Class 11

A Single-Server Service-Station in Steady State;
Multi-Server Service-Stations in Steady State;
Laws of Congestion.

A Non-Parametric Model of A Single-Server Service-Station
e Analytical models (vs. Simulation/4CallCenters):

“Approximate” analysis of Exact models — Today;
vs. “Exact” analysis of Approximate models — Birth & Death Queues, most notably
Erlang-A/C/B (as well as Fluid Models).

e A Non-Parametric Model: the GI/GI/1 Queue.

Lindley’s Equations; Stability.

Tentative: MOP’s; Brummelle’s Formula.

Khinchine-Pollaczek Formula (with an illuminating proof: Hall, pages 168-169).
Allen-Cunneen Approximation (for averages: (5.69) on page 153 in Hall).
Kingman’s Exponential Law of Congestion.

Approximations (Framework for).

Tentative: Priorities: Non-Preemptive, Preemptive.

Tentative: On Optimal Scheduling: The cp-rule. |

Models of a Multi-Server Service-Station:
Non-Parametric (GI/GI/m) and Markovian (M/M/m)

e Congestion Curves

e From M/M/m to G/G/m; (Laws of congestion: Kingman, Allen-Cunneen)

e Sfrategic Queueing Theory
e Economies of Scale (EOS) Simply Cases, more Subtle Cases, City Bank
e LEfficiency-Driven Service Operations

e Pooling in a Queueing Network - Part I
— Pooling Servers(Capacity): One Fast vs. Several Slow
— Pooling Queues (Geography): Virtual Call Centers
— Polling Tasks (Services): Job Design (Perhaps Later)
e Kleinrock’s Cycle: Scale-Up (Pooling Queues), then Technological Improvement (Pooling
Servers)

e Tentative: Introduction to QED Services Operations

Laws of Congestion

Recitation 12: MJP Models of Service.



Service Engineering

Non-Parametric Models of a Service System;
GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

e G/G/1 Queue: Virtual Waiting Time (Unfinished Work).
e GI/GI/L: Lindley’s Equations and Stability.
e M/GI/1 (=M/G/1): The Khintchine-Pollaczek Formula.

e G/G/1 and G/G/n: Allen-Cunneen Approximation;
Kingman’s Exponential Law.

e Call Centers: The M/G/n+G queue.

e Queueing Systems with Priorities (Recitation).

GI/GI/1

Number in system is NOT a Markov process (in contrast to Marko-
vian queues).
For some analysis need some minimal Assumptions:

e Arrival times Ay, Ao, ..., A,,... are jumps of a
renewal process:

— Inter-arrival times T, = A, — A;_1, 1 > 1, are iid
(Ap =0).

— B[] = 1/X CY(Th) = C7.
— Note: A = Arrival rate.
e Service durations S1,5,...,5,,... are iid.
—EBlS)] =1/, C*S)) =C5.
— Note: p = Service rate.

e Independence between arrivals and services.

e Service discipline is First Come First Served .



M/GI/1 (=M/G/1) in Steady-State
The Khintchine-Pollaczek Formula

M/G/1 Queue: Poisson arrivals,
generally distributed (iid) service durations.

Theorem. (Khintchine-Pollaczek)

1402
E(W,) = E(S) - Hwb . :,M@v.

Remarks:
e A remarkable second-moment formula quantifying congestion.

e “Congestion Index” = E(W,)/E(S) (unitless).

»

e Decomposes “Congestion” into two multiplicative components

(the two congestion-drivers, in our simple M/G/1 context):

— Server-Utilization: p;

— Stochastic-Variability, arising from Services: C(S) ;

7

(“Where are the Arrivals”? - to be discussed momentarily).

e Quantifies the effect of the service-time distribution (via its
CV); for example, changing from a human-service to a robot.

e The Number-in-System is not Markov; however at instants of
service corpletions it is an (embedded) Markov-chain.

Iluminating derivation, with the ingredients:

O
Little, PASTA, Biased sampling; Wald.
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Derivation of Khintchine-Pollaczek

For customer n = 1,2, ..., denote

Wy(n) = waiting-time of n-th customer.

R(n) = residual service time, at time of the n-th arrival;
( = 0,for arrivals without waiting).
) = # of customers in queue, at time of n-th arrival.

{S,} = sequence of service-times.

Wy(n) = R(n)+ Y5 n>1.
k=n—Lq(n)
EW,(n) = ER(n)+ E(S)) - ELy(n), by Wald,
E(W,) = E(R)+ E(S1)E(L,) , n T oo, assuming

3 limit + PASTA,
E(R) + AE(S)E(W,), by Little,

E(R)+ pE(W,) , p < 1 & T steady-state,
BW) = B(R)/(1—p).

Il

&=
=
I

Left to calculate E[R]?
Via Biased Sampling (see next page):

- p = Prob. of arriving to a busy server. (PASTA-+Little)

1+ C%9)

-E(R)=(1-p)-0+p-E(S)- 5

ged.

GI/GI/1

The Allen-Cunneen Approximation

Assume General Arrivals (renewal) and General Services (iid):

BW,) ~ B(S) - £ . S S

1—p 2
T I T
Mean Service Time %Ww_mwmﬁb% Stochastic Variability

Facts:
e Exact for M/G/1.

e Upper bound in general.

e Agymptotically exact as p 7 1 - in Heavy Traflic.
(But then can actually say much more - momentarily).

Internalize: Assume C*(A) = C?(S) =1, as in M/M/1:
E(W,) P

ES) 1-p
Now substitute p = 0.5 (1),0.8 (4),0.9 (10),0.95 (19).
Finally think in terms of “5 minute telephone service-time”
(or “1 week job-shop processing-time”).

Other Measures of (Average) Performance:
E(W) = E(S)+E(W,), E(Ly) = AE(W,),
E(L)y = AE(W) = E(L,) +p.

P



GI/GI/1

Kingman’s Exponential Law

Fact (Kingman, 1961):
In heavy-traffic, “Waiting-Time is Exponential”.
Get its mean from the Allen-Cunneen approximation.

Formally: Kingman’s Exponential Law of Congestion:

3 2
W, _|exp AE@& HHM\U C A\CMQ Amvv » WD,

0 qgwuw|b“

Remarks:

e “Congestion Index” = E(W,)/E(S) (unitless):
The Allen-Cunneen Approximation.

e Decomposes “Congestion” into two multiplicative components
(the two congestion-drivers, in our simple G/G/1 context):
— Server-Utilization: p ;
~ Stochastic-Variability, which arises from
Arrivals - C(A) and Services - C(S).

e Both p and C(S) effect congestion non-linearly — draw con-
gestion curves.

e M/M/1 - Special case in which C?(A) = C%(S) = 1 : Exact.
M/G/1 - Only E(W,) is Exact.

10

Approximating G/G/n

Stability condition: p =2 < L.

Kingman’s Exponential Law:

11 C2(A)+C*(S)
e AEQE LT 5 , Wp By,
0 , otherwise.

In particular, a popular measure for service-level, used to determine
the number-of-gervers n, is:
2n(1 — p)

P{W, >z - E(S)} = Ey, -exp A!& CNA) + C(S)

uvHVQ.

Allen-Cunneen Approximation:

E(W,) ~ E(S) wﬂm . Q&@Q@.

or equivalently,

C(4) + C(S)

EW,) ~ E(Wyrvmm) - 5

- Above accurate in Efficiency-Driven (ED) systems.
Rules-of-thumb ED-Characterization: In small systems
(few servers), over 75% of the customers are delayed in queue prior
to service; in large systems (many 10’s or several 100’s of servers),
essentially all customers delayed - more on that in future classes.

11
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Theoretical Congestion Curves: Staffing Tools (4CallCenters)

Waiting Time In Seconds

Economies of Scale
Average Waiting Time - But Only of Those Who Wait

E[W, W, > 0] (Load: 10 per server)
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M /G /n+G: The Basic Call Center Model

Why fundamental? since, in call centers, and elsewhere,
e Arrivals reasonably-approximated by Poisson,
e Services typically not Exponential,

e (Im)Patience typically not Exponential.

From M/G/n+G to M/M/n+M (Erlang-A):

1. M/M/n+G: “Assume” Exponential service times with the
same mean (Whitt, 2005, via simulations);

2. M/M/n+M: “Assume” Exponential (im)patience times;

3. Estimate the patience-parameter 6 via P{Ab}/E[W,] (with
Zeltyn, 2005).

Possible inaccuracies in the exponential approximation for service
times, when

e Very large or very small C(5);

e Very patient customers (very small ).
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