

Class 11

A Single-Server Service-Station in Steady State; Multi-Server Service-Stations in Steady State; Laws of Congestion.

A Non-Parametric Model of A Single-Server Service-Station

- Analytical models (vs. Simulation/4CallCenters):

“Approximate” analysis of Exact models – Today;
vs. “Exact” analysis of Approximate models – Birth & Death Queues, most notably Erlang-A/C/B (as well as Fluid Models).

- A Non-Parametric Model: the GI/GI/1 Queue.

Lindley’s Equations; Stability.

Tentative: MOP’s; Brummelle’s Formula.

Khinchine-Pollaczek Formula (with an illuminating proof: Hall, pages 168-169).

Allen-Cunneen Approximation (for averages: (5.69) on page 153 in Hall).

Kingman’s Exponential Law of Congestion.

Approximations (Framework for).

Tentative: Priorities: Non-Preemptive, Preemptive.

Tentative: On Optimal Scheduling: The $c\mu$ -rule.]

Models of a Multi-Server Service-Station:

Non-Parametric (GI/GI/m) and Markovian (M/M/m)

- Congestion Curves
- From M/M/m to G/G/m; (Laws of congestion: Kingman, Allen-Cunneen)
- Strategic Queueing Theory
 - Economies of Scale (EOS) Simply Cases, more Subtle Cases, City Bank
 - Efficiency-Driven Service Operations
 - Pooling in a Queueing Network - Part I
 - Pooling Servers(Capacity): One Fast vs. Several Slow
 - Pooling Queues (Geography): Virtual Call Centers
 - Pooling Tasks (Services): Job Design (Perhaps Later)
 - Kleinrock’s Cycle: Scale-Up (Pooling Queues), then Technological Improvement (Pooling Servers)
- Tentative: Introduction to QED Services Operations

Laws of Congestion

Recitation 12: MJP Models of Service.

Non-Parametric Models of a Service System;
GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

- G/G/1 Queue: Virtual Waiting Time (Unfinished Work).
- GI/GI/1: Lindley's Equations and Stability.
- M/GI/1 (=M/G/1): The Khintchine-Pollaczek Formula.
- G/G/1 and G/G/n: Allen-Cunneen Approximation;
Kingman's Exponential Law.
- Call Centers: The M/G/n+G queue.
- Queueing Systems with Priorities (Recitation).
- Service durations $S_1, S_2, \dots, S_n, \dots$ are iid.
 - $E[S_1] = 1/\mu$; $C^2(S_1) = C_s^2$.
 - Note: λ = Arrival rate.
- Independence between arrivals and services.
- Service discipline is First Come First Served .

Number in system is NOT a Markov process (in contrast to Markovian queues).

For some analysis need some minimal **Assumptions**:

- Arrival times $A_1, A_2, \dots, A_n, \dots$ are jumps of a **renewal process**:
 - Inter-arrival times $T_i = A_i - A_{i-1}$, $i \geq 1$, are iid ($A_0 = 0$).
 - $E[T_1] = 1/\lambda$; $C^2(T_1) = C_a^2$.
 - Note: λ = Arrival rate.
- Service durations $S_1, S_2, \dots, S_n, \dots$ are iid.
 - $E[S_1] = 1/\mu$; $C^2(S_1) = C_s^2$.
 - Note: μ = Service rate.

$$\text{Congestion Index} : \frac{E W_q}{E S} = \frac{\bar{L}_q}{N_p} \xrightarrow{\text{Observable}} \frac{q}{\bar{N}}$$

כד דוגרים איה מהו?

M/G/1 (=M/G/1) in Steady-State The Khintchine-Pollaczek Formula

M/G/1 Queue: Poisson arrivals,
generally distributed (iid) service durations.

Theorem. (Khintchine-Pollaczek)

$$E(W_q) = E(S) \cdot \frac{\rho}{1 - \rho} \cdot \frac{1 + C^2(S)}{2}.$$

Remarks:

- A remarkable second-moment formula quantifying congestion.
- “Congestion Index” = $E(W_q)/E(S)$ (unitless).
- Decomposes “Congestion” into two multiplicative components (the two congestion-drivers, in our simple M/G/1 context):
 - Server-Utilization: ρ ;
 - Stochastic-Variability, arising from Services: $C(S)$;
- Quantifies the effect of the service-time distribution (via its CV), for example, changing from a human-service to a robot.
- The Number-in-System is not Markov; however at instants of service completions it is an (embedded) Markov-chain.

Illuminating derivation, with the ingredients:
Little, PASTA, Biased sampling, Wald.

Derivation of Khintchine-Pollaczek

GI/GI/1 The Allen-Cunneen Approximation

For customer $n = 1, 2, \dots$, denote

- $W_q(n)$ = waiting-time of n -th customer.
- $R(n)$ = residual service time, at time of the n -th arrival;
($= 0$, for arrivals without waiting).
- $L_q(n)$ = # of customers in queue, at time of n -th arrival.
- $\{S_n\}$ = sequence of service-times.

Facts:

- Exact for M/G/1.
- Upper bound in general.
- Asymptotically exact as $\rho \uparrow 1$ - in Heavy Traffic.
(But then can actually say much more - momentarily).

Internalize: Assume $C^2(A) = C^2(S) = 1$, as in M/M/1:

$$\frac{E(W_q)}{E(S)} = \frac{\rho}{1 - \rho}.$$

Now substitute $\rho = 0.5 (1), 0.8 (4), 0.9 (10), 0.95 (19)$.

Finally think in terms of “5 minute telephone service-time”
(or “1 week job-shop processing-time”).

Other Measures of (Average) Performance:

$$E(W) = E(S) + E(W_q), \quad E(L_q) = \lambda E(W_q),$$

$$E(L) = \lambda E(W) = E(L_q) + \rho.$$

Via Biased Sampling (see next page):

- ρ = Prob. of arriving to a busy server. (PASTA+Little)

$$- E(R) = (1 - \rho) \cdot 0 + \rho \cdot E(S) \cdot \frac{1 + C^2(S)}{2}.$$

q.e.d.

GI/GI/1

Kingman's Exponential Law

Stability condition: $\rho = \frac{\lambda}{n\mu} < 1$.

Kingman's Exponential Law:

- Fact (Kingman, 1961): In heavy-traffic, “Waiting-Time is Exponential”.
- Get its mean from the Allen-Cunneen approximation.

Formally: Kingman's Exponential Law of Congestion:

$$\frac{W_q}{E(S)} \approx \begin{cases} \exp\left(\text{mean} = \frac{1}{1-\rho} \cdot \frac{C^2(A) + C^2(S)}{2}\right), & \text{wp } \rho, \\ 0 & \text{wp } 1-\rho, \end{cases}$$

Remarks:

- “Congestion Index” = $E(W_q)/E(S)$ (unitless): The Allen-Cunneen Approximation.

- Decomposes “Congestion” into two multiplicative components (the two congestion-drivers, in our simple G/G/1 context):

- Server-Utilization: ρ ;
 - Stochastic-Variability, which arises from
- Arrivals - $C(A)$ and Services - $C(S)$.

- Both ρ and $C(S)$ effect congestion non-linearly – draw congestion curves.

- M/M/1 – Special case in which $C^2(A) = C^2(S) = 1$: Exact.
- M/G/1 – Only $E(W_q)$ is Exact.

Approximating G/G/n

$$\frac{W_q}{E(S)} \approx \begin{cases} \exp\left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1-\rho} \cdot \frac{C^2(A) + C^2(S)}{2}\right) & \text{wp } E_{2,n}, \\ 0 & \text{otherwise.} \end{cases}$$

In particular, a popular measure for service-level, used to determine the number-of-servers n , is:

$$P\{W_q > x \cdot E(S)\} \approx E_{2,n} \cdot \exp\left(-x \cdot \frac{2n(1-\rho)}{C^2(A) + C^2(S)}\right), \quad x > 0.$$

Allen-Cunneen Approximation:

$$E(W_q) \approx E(S) \cdot \frac{1}{n} \cdot \frac{E_{2,n}}{1-\rho} \cdot \frac{C^2(A) + C^2(S)}{2}$$

or equivalently,

$$E(W_q) \approx E(W_{q,M/M/n}) \cdot \frac{C^2(A) + C^2(S)}{2}.$$

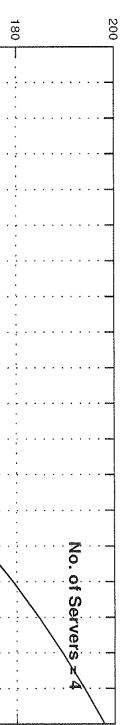
- Above accurate in Efficiency-Driven (ED) systems.

- Rules-of-thumb ED-Characterization:** In small systems (few servers), over 75% of the customers are delayed in queue prior to service; in large systems (many 10's or several 100's of servers), essentially all customers delayed - more on that in future classes.

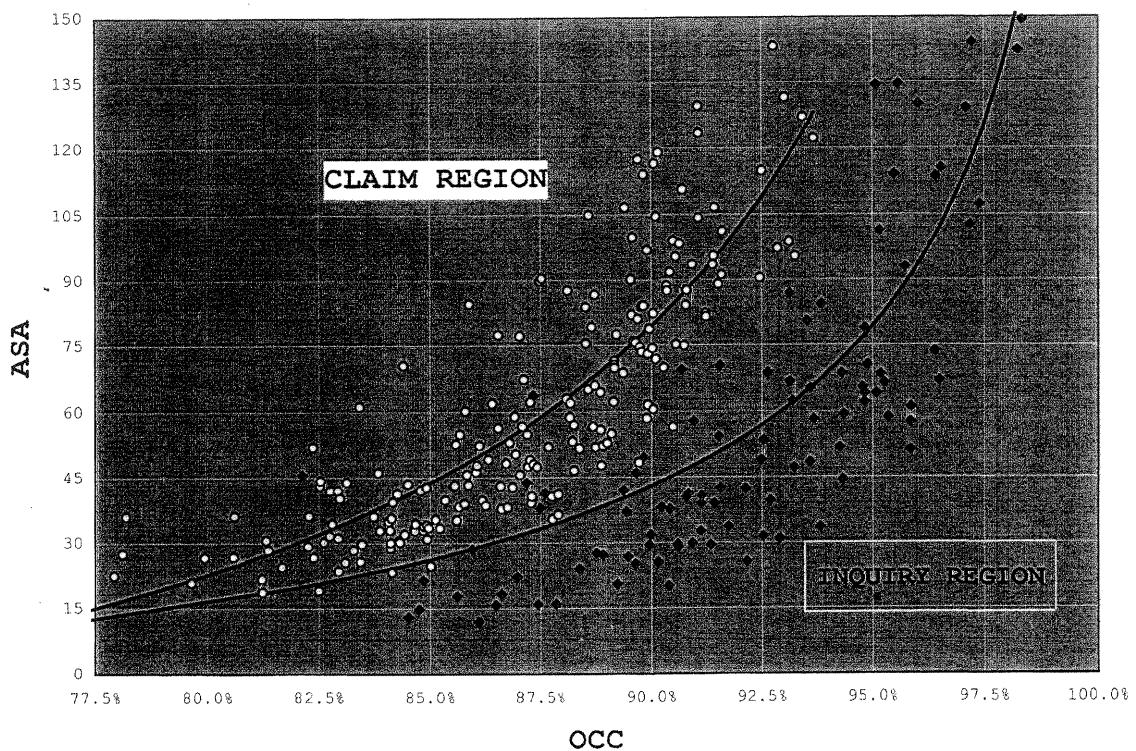
Theoretical Congestion Curves: Staffing Tools (4CallCenters)

Economies of Scale
Average Waiting Time - But Only of Those Who Wait

$E[W_q | W_q > 0]$ (Load: 10 per server)



K-P/A-C Law (2 moments, averages) ^{Performance}



$$\frac{W_q}{L_q} \approx \frac{1}{N} \cdot \frac{p}{1-p} \quad \text{?}$$

index
efficiency

12

5

M/G/n+G: The Basic Call Center Model

Why fundamental? since, in call centers, and elsewhere,

- Arrivals reasonably-approximated by Poisson,
- Services typically not Exponential,
- (Im)Patience typically not Exponential.

From M/G/n+G to M/M/n+M (Erlang-A):

1. M/M/n+G: “Assume” Exponential service times with the same mean (Whitt, 2005, via simulations);
2. M/M/n+M: “Assume” Exponential (im)patience times;
3. Estimate the patience-parameter θ via $P\{\text{Ab}\}/E[W_q]$ (with Zeltyn, 2005).

Possible inaccuracies in the exponential approximation for service times, when

- Very large or very small $C(S)$;
- Very patient customers (very small θ).