downloadable from <http://ie3.technion.ac.il/serveng2011W/Lectures/Retail.pdf>. Focus on pages 13–18 (PC Banking) and if time permits pages 18–28 (Re-Creating a Bank).

Also read pages 33-37 (The “New Age Industrial Engineers”, namely the integrators of Management, Science and Technology.)

All reading materials are also available at the course site
<http://ie.technion.ac.il/serveng2014W>.

3. **Submit**, based on the readings, and your personal experience, a *typed* Executive Summary (all future assignments will be typed, unless specified otherwise), under the title **“The Future of Queues in Service Systems”**.

The first (cover) page should have the title. Below the title, on that same page, list the names of all group members, accompanied by the following details: Faculty or department, degree and year of study, concentration and fields of interests; relevant academic experience (Probability, Stochastic Processes, Programming Languages); work experience (past and present); a telephone number and e.mail through which each member can be reached.

The second page should start with an Introduction to the report and then, in bullet-point plus text format, the report itself – brief yet informative. It should be based on a variety of significant service examples, from both the public and private sectors, with **at least one from IE&M or Technion**. In these examples, queues (single or networks) either play, or should have played, an important role. For each example, assess whether and how long this importance is likely to prevail, what redesign or technology would take to eliminate queueing, etc. If possible, try to quantify the amount of waiting involved/saved (in hours/days/months/years, whatever is most appropriate). Make sure that you have at least one example (the more the merrier) of a service *network*, in which queues are either “here to stay” or they are amenable to creative reduction or elimination.

Readings 1: Service Engineering

- “Service Engineering of Stochastic Networks Background, with a focus on Tele-Services”, Mandelbaum A.
- Industrial Metamorphosis (on Services and Manufacturing), October 2005: The Economist.
- H. Bullinger, K. Fahrnrich, T. Meiren, “Service Engineering”, Technical Report, The Fraunhofer Institute for Industrial Engineering, Stuttgart, Germany. (The second source for the terminology “Service Engineering”. In Germany, though, it is used in a design-context while our use is operations-driven.)
- Service Science: IBM’s Proposal for a New Academic Discipline.
- “Queueing for Toilets - Estimating the Required Number of Toilets Using Queueing Theory”, McNickle D.
- “Innovation in Retail Banking”, Frei, F.X., Harker, P.T., Hunter, L.W., Report 97-48-B, Wharton Financial Institutions Center, 1998.
(Defines the *New-age Industrial Engineer*, and the *Integrator* of Management, Science and Technology (my wording), within the context of developing new banking products.)
- Mevaker Hamedina Report 53B, Year 2000.
- Service Operation: an Example (Bank of America).
- Federal Consortium Benchmarking Study Report. USA, February 1995
- Queueing Methods (Hall), Chapter 1.
- Service Management (Fitzsimmons) Chapter 1
- ~~“From books on my shelves” (see “Readings for Introduction to Service Engineering” on the course web site).~~

Queue Management

There is no magic in managing theme parks !

By Peter van Lith - 29-May-2002

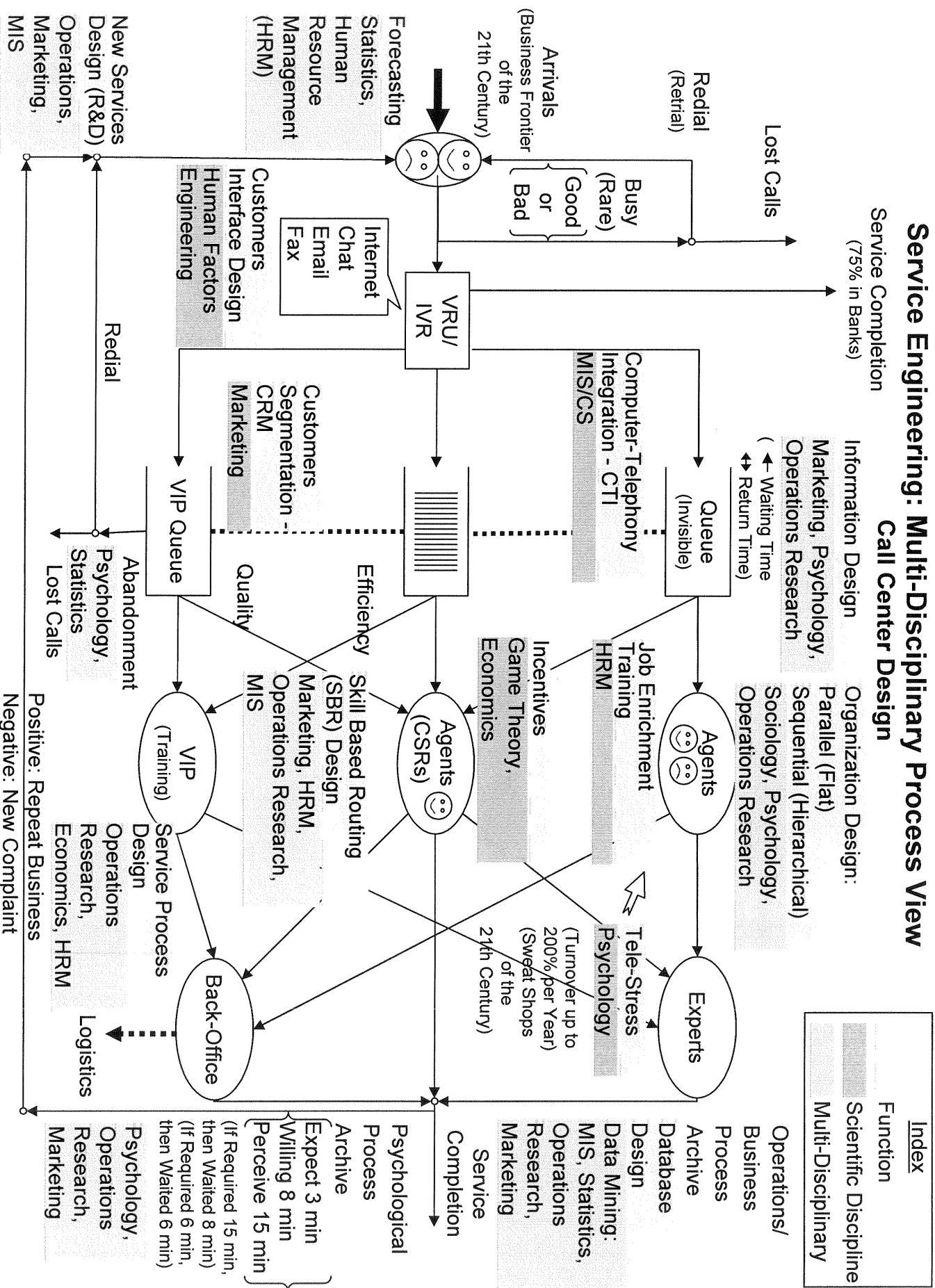
Introduction

Many theme parks are suffering from declining attendances. Although studies have been carried out as to the possible causes for this, not many definite answers have been found. General survey results indicate however, a very high customer dissatisfaction rate with relation to long waiting times. Therefore many parks would like to address this issue.

Contrary to what some theme parks would like us to believe, magic is of no assistance in solving this problem. It does not mean that there are no options. First of all, we must accept the current capacity of the attractions as fixed. There might be some incidental improvements in the occupancy by better loading schemes and perhaps by improving on maintenance. The gain expected from these measures may, however, be marginal.

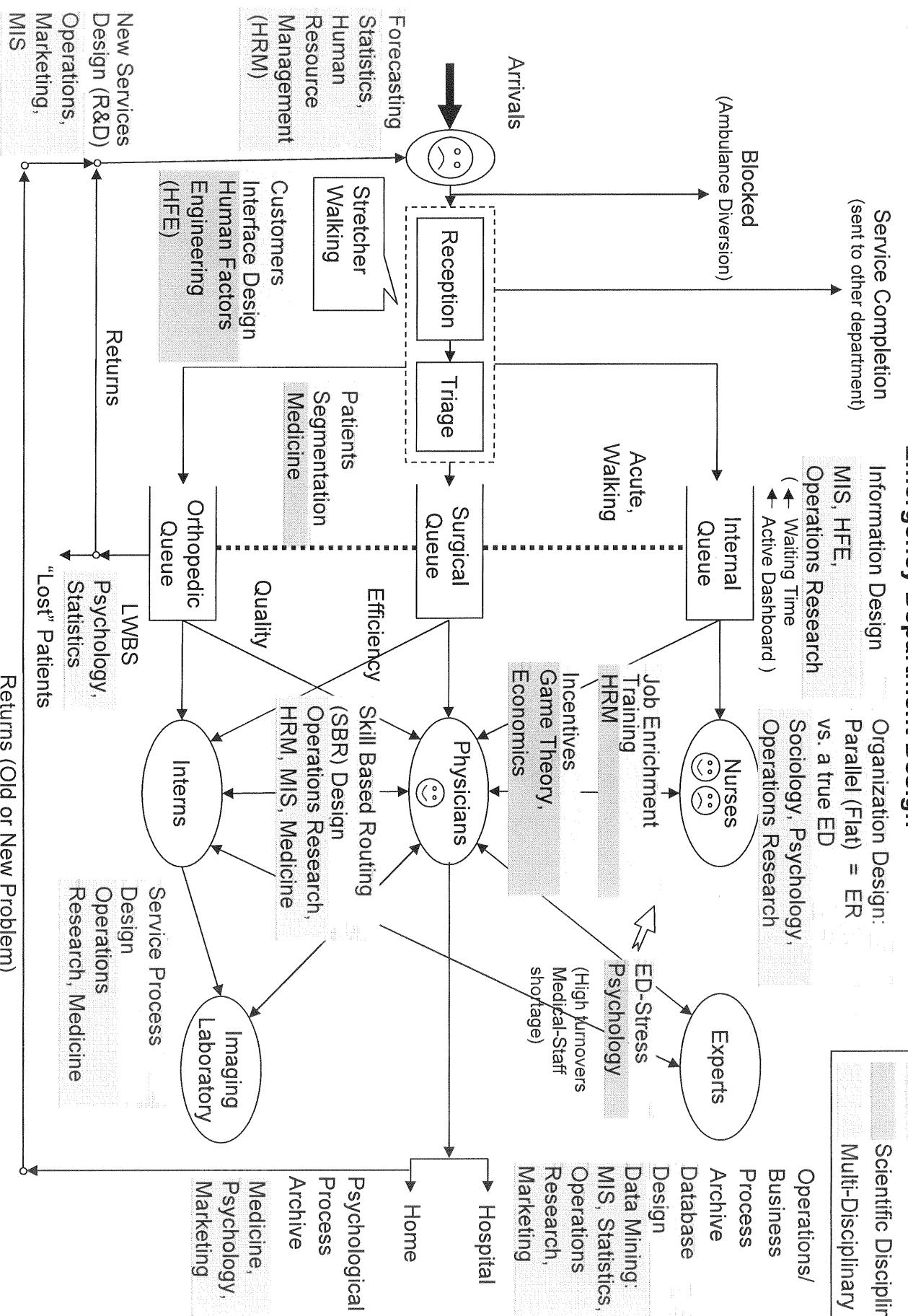
Because we cannot change the capacity, we must concentrate on visitor flow through the park. That leaves us with addressing the queues themselves. First of all the queues need to be made more attractive. In reducing queue lengths there are two things that can be done: Moving the queues in time and relocating them in space. Although we cannot make them any shorter, we may move them to a different time and/or a different location. This paper intends to show what may be done about that.

How to get rid of queues


Before we look at ways and means of addressing the problems, let us first consider the queue problem itself. Several solutions have been proposed over the past few years. The following systems are currently known by the author:

Name	Characteristics	Advance Booking	Reser-vation	Cust-Taken	Attractions
Disney FastPass	Advance booking system. Allows limited number of customers to reserve for 1 attraction at a time. Tickets are issued. Separate entry required.	No	Yes	Ticket	1
Alton Towers	Advance booking system. Tickets are issued		Yes	Ticket	
Lo-Q	Electronic device lets customers make a reservation. System warns when customers may enter attraction. Separate entry required.	Yes	Yes	Electr device	Multiple
Sea World	An individualized map is offered with timetables	No	No	Map & Timetable	Multiple
Multi Motions	Booking via Internet or computer. Integrated with Customer Information System.	Yes, Internet	Yes	Smart Card, Tickets	Waiting Snake

There may be more systems in existence or under development, but what they have in common is that they aim at arranging some kind of appointment, where the customer is free to spend the waiting-time in a more meaningful manner, and preferably at a location that is of more benefit to the theme park.


Service Engineering: Multi-Disciplinary Process View

Call Center Design

Service Engineering: Multi-Disciplinary Process View

Emergency Department Design

Service Engineering (Science, Management)

Avishai Mandelbaum

Course Contents

- Introduction to “Services” and “Service-Engineering”
- The Two Prerequisites: Measurements, Models (Operational)
- Empirical (Data-Based) Models
- Fluid (Deterministic) Models
- Stochastic Framework: Dynamic-Stochastic PERT/CPM
- The Building Blocks of a Basic Service Station:
 - Arrivals; Forecasting
 - Service Durations; Workload
 - (Im)Patience; Abandonment
- Stochastic Models of a Service Station
 - Markovian Queues: Erlang C/B/A, Jackson
 - Non-Parametric Queues: $G/G/n, \dots$
- Operational Regimes and Staffing: ED, QD, QED
- Heterogeneous Customers and Servers (CRM, SBR)
- Stochastic Networks
- Exam

The image shows the front cover of a BusinessWeek magazine. The main title 'BusinessWeek' is at the top in a large, bold, serif font. Below it, a sub-headline 'A PUBLICATION OF THE MCGRAW-HILL COMPANIES' is written in a smaller, sans-serif font. The central feature is a large, bold, sans-serif word 'STINKS' with 'WHY SERVICE' written above it. In the top right corner, there is a small graphic of a person sitting at a desk with a computer monitor. The left side of the cover features several news headlines in a smaller sans-serif font: 'Mutual Funds', 'How to avoid a big tax bill', 'Wall Street will teach's slide keep spreading?', 'Dot-coms The search for new business models', 'Managed Care Employers seek a new solution', and 'AOL Keyword: BW'. On the far left, there is a vertical column of small text and numbers, likely a mailing label. The overall layout is clean and professional, typical of a business news publication.

..... OR Topics

About OR

Queueing for Toilets

- estimating the required number of toilets using queueing theory

Don McNickle

The New Zealand Works Consultancy Services was contracted to study of the number of sanitary facilities to be provided in buildings, in order to revise the tables in the New Zealand Building Code. A very extensive data-gathering exercise to predict occupancy times and demand for various kinds of buildings was carried out. Simple queueing models proved to be the most appropriate tools for use to estimate the waiting times that the new standards would produce. While the aim of the project was to produce consistent standards, a preliminary analysis indicated the new standards might produce savings with a NPV of about \$80 million.

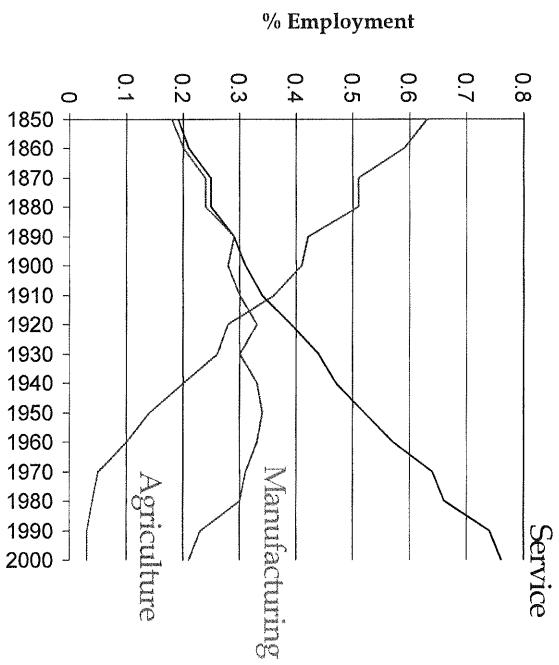
-0000-

The New Zealand Building Code (Clause G1 Personal Hygiene) requires that "appropriate and sufficient numbers" of "sanitary fixtures" (that is WCs, urinals, handbasins) be provided for people in buildings. The Buildings Industry Authority publishes a document (G1/AS1) which gives tables of Acceptable Solutions (number and types of facilities) as a means of compliance with the requirement. The numbers in G1/AS1 had been copied from various pieces of legislation and other sources over the years, and were known to be often wildly inconsistent. In 1994 Works Consultancy Services (a state-owned engineering consultancy with a long tradition of excellent service, since sold to the private sector) was contracted to revise the G1/AS1 tables. They in turn approached me for help with data analysis and modelling the delays that various numbers of facilities would produce.

Most countries have some kind of standards like these, and there have been a number of attempts, usually based on queueing models, to put them on a scientific footing. We found reports from Canada, the UK, Australia, and the USA. A review of these showed that although there had been some good studies (see, for example, Davidson and Courtney (1976)), these either covered too few types of building or were not exhaustive enough to produce comprehensive standards. We also had a sneaking worry that toilet habits might vary from country to country, so it was decided to carry out a complete analysis for New Zealand.

Collecting and analysing the data

Data collection started in 1994. Works Consultancy staff collected data from thirteen types of buildings, including office buildings, schools, theatres, swimming pools and shopping plazas. 27 locations were surveyed, and


Service Engineering (of Call Centers): 15 Years History, or "A Modelling Gallery"

1. Kella, Meilijson: Practice \Rightarrow Abandonment important
2. Shimkin, Zohar: No data \Rightarrow Rational patience in Equilibrium
3. Carmon, Zakay: Cost of waiting \Rightarrow Psychological models
4. Garnett, Reiman, Zeltyn: Palm/Erlang-A to replace Erlang-C/B as the standard Steady-state model
5. Massey, Reiman, Rider, Stolyar: Predictable variability \Rightarrow Fluid models, Diffusion refinements
6. Ritov, Sakov, Zeltyn: Finally Data \Rightarrow Empirical models
7. Brown, Gans, Haipeng, Zhao: Statistics \Rightarrow Queueing Science
8. Attar, Reiman, Shaikhet, Gurvich, Armony: Skills-based routing \Rightarrow Control models
9. Nakibiy, Meilijson, Pollatchek: Prediction of waiting \Rightarrow Online Models and Real-Time Simulation
10. Garnett: Practice \Rightarrow 4CallCenters.com
11. Zeltyn: Queueing Science \Rightarrow Empirically-Based Theory
12. Borst, Reiman, Zeltyn: Dimensioning M/M/N+G
13. Kaspi, Ramanan: Measure-Valued models and approximations
14. Jennings, Feldman, Massey, Whitt, Rosenshmidt: Time-stable performance
15. Khudyakova: IVR/VRU

Introduction to “Services”

Scope of the Service Industry

U.S. Employment by Sector, 1850 - 2000+

- Wholesale and retail trade;
- Government services;
- Healthcare;
- Restaurants and food;
- Financial services;
- Transportation;
- Communication;
- Education;
- Hospitality business;
- Leisure services.

We focus on:

Economic/Society Development (Fitzsimmons, Chapter 1):

- Dominant Activity, Human Factor, Technology.
- Pre-industrial: Agriculture, Mining; Muscle; Hand-tools.
- Industrial: Production; Technical; Machines.
- Post-industrial: Services; Intellectual; Information.

on
CALL CENTERS

Survey Methodology

Country	Estimated No. Call Centres (2005)	Estimated No. CC Agents (2005)	Source of CC database	No. of CCs in database	Sample size	Sampling Strategy	Survey Administration	Start & End Date	No. of Completed Surveys	Response Rate
Austria	500	40,000	Austrian Call Centre Forum, FORBA database, Internet	165	165	All CCs in database	Telephone	05-07, 2005	96	58%
Brazil	1,000	615,000	Employers Association	250	250	All CCs in database	Telephone, email, on-site,	05-09, 2005	144	45%
Canada	13,424	512,867	Employers Association	500	500	All CCs in database	Telephone	02/2005 – 05/2006	387	77%
Denmark	350	23,000	Employers Association, phone book, Internet	226	226	All CCs in database	Personal contact w/email response	06-09, 2004	118	65%
France	3,100	200,000	Employers Association, France telecom survey	900	340	Stratified random by sector, outsourced	Telephone	05-08, 2004	210	60%
Germany	3,000	330,000	Previous databases, Regional Development Agency lists	2,800	300	Random, plus added sites	Telephone	09-10, 2004	155	54%
India	N/A	316,000	NAASCOM, Internet, field research	100	75	Non-random in call centre cities	On-site	07, 2003 – 08, 2004	63	N/A
Ireland	400	19,500	Previous list, telephone directory, Internet, recruitment agencies	287	188	All with confirmed contact info.	Mail	10-12, 2004	43	23%
Israel	500	11,000	Telemarketing Association, phone books, Internet, CC mgr forums	80	80	All CCs in database	On-site	08-10, 2004	80	100%

Survey Methodology

Country	Estimated No. Call Centres (2005)	Estimated No. CC Agents (2005)	Source of CC database	No. of CCs in database	Sample size	Sampling Strategy	Survey Administration	Start & End Date	No. of Completed Surveys	Response Rate
Netherlands	1,500	90,000	Employers Association, related lists	800	800	All CCs in database	Mail, internet	04-08, 2004	118	15%
Poland	300	8,700	Federal Trade Register	112	112	All CCs in database	Telephone	10-11, 2004	75	67%
South Africa	1,200	100,000	Multiple industry, Internet sources	1,200	326	Non-random in call centre cities	Telephone, email, on-site	11, 2002 -- 06, 2004	64	N/A
South Korea	2,500	330,000	Telemarketing Association, S. Korea Mgmt. Association, Internet, CC mgr. forum	250	250	All with confirmed contact info.	On-site, email, mail	06-09, 2004	121	48%
Spain	1,500	64,000	Telemarketing Association, Official Registry of Companies in Spain (SABI), Internet, CC mgr forums	224	224	All companies in database	On-site, telephone, postal, email	05, 2005 - 01, 2006	109	49%
Sweden	1,200	100,000	Employers Association, Benchmarking Company	642	347	All companies in database (outsourcing)	Mail, w/ telephone, email, fax	02-05, 2004	161	46%
UK	3,500	800,000	Employers Association	500	418	All contactable companies	Telephone, w/mail follow-up	03-10, 2004	167	40%
US	60,000	4,000,000	Dun & Bradstreet, Call Center Magazine	2,000	682	Stratified random, by size, sector	Telephone	02-09, 2003	464	68%

Services: Subjective Trends

Service Characteristics and their Operational Implications

”Everything is Service”

Rather than buying a **product**, why not **buy only the service it provides**? For example, **car leasing**; or, why setup and run a **help-desk** for technical support, with its costly fast-to-obsolete hardware, growing-sophisticated software, high-skilled peopleware and ever-expanding infoware, rather than let **outsourcing** do it all for you?

“Data; Technology and Human Interaction

Far too little reliance on **data**, the language of nature, in formulating models for the **systems and processes of the deepest importance to human beings**, namely those in which **we are actors**. Systems with fixed rules, such as physical systems, are relatively simple, whereas systems involving human beings expressing their microgoals ... can exhibit incredible complexity; there is yet the hope to devise tractable models through **remarkable collective effects** ...

(Robert Herman: ”Reflection on Vehicular Traffic Science”.)

Fusion of Disciplines: POM/IE, Marketing, IT, HRM
The highest challenge facing banks with respect to efficient and effective innovation lies in the **”New Age Industrial Engineer”** that must combine technological knowledge with process design in order to create the delivery system of the future.
(Frei, Harker and Hunter: ”Innovation in Retail Banking”).

- IBM, Microsoft, GM, Amazon, Electric Companies, IE&M: is it Manufacturing or Service ?
⇒ Most products have service-components (eg. Software, Car) and vice-versa (eg. Supermarkets, Telecoms (Cellular)).

- Inseparability: Product = Process in which Customers are Co-Producers ⇒ Can not “design, debug, inventory then serve” ⇒ Careful design of the process and the service environment.

- Service Quality: Short waits, First “Call” Resolution.
- Service can not be inventoried (through “service-inventory”?)
- Perishability: empty plane-seat, hotel-room, idle tele-agent, ... , which gave rise to **Revenue Management**.

- Intangibility ⇒

- How to define/measure/improve Service-Quality?
- How to patent a Service? (How to export a Service?)

- Heterogeneity: Multi-Type customers & Multi-Skilled Servers: Customization / “Mass-Customization” required (eg. SBR, Triage; Professional Services)
⇒ Services “are” Stochastic ⇒ Stochastic Processes.

Service Engineering / Science

Goal (Subjective):

Develop scientifically-based design principles (rules-of-thumb) and tools (software) that support the balance of service **quality**, process **efficiency** and business **profitability**, from the (often conflicting) views of customers, servers and managers.

Contrast with the traditional and prevalent

- Service Management (U.S. Business Schools)
- Industrial Engineering (European/Japanese Engineering Schools)

Additional Sources (all with websites):

- Fraunhofer **IAO** (Service Engineering, 1995): ... application of engineering science know-how to the service sector ... models, methods and tools for systematic development and design of service products and service systems ...
- **NSF SEE** (Service Enterprise Engineering, 2002): ... Customer Call/Contact Centers ... staff scheduling, dynamic pricing, facilities design, and quality assurance ...
- **IBM SSME** (Services Science, Management and Engineering, 2005): ... new discipline brings together computer science, operations research, industrial engineering, business strategy, management sciences, social and cognitive sciences, and legal sciences ...

Data-Based Service Engineering (Science, Management) in Call Centers, Hospitals, ...

Avishai Mandelbaum

Technion, Haifa, Israel

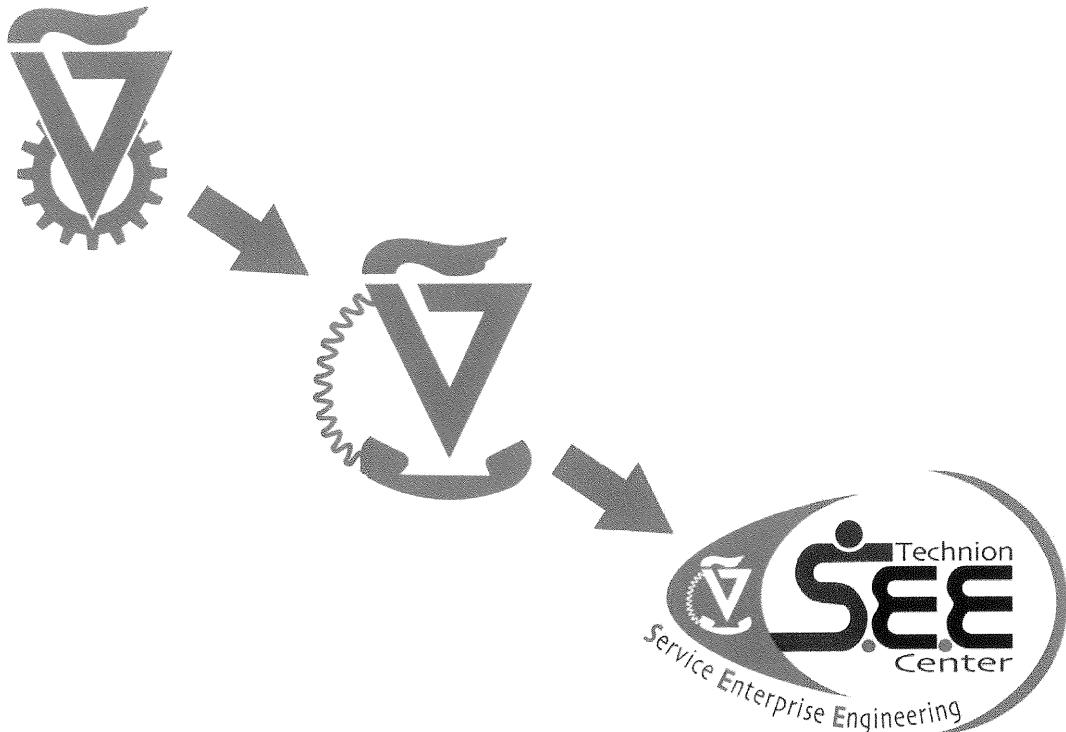
<http://ie.technion.ac.il/serveng>

16th IE&M Conference, Tel-Aviv, March 2010

1

Research Partners

- ▶ **Students:**
Aldor*, Baron*, Carmeli, Feldman, Garnett*, Gurvich*, Khudiakov*, Maman*, Marmor, Reich, Rosenshmidt*, Shaikhet*, Senderovic, Tseytlin*, Yom-Tov, Zaied, Zeltyn*, Zohar*, Zviran, ...
- ▶ **Empirical/Statistical Analysis:**
Brown, Gans, Zhao; Shen; Ritov, Goldberg; Allon, Bassamboo, Gurvich; Armony, ...
- ▶ **Theory:**
Armony, Atar, Feigin, Gurvich, Jelenkovic, Kaspi, Massey, Momcilovic, Reiman, Shimkin, Stolyar, Wasserkrug, Whitt, Zeltyn, ...
- ▶ **Industry:**
IBM Research (OCR: Carmeli, Vortman, Wasserkrug, Zeltyn), Rambam Hospital, Hapoalim Bank, Mizrahi Bank, Pelephone Cellular, ...
- ▶ **Technion SEE Center / Laboratory:**
Feigin; Trofimov, Nadjharov, Gavako, Kutsyy; Liberman, Koren, Rom; Research Assistants, ...



2

15

The Technion SEE Center / Laboratory

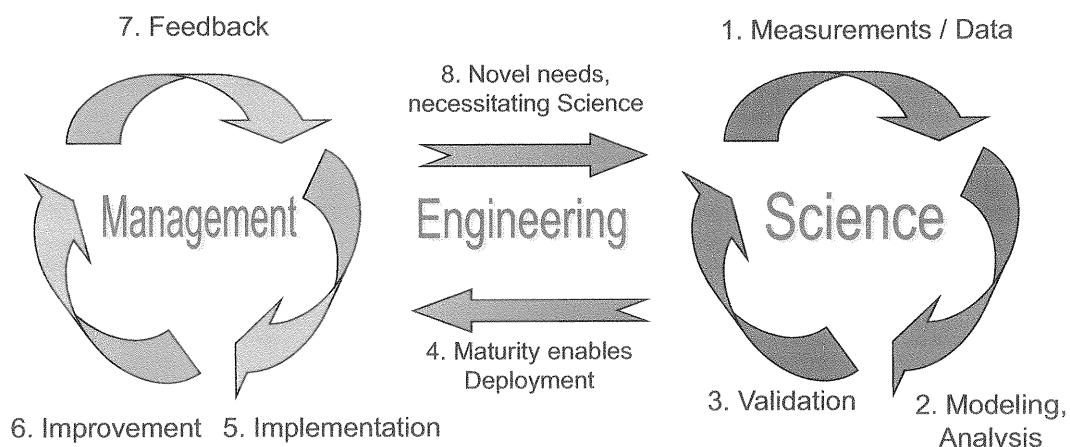
Data-Based Research & Teaching

3

History, Resources (Downloadable)

- ▶ Math. + C.S. + Stat. + O.R. + Mgt. ⇒ **IE&M**
- ▶ **“Service-Engineering” Course (≥ 1995):**
<http://ie.technion.ac.il/serveng> - website
http://ie.technion.ac.il/serveng/References/teaching_paper.pdf
- ▶ **SEELab (≥ 2007), following StatLab (≥ 2000):**
Data, Reports, Tutorials.
<http://ie.technion.ac.il/Labs/Serveng>
- ▶ **OCR Project (≥ 2008):**
IBM Research + Rambam Hospital + Technion IE&M
http://ie.technion.ac.il/Labs/Serveng/closed/OCR_Documents.php
- ▶ **Technion IE&M = Outsourcing Knowledge (Research, Practice)**
e.g. Search Google Scholar for <Call Centers>:
First 5 entries originated at the Technion.

The Case for Service Science / Engineering


- ▶ Service Science / Engineering (vs. Management) are emerging **Academic Disciplines**. For example, universities (world-wide), IBM (SSME, a là Computer-Science), USA NSF (SEE), Germany IAO (ServEng), ...
- ▶ Simple models that explain fundamental phenomena, which are common across applications:
 - Call Centers
 - Hospitals
 - Justice
 - Transportation
 - ...
- ▶ What Can Be Done vs. How To (Pause for a Commercial)

5

Expanding the Scientific Paradigm

Service Engineering vs. Industrial Engineering

Human Complexity ⇒ Scientific Paradigm (Physics ... Economics) and beyond (with IBM Research):

6

Started with Call Centers, Expanded to Hospitals

Call Centers - U.S. (Israel) Stat.

- ▶ \$200 – \$300 billion annual expenditures (0.5)
- ▶ 100,000 – 200,000 call centers (500)
- ▶ "Window" into the company, for better or worse
- ▶ Over 3 million agents = 2% – 4% workforce (11K)

Healthcare - similar and unique challenges:

- ▶ Cost-figures far more staggering
- ▶ Risks much higher
- ▶ ED (initial focus) = hospital-window
- ▶ Over 3 million nurses

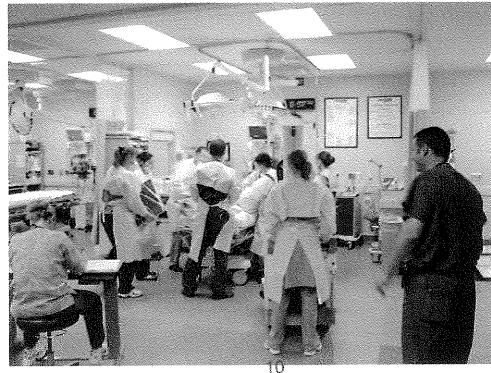
Call-Center Environment: Service Network

Call-Centers: “Sweat-Shops of the 21st Century”

Navigation icons: back, forward, search, etc.

9

ER / ED Environment: Service Network


Acute (Internal, Trauma)

Walking

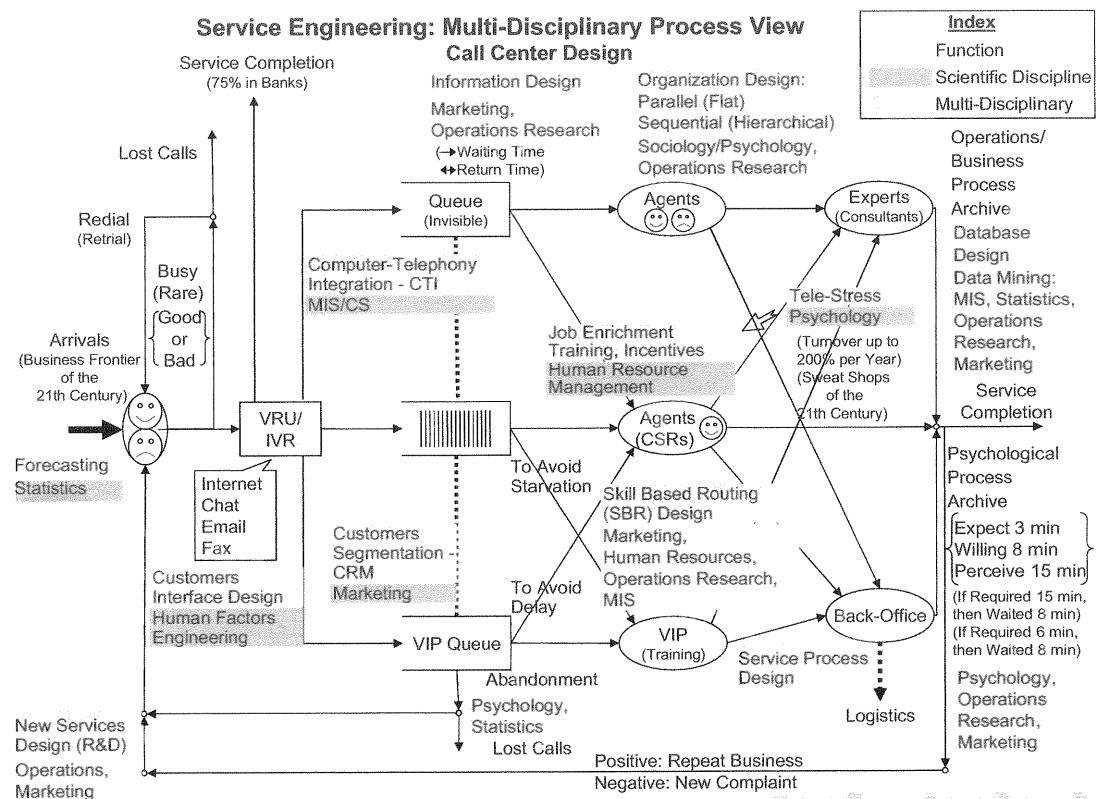
Multi-Trauma

10

Navigation icons: back, forward, search, etc.

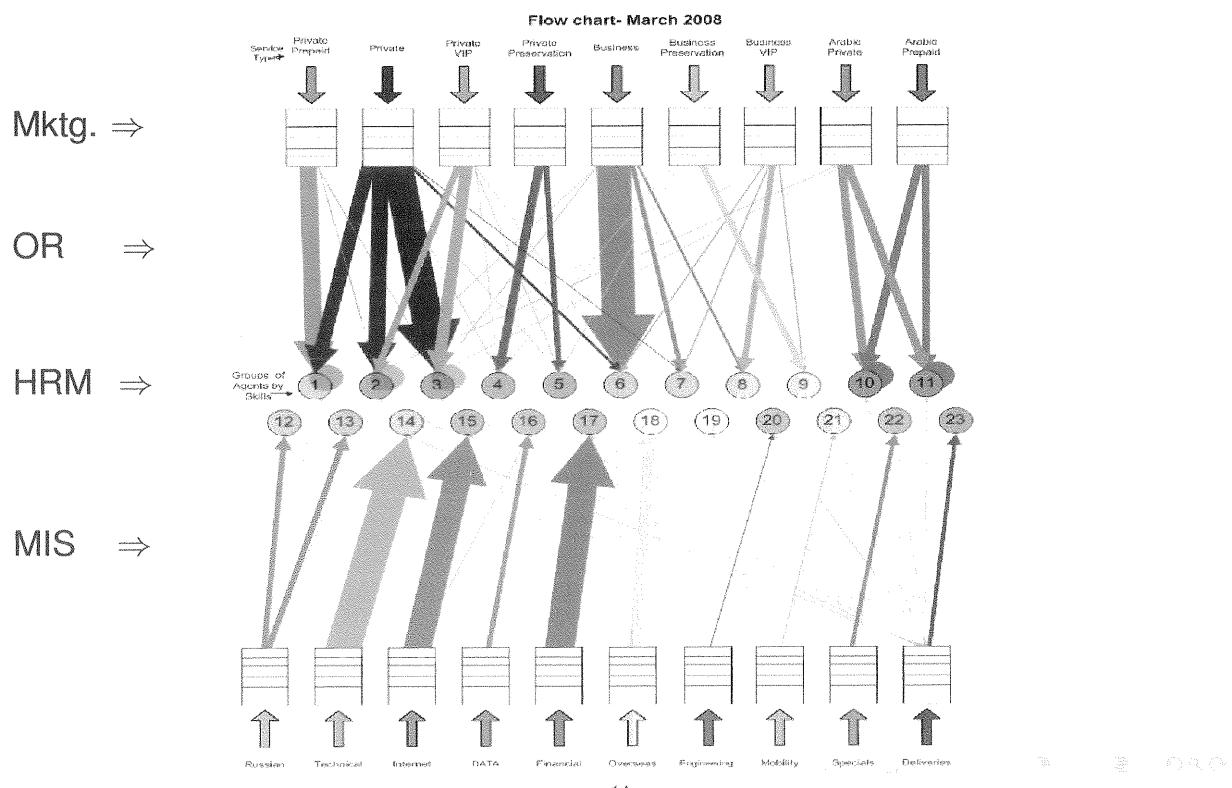
19

ED-Environment in Israel


11

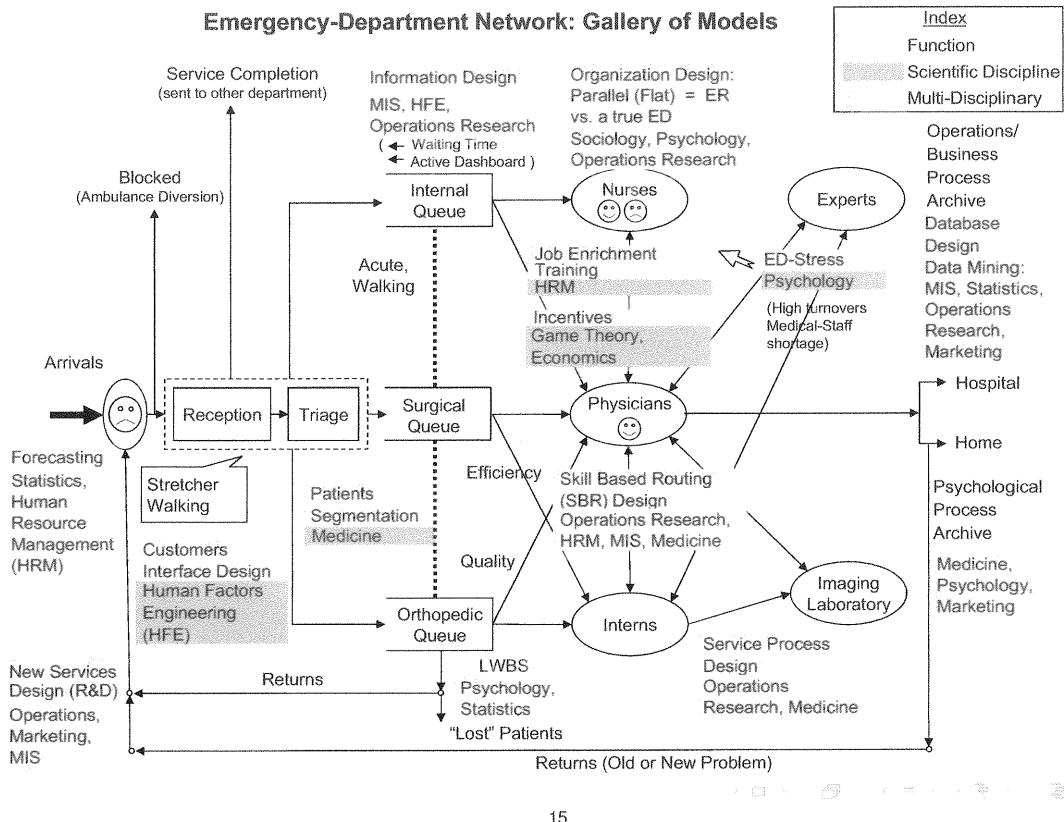
ED-Queue in a “Good” Beijing Hospital

19


Call-Center: Multi-Disciplinary ServEng View

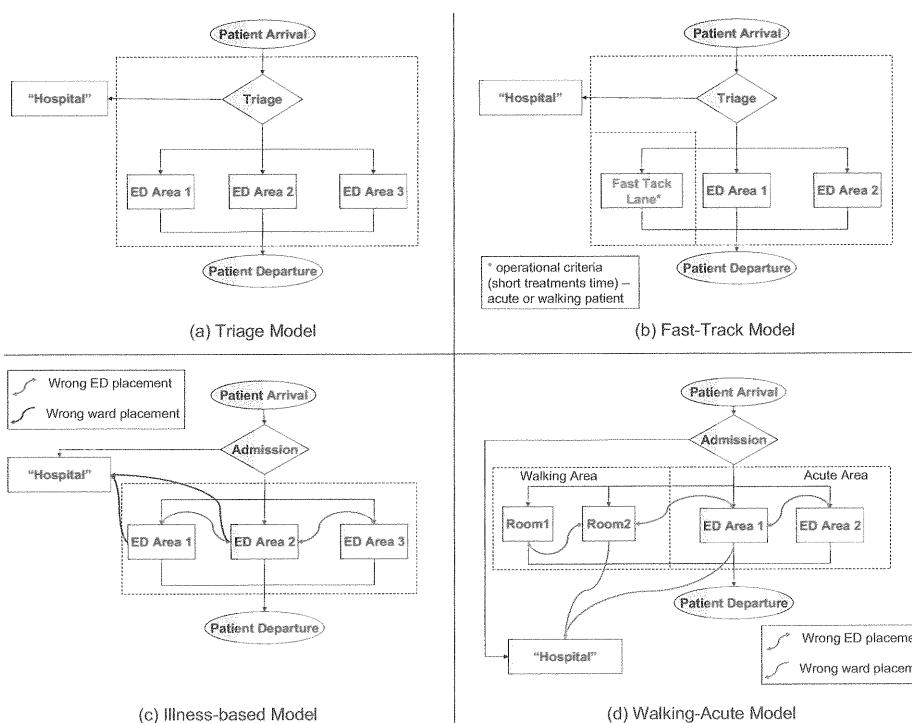
13

Skills-Based Routing in Call Centers


EDA and OR, with I. Gurvich and P. Lieberman

14

21


Emergency-Dept.: Multi-Disciplinary ServEng View

15

ED Design, with B. Golany and Y. Marmor (PhD)

Routing: Triage (Clinical), Fast-Track (Operational), ... (via DEA)
 e.g. Fast Track most suitable when elderly dominate

16

22

Related Material

Service Engineering (Science, Management): A Subjective View

November 2007

Avishai Mandelbaum

Faculty of Industrial Engineering and Management
Technion - Israel Institute of Technology

e.mail: avim@tx.technion.ac.il
Office phone: (972) 4-829-4504

Complete-Course website: <http://ie.technion.ac.il/serveng>

Active (hence Partial) website: [http://ie.technion.ac.il/serveng\[year\]\[W/S\]](http://ie.technion.ac.il/serveng[year][W/S])
(for example, the link for semester Winter 2009 was <http://ie.technion.ac.il/serveng2009W>)

Contents

1	Introduction	3
2	Some Background on Services	3
3	Service Networks: Models of Congestion-Prone Service Operations	5
3.1	On Queues in Service	6
3.2	On Service Networks and their Analysis	6
3.3	Some Relevant History of Queueing-Theory	7
3.4	The Fluid View - Flow Models of Service Networks	9
4	Service Engineering (Science and Management)	10
4.1	Challenges and Goals	10
4.2	Scientific Perspective	11
4.3	Re-Engineering Perspective	11
4.4	Phenomenology, or Why Approximate	11
4.4.1	Square-Root (QED) Staffing Rules for Moderate-to-Large Telephone Call Centers	12

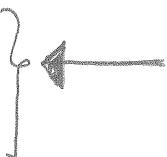
4.4.3 (Im)Patience While Waiting	13
5 Telephone-Based Services: Scope, Significance and Relevance	15
5.1 On Call/Contact Centers	15
5.2 Tele-Nets: Models of Telephone-Based Service Operations	17
6 A Sample of Coauthored Service-Engineering Research	18
6.1 Design of Call Centers	18
6.2 Behavioral Operational Models	19
6.3 Predictable Variability	20
6.4 Statistical Inference	20
6.5 Call Center Data	21
6.6 Hierarchical Modeling of Stochastic Networks	21
7 Appendix: A Mini-Course on Service Engineering	21
7.1 Lecture 1. Introduction to Services and Service Engineering (Science, Management), with some Laws of Congestion.	22
7.2 Lecture 2. Operational Regimes: QD, ED, QED.	22
7.3 Lecture 3. A (Pre-)Basic Model for a Service Station: Erlang-C.	23
7.4 Lecture 4. Seminar on “Service Engineering: Data-Based Science & Teaching, in support of Service Management (with an Appendix: DataMOCCA = <u>Data</u> <u>M</u> odels for <u>C</u> all <u>C</u> enters <u>A</u> nalysis”	23
7.5 Lecture 5. A Basic Model for a Service Center: Erlang-A, or Call Centers with Impatient Customers.	24
7.6 Lecture 6. Fluid Models: Predictable Variability in Time-Varying Services, and <i>Staffing Time-Varying Queues to Achieve Time-Stable Performance</i>	24
7.7 Lecture 7. Addendum	25

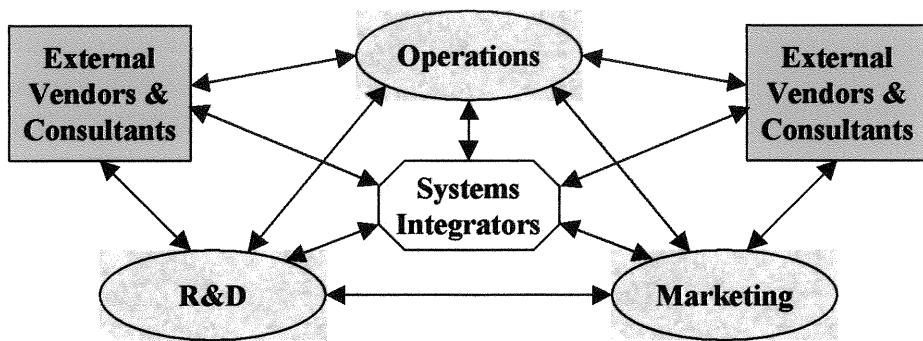
Wharton

**Financial
Institutions
Center**

Innovation in Retail Banking

by
Frances X. Frei
Patrick T. Harker
Larry W. Hunter


97-48-B


The Wharton School
University of Pennsylvania

technology is used to simplify the majority of the jobs, to make them easier to learn and, therefore, to make turnover less costly. Only the high value-added, personal banking jobs have access to the broad range of information that might be useful in generating sales leads and opportunities.

In order for either model to function effectively, those responsible for designing IT must understand not only the purposes of the technology, but the capabilities and propensities of the workforce, and the likely effects of different choices in technology on employee and customer behavior. Further, IT staff must be able to assess the likely effects of different configurations of technologies and employment systems if they are to be able to contribute to strategic decisions around the deployment of IT.

Thus, our results are very consistent with Osterman's (1996) conclusion that "... as IT Capital prices fall, production becomes increasingly information-worker intensive." Our results seem to confirm this: banks have over-invested in IT capital, and investment in IT labor has become necessary. Further, IT labor is the most profitable of all four types of investment--IT and non-IT capital and labor available to the bank. That is, the biggest challenge facing banks with respect to efficient and effective innovation lies in the management of the "New Age Industrial Engineers" that must combine technological knowledge with process design in order to create the delivery systems of the future.

Figure 11. Expanded Relationships for Innovation

The role of the systems integrator is crucial for the future of retail banking. Frei, Harker and Hunter (1997), in summarizing their various analyses of retail banking efficiency based on the dataset described in the Appendix, paints a picture of what makes an effective bank. The good news (or bad news, depending on your perspective), is that there is simply no “silver bullet”, no one set of management practices, capital investments and strategies that lead to success. Rather, it appears that the “Devil” is truly in the details. The alignment of technology, HRM, and capital investments with an appropriate production “technology” appears to be the key to efficiency in this industry. To achieve this alignment, banks need to invest in a cadre of “organizational architects” that are capable of integrating these varied pieces together to form a coherent structure. In fact, several leading financial services firms have realized the need for such talents and are investing heavily in senior managers from outside the industry (most notably, from manufacturing enterprises) to drive this alignment of technology, HRM, and strategy. The challenge, therefore, is not to undertake any one set of practices but rather, to develop senior management talent that is capable of this alignment of practices.

While this alignment may be a problem for those currently in the industry, a longer-term and broader perspective may ask, “So what?” With the increasing deregulation of the financial services industry, those that are capable of successfully aligning business practices will succeed, and others will perish. In the end, the results reported herein have nothing to add to the current policy debates concerning the future of this industry. The problem with this argument is that, with the rapid pace of evolution in the banking industry fueled by deregulation, technological innovation, and changing consumer tastes create a complex dynamic system. The many and varied future scenarios concerning deregulation and technological innovation lead to the inability

מבחן המדינה

דו"ח שנתי 53ב

**לשנת 2002 ולהשכונות
שנת הכספיים 2001**

תוכן העניינים

פרק ראשון - נושאים מערכתיים

עבודות המטה במשרדי הממשלה

מבוא	5
סדרי עבודה המטה - ייחidot המטה המרכזיות	7
עבודות המטה במשרד ראש הממשלה	7
עבודות מטה במשרדים ובמוסכימות הממשלה לפני החלטות ממשלה ומעקב אחר ביצוע	13
עבודות מטה של משרד האוצר לקרהות חוק היחסורים	30
עבודות המטה במשרד הממשלה	44
תורת ניהול לשירות המדינה	44
תכנון, בקרה, תיאום והערכת משרד הממשלה	46
המנהל הכללי ועבודות המטה	60
סדרי תכנון וארגון של שירות המדינה	70
תפקידה של הנציגות בעיצוב המבנה של השלטון המרכזי	71
מבנה המשרד הממשלה וארגוני	73
תכנון והקמה של מבנים ארגוניים בשירות המדינה	82
הליכים וניסיונות להטמעת רפורמה בשירות המדינה	97
סיכום	104

השירותות לציבור

מבוא	111
השירותות ביחידות	120
זרימות השירות	120
תנאים לקבלת קהל	125
מתן מידע לציבור ביחידות	127
הדרכת העובדים נוותני השירות	129
תפקיד הנהלות היחידות בנושא השירות לציבור	130
aicoot ha'shiritot batlefon	132
aicoot ha'shiritot batlefon bichidot	133
aicoot ha'shiritot batlefon bahanilot ha'gofim v'bmerkazi ha'midu	136

מענה טלפון קווי מחוץ לשעות הפעילות בichiDOT

ב-52% מהichiDOT שונבדקו לא היה לאחר סיום הפעילות מענה קווי המודיע על שעות קבלת הקהיל **בichiDOT, וב-42% לא היה מענה המודיע על שעות קבלת פניות טלפוניות בichiDOT, אף על פי שניין היה לספק שירות זה בעלות קטנה מודר.**

aicot המענה הטלפוני בichiDOT

משרד מברך המדינה בדק את aicot המענה הטלפוני בichiDOT באמצעות 429 פניות יזומות שעשו לichiDOT.

58% מהפניות לא נענו כלל. ליקוי זה הועלה על ידי משרד מברך המדינה בפניה לשלכות מינימל האולוסון, לסניפי אגף הרישוי לsnsifi המוסד לBITS אומן שונבדקו ולהברה הلمיש, חברה משבנת הנותה שירות לוכאים לסייע בDIR ציבורי עבורי משורד השיכון. בשני מועדים שונים באוגוסט 2002, שביהם נעשו בסך הכל 162 ניסיונות התקשרות לשלכות מינימל האולוסון בתל אביב, רחובות וחולון, במהלך שעתה המענה האנושי בלשכות, התקבל מענה ב-4 ניסיונות בלבד (2.5%). ביתר הניסיונות התקבל צליל חפוס. בכל 30 ניסיונות ההתקשרות לsnsifi אגף הרישוי בחולון, פתח תקווה ואשדוד, במהלך שעתה המענה האנושי של snsifi, התקבל צליל חפוס ולא ניתן היה השיג כל מענה.³ ב-45% מניסיונות ההתקשרות לsnsifi המוסד לBITS לאומי בירושלים, תל אביב ואשקלון לא התקבל מענה. 91% מניסיונות ההתקשרות לאגף הטיפול בפרט בחברת חלמיש לא נענו.⁴

מתוך ניסיונות ההתקשרות שנענו, ב-46% מהניסיונות העלו ליקויים באיכות המענה. כך למשל, ב-26% מהפניות משך ההמתנה מרוגע ההתקשרות ועד קבלת מענה אנושי היה ארוך - 10-2 דקות. במנעה לכובע מהפניות הועלה, כי השאלה נשאלת לא נענה בטלפון או נענה באופן בלתי עממי ומקוצר. 34% מהפניות שהופנו לעובד אחר בichiDOT לקבלת מענה מהתיינו זמן רב לקבלת מענה מאותו עובד (2-10 דקות), 20% מאותם פנים לא הופנו אל העובד המתאים.

בבדיקה הועלו ממצאים נוספים. כך, לדוגמה, בsnsifi המוסד לBITS לאומי באשקלון (באמצעות המוקד הטלפוני הארצי) לא ניתן לקבל מענה בלי להזדהות באמצעות הקשת מסטר העודות הזזה ולא ניתן לקבל בטלפון מידע בנושא נפגעי פועלות איבה. snsifi מסר למשרד מברך המדינה, כי ניתן לקבל מענה ממוקדם בשעות שבהן יש מענה אנושי, גם ללא הזדהות, אם מתחעלמים ארבע פעמים מהבקשת הטלפונית להזדהות. משרד מברך המדינה העיר snsifi, כי מן הרואין כי מירכאות יתנו למתקשר מידע על האפשרות לקבל מענה אנושי ללא הזדהות; snsifi המוסד לBITS

³ למשרד הרישוי מוקד טלפוני ארצי מומוחש, המאפשר לקבלת מידע וביצוע פעולות הנוגעות לחולק מהשירותים שהמשרדים נתן, ובכללם חידוש רישנותו וככ' וזהירות. ואולם 83% מהמשרדים בסקר שביות הרצון שנעשה בשלושת snsifiים של משרד הרישוי שונבדקו, מסרו כי לא ידעו שאפשר לקבל שירותים אלה ללא ליבור לichiDOT.

⁴ יזכיר, בחברת חלמיש הונגה שיטה של "חיזוג ישיר פניות" המאפשרת למתקשר לבדוק את מספר הטלפון הארצי של כל עובד, וכל ניסיונות ההתקשרות האמורים נעשו למספר טלפון אחר.

remedies for queueing delays. Problem sets are included in all chapters, which can help readers master queueing techniques.

SUPPLEMENTAL CASE STUDIES

In addition to the studies provided in this book, the following cases are excellent for in class discussion.

Browne, J. 1984. *Management and Analysis of Service Operations*. New York: North-Holland. (contains several case studies drawn from the Port Authority of New York; can be used in Chapters 7, 11)

Edie, L. C. 1954. "Traffic Delays at Toll Booths," *Journal of the Operations Research Society*, 2, 107-138. (Chapters 3, 7)

Green, L. and P. Kolesar. 1989. "Testing the Validity of a Queueing Model of Police Patrol," *Management Science*, 35, 127-148. (Chapter 3)

Horonjeff, R. 1969. "Analyses of Passenger and Baggage Flows in Airport Terminal Buildings," *Journal of Aircraft*, 6, 446-451. (Chapter 6)

Ignall, E. J., P. Kolesar, A. J. Swersey, W. E. Walker, E. H. Blum, and G. Carter. 1975. "Improving the Deployment of New York City Fire Companies," *Interfaces*, 5:2, 48-61. (Chapter 11)

Kolesar, P. 1984. "Stalking the Endangered CAT: A Queueing Analysis of Congestion at Automatic Teller Machines," *Interfaces*, 14:6, 16-26.

Kolesar, P. J., K. L. Rider, T. B. Crabbill, and W. E. Walker. 1975. "A Queueing-Linear Programming Approach to Scheduling Police Patrol Cars," *Operations Research*, 23, 1045-1062. (Chapter 7)

Linder, R. W. 1969. "The Development of Manpower and Facilities Planning Methods for Airline Telephone Reservations Offices," *Operational Research Quarterly*, 20, 3-21. (Chapter 7)

Oliver, R. M. and A. H. Samuel. 1967. "Reducing Letter Delays in Post Offices," *Operations Research*, 10, 839-892. (Chapter 10)

Vickrey, W. S. 1955. "Revising New York's Subway Fare Structure," *Journal of the Operations Research Society of America*, 2, 38-68. (Chapter 8)

Welch, N. and J. Gussow. 1986. "Expansion of Canadian National Railway's Line Capacity," *Interfaces*, 16:1, 51-64. (Chapter 10)

Think back over your week and consider how much time you spent waiting in line—at the supermarket, in traffic, at the post office. Every moment you spent waiting for some type of service you were part of a queue. But queues are not always this obvious and they do not have to involve people. A suit waiting to be dry-cleaned is part of a queue; a memo waiting to be typed is part of a queue; and a lawsuit waiting to be heard in court is part of a queue. A queue is a group of people, tasks, or objects waiting to be served. Waiting is the essence of queueing.

Though we are most aware of our own waiting time, queueing is foremost a problem for industry and government. The success of any organization depends on maximizing the utilization of its resources. Every minute that an employee spends waiting for another department and every minute that a job spends waiting to be processed is money wasted. The success of any organization also depends on attracting and keeping customers. Every minute that a customer spends waiting to be served translates into lost business and lost revenue.

Continued growth in the service industries in the United States has heightened the need to manage and control queueing effectively. Though queueing is also an important concern to manufacturers, it is felt especially strongly in the service sector because of the heavy reliance on customer interaction. In their article "Will Services Follow Manufacturing into Decline?" James Quinn and Christopher Gagnon highlight the need to keep service industries competitive:

Introduction

Chapter 1

The Role of Services in an Economy

Learning Objectives

After completing this chapter, you should be able to:

1. Describe the central role of services in an economy.
2. Discuss the evolution of an economy from an agrarian society to a service society.
3. Describe the features of preindustrial, industrial, and postindustrial societies.
4. Describe the features of the new experience economy.
5. Discuss the role of service managers with respect to innovation, social trends, and management challenges.

Services lie at the very hub of economic activity in any society. Infrastructure services, such as transportation and communications, are the essential links among all sectors of the economy, including the final consumer. In a complex economy, both infrastructure and distribution services function as intermediaries and as the channel of distribution to the final consumer. Infrastructure services are a prerequisite for an economy to become industrialized; therefore, no advanced society can be without these services.

In an industrialized economy, specialized firms can supply business services to manufacturing firms more cheaply and efficiently than manufacturing firms can supply these services for themselves. Thus, more and more often we find advertising, consulting, and other business services being provided for the manufacturing sector by service firms.

Except for basic subsistence living, where individual households are self-sufficient, service activities are absolutely necessary for the economy to function and to enhance the quality of life. Consider, for example, the importance of a banking industry to transfer funds and a transportation industry to move food products to areas that cannot produce them. Moreover, a wide variety of personal services, such as restaurants, lodging, cleaning, and child care, have been created to move former household functions into the economy.

Government services play a critical role in providing a stable environment for investment and economic growth. Services such as public education, health care, well-maintained roads, safe drinking water, clean air, and public safety are necessary for any nation's economy to survive and people to prosper.

Thus, it is imperative to recognize that services are not peripheral activities but rather integral parts of society. They are central to a functioning and healthy economy and lie at the heart of that economy. Finally, the service sector not only facilitates but also makes possible the goods-producing activities of the manufacturing sectors. Services are the crucial force for today's change toward a global economy.