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Wide Area Traffic: The Failure of Poisson Modeling

Vern Paxson and Sally Floyd, Member, IEEE

Abstract— Network arrivals are often modeled as Poisson
processes for analytic simplicity, even though a number of traffic
studies have shown that packet interarrivals are not exponentially
distributed. We evaluate 24 wide area traces, investigating a
number of wide area TCP arrival processes (session and connec-
tion arrivals, FTP data connection arrivals within FTP sessions,
and TELNET packet arrivals) to determine the error introduced
by modeling them using Peisson processes. We find that user-
initisted TCP session arrivals, such as remote-login and file-
transfer, are well-modeled as Poisson processes with fixed hourly
rates, but that other cosmection arrivils deviate considerably
from Poisson; that modeling TELNET packet interarrivals as
exponential grievously underestimates the buirstiness of TELNET
traffic, but using the empirical Tepkb [12] isterarrivals preserves
burstiness over many time scales; and that FTP data connection
arrivals within FTP sessions come bunched into “comnmection
bursts,” the largest of which are se 1 that they completely
dominate FTP data traffic. Finally, we some results regard-
ing how our findings relste to the possible self-similarity of wide
area traffic.

[. INTRODUCTION

X 7 HEN MODELING network traffic, packet and connec-
tion arrivals are often assumed to be Poisson processes
because such processes have attractive theoretical properties
[19]. A number of studies have shown, however, that for both
local-area and wide area metwork traffic, the distribution of
packet interarrivals clearly differs from exponential [25], [22],
{18}, [12]. Recent work argues convincingly that LAN traffic is
much better modeled using statistically self-similar processes
[28], which have much different theoretical properties than
Poisson processes. For self-similar traffic, there is no natural
length for a “burst”; traffic bursts appear on a wide range
of time scales. In this paper we show that for wide area
traffic, Poisson processes are valid only for modeling the
arrival of user sessions (TELNET connections, FTP control
connections); that they fail as accurate models for other WAN
arrival processes; and that WAN packet arrival processes
appear better modeled using self-similar processes.
For our study we analyze 24 traces of wide area TCP traffic.
We consider both previous and new models of aspects of
TELNET and FTP traffic, discuss the implications of these
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models for burstiness at different time scales, and compare the
results of the models with the trace data. We show that in some
cases commonly used Poisson models seriously underestimate
the burstiness of TCP traffic over a wide range of time scales.
(We restrict our study to time scales of 0.1 s and larger.)

We first show that for interactive TELNET traffic,
connection arrivals are well-modeled as Poisson with
fixed hourly rates. However, the exponentially distributed
interarrivals commonly used to model packet arrivals
generated by the user side of a TELNET connection grievously
underestimate the burstiness of those connections, and high
degrees of multiplexing do not help. Using the empirical
Teplib [11], [12] distribution for TELNET packet interarrivals
instead results in packet arrival processes significantly burstier
than Poisson arrivals, and in close agreement with traces
of actual traffic. From these findings we then construct a
model of TELNET traffic parameterized by only the hourly
connection arrival rate and show that it accurately reflects
the burstiness found in actual TELNET traffic. (We do not
model the TELNET response, only the user side.) The success
with this model of using Tcplib packet interarrivals confirms
the finding in [12] that the arrival patten of user-generated
TELNET packets has an invariant distribution, independent
of network details.

For small machine-generated bulk transfers such as SMTP
(email) and NNTP (network news), connection arrivals are not
well-modeled as Poisson, which is not surprising since both
types of connections are machine-initiated and can be timer-
driven. Previous research has discussed how the periodicity of
machine-generated IP traffic such as routing updates can result
in network-wide traffic synchronization [17], a phenomenon
impossible with Poisson models.

For large bulk transfer, exemplified by FTP, the traffic
structure is quite different than suggested by Poisson models.
As with TELNET connections, user-generated FTP session
arrivals are well-modeled as Poisson with fixed hourly rates.
However, we find that FTP data connections within a single
FTP session (which are initiated whenever the user lists
a directory or transfers a file) come clustered in bursts.
Hereafter we will refer to these data connections as FTPDATA
connections, and the corresponding bursts as FTPDATA bursts.
Neither FTPDATA-connection nor FTPDATA-burst arrivals
are well-modeled as Poisson processes. Furthermore, one of
our key findings is that the distribution of the number of bytes
in each burst has a very heavy upper tail; a small fraction of the
largest bursts carries almost all of the FTPDATA bytes. This
implies that faithful modeling of FTP traffic should concentrate
heavily on the characteristics of the largest bursts.
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Poisson arrival processes are quite limited in their bursti-
ness, especially when multiplexed to a high degree. Our
findings, however, show that wide area traffic is much burstier
than Poisson models predict, over many time scales. This
greater burstiness has implications for many aspects of con-
gestion control and traffic performance. We conclude the paper
with a discussion of how our burstiness results mesh with self-
similar models of network traffic, and then with a look at the
general implications of our results.

II. TRACES USED

Our study is based on two sets of traces of wide area
network traffic. The first set, shown in Table I, consisted
of TCP SYN/FIN connection start/stop packets. SYN/FIN
packets are enough to measure connection start times (and
hence connection arrival processes), durations, TCP protocol,
participating hosts, and data bytes transferred in each direction.
The BC and UCB traces are analyzed in depth in [12], and also
in [34], and the UCB trace forms the basis of the connection
characteristics used for Tcplib [11]. The NC, UK, and DEC
traces are analyzed in |34], and the LBL. traces are analyzed
in [34), [35]. The “DEC [-3” rows represents three wide
area TCP SYN/FIN traces. each spanning 1 day, and the
“LBL 1-8” row represents 8 wide area TCP SYN/FIN traces,
each spanning 30 days. The reader is referred to the above
mentioned papers for details regarding the characteristics of
the traffic in each dataset, including the number of connections
and bytes due to each TCP protocol.

These traces are all fairly lengthy, allowing us to assess how
traffic varies over the course of a day or longer, and giving
us enough TCP connection arrivals to make a statistically
sound evaluation of the connection arrival processes. These
traces are used in Section 1l to evaluate the effectiveness of
using Poisson models for TCP connection arrivals. Because
SYN/FIN traces allow us to characterize connection size, we
also used these traces in Section VI to investigate the notion
of “FTPDATA bursts.”

Because the SYN/FIN traces do not contain information
regarding packet arrivals within a connection, to evaluate
packet arrival processes we acquired nine packet-level traces
of wide area traffic, summarized in Table IL'

The “LBL PKT-rn” rows summarize traces gathered at the
Lawrence Berkeley Laboratory’s wide area Internet gateway.
The first three traces captured all TCP packets, and lasted two
hours. The final two traces captured all packets and lasted one
hour. In the first set of traces, the fraction of dropped packets,
where known, was always < 5- 1079, For the second set, it
was always < 0.001.

The “DEC WRL-n” rows summarize traces gathered at
the primary Internet access point for the Digital Equipment
Corporation. The access point is operated by Digital's Palo
Alto research groups, and the traces were supplied by Digital’s

""The BC and UCB traces listed in Table I actually include all packets, and
are analyzed as such in [12]. We cxcluded a packet-level analysis of the BC
dataset because of its low traffic rate (on average. about 1 packet/s over the
11 days), and the UCB dataset because it forms the basis of the Tcplib library,
against which we cormpare the packet-level traces.
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TABLE I
SuMMARY OF WIDE AREA TCP CONNECTION TRACES
Dataset Date Duration What
Bellcore (BC) 100ct89 13 days 17K TCP conn.
U.C.B. (UCB) 310ct89 24 hours 38K TCP conn.
coNCert (NC) 04DecY 1 24 hours 63K TCP conn.
UK-US (UK) 21Aug9l 17 hours 26K TCP conn.
DEC 1-3 See refs. 24 hours x 3 195K TCP conn.
I.BL 1-8 See refs. 30 days x 8 3.7M TCP conn.
TABLE 11
SUMMARY OF WIDE AREA PACKET TRACES
Dataset Date When ‘What
LLBL PKT-1 Fri 17Dec93 2PM—-4PM 1.7M TCP pkts.
I.BL PKT-2 Wed 19Jan94 2PM-4PM 2.4M TCP pkts.
L.BL PKT-3 Thu 20Jan94 2PM-4PM 1.8M TCP pkts.
L.BL PKT-4 Fri 21Jan94 2PM-3PM 1.3M pkts.
1.BL. PKT-5 Fri 28)an%4 2PM-3PM 1.3M pkts.
DEC WRL-1 Wed 08Mar95 10PM-11PM 3.3M pkts.
DEC WRL-2 Thu 09Mar95 2AM-3AM 3.9M pkts.
DEC WRL-3 Thu 0YMar95 10AM-11AM 4.3M pkts.
DEC WRL-4 Thu 09Mar95 2PM-3PM 5.7M pkts.

Western Research Lab (hence “WRL”). For these traces, the
fraction of dropped packets was always < 0.00025.

The packet traces do not include a large number of TCP
connections, unlike the traces in Table I, so we do not use them
for evaluating Poisson models for TCP connection arrivals, nor
for the size of FTPDATA bursts (though the traces are used to
illustrate the heaviness of the distribution’s upper tail). Instead
we use the LBL PKT datasets in Section IV and Section V
to evaluate different models for TELNET packet arrivals, and
both the LBL. PKT and the DEC WRL datasets in Section
VII to investigate the presence of “large-scale correlations” in
wide area network traffic. (We did not include the DEC WRL
datasets in our packet-level TELNET evaluation because, due
1o the use of a firewall proxy server, the DEC TELNET traffic
is dominated by a single, heavily-loaded machine.)

To disambiguate between the LBL and DEC SYN/FIN
traces and packet traces, we use LBL-n and DEC-n to refer
to SYN/FIN traces, and LBL PKT-n and DEC WRL-n to
refer to packet traces.

III. TCP CONNECTION INTERARRIVALS

This section examines the connection start times for several
'TCP protocols. The pattern of connection arrivals is dominated
by a 24-hour pattern, as has been widely observed before.
We show that for TELNET connection arrivals and for FTP
session arrivals, within one-hour intervals the arrival process
can be well-modeled by a homogeneous Poisson process; each
of these arrivals reflects an individual user starting a new ses-
sion. Over one hour intervals, no other protocol’s connection
arrivals are well-modeled by a Poisson process. Even if we
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Fig. 1. Mean, relative, hourly connection arrival rate for LBL-1 through
LBL-4 datasets.

restrict ourselves to ten-minute intervals, only FTP session and
TELNET connection arrivals are statistically consistent with
Poisson arrivals, though the arrival of SMTP connections and
of FTPDATA “bursts” (discussed later in Section VI) during
ten-minute intervals are not terribly far from what a Poisson
process would generate. The arrivals of NNTP, FTPDATA, and
WWW (World Wide Web) connections, on the other hand, are
decidedly not Poisson processes.

Fig. 1 shows the mean hourly connection arrival rate for
datasets LBL-1 through LBL-4, For the different protocols, we
plot for each hour the fraction of an entire day’s connections
of that protocol occurring during that hour. (In the figure, FTP
refers to FTP sessions.) For example, TELNET connections
occur primarily during normal office hours, with a lunch-
related dip at noontime; this pattern has been widely observed
before. FTP file transfers have a similar hourly profile, but
they show substantial renewal in the evening hours, when
presumably users take advantage of lower networking delays.
The NNTP traffic maintains a fairly constant rate throughout
the day, only dipping somewhat in the early moming hours
(but the mean size of each connection varies over the course
of the day; see [35]). The SMTP traffic is interesting because it
shows a morning bias for the LBL site (west-coast U.S.) and an
afternoon bias for the Bellcore site (east-coast U.S.); perhaps
the shift is due to cross-country mail arriving relatively earlier
in the Pacific time zone and later in the Atlantic time zone.

Fig. 1 shows enough daily variation that we cannot reason-
ably hope to model connection arrivals using simple homo-
geneous Poisson processes, which require constant rates, The
next simplest model is to postulate that during fixed-length
intervals (say, one hour long) the arrival rate is constant and
the arrivals within each interval might be well modeled by a
homogeneous (fixed-rate) Poisson process. Telephone traffic,
for example, is fairly well modeled during one-hour intervals
using homogeneous Poisson arrival processes [18].

To evaluate these Poisson models, we developed a simple
statistical methodology (Appendix A) for testing whether
arrivals during a given 1 h or 10 min interval are Poisson
with a fixed rate. We test two aspects of each protocol’s
interarrivals: whether they are consistent with exponentially
distributed interarrivals, and whether they are consistent with
independent interarrivals. If the arrivals during the interval
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Fig. 2. Results of testing for Poisson arrivals.

are truly Poisson, then we would expect 95% of the tested
intervals to pass each test. Note that we would also expect
testing 10 min intervals to perhaps be more successful than
testing one-hour intervals, because using ten-minute intervals
allows the arrival rate to change six times each hour rather
than remaining constant throughout the hour.

We applied our methodology to all of the TCP connection
traces shown in Table I. For each trace, we separately tested the
trace’s TELNET, FTP, FTPDATA, SMTP, NNTP, and WWW
connections. Only two of the traces had significant WWW
traffic, but as use of this protocol is rapidly growing, it is
worth investigating even given the limited samples.

FTP here refers to an FTP session (i.c., an FTP control
connection), while FTPDATA refers to the data-transfer con-
nections spawned by these control connections. Prior to our
analysis we removed the periodic “weather-map” FTP traffic
discussed in [35], to avoid skewing our results. We also tested
arrivals of FTPDATA bursts (see Section VI below).

Fig. 2 shows the results of our tests, for both one-hour
intervals (top plot) and ten-minute intervals (bottom plot).
Along the z-axis we plot the percentage of tested intervals
that passed the statistical test for exponentially distributed in-
terarrivals, and along the y-axis the percentage that passed the
test for independent interarrivals. The dashed lines correspond
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to a 95% pass-rate, which we would expect on average if
the arrivals were truly Poisson. In general, we expect Poisson
arrivals to cluster near the upper right comer of the plots.

Each letter in a plot corresponds to a single trace’s connec-
tion arrivals for the given TCP protocol. Letters drawn in large
bold indicate that the trace’s arrivals are statistically indistin-
guishable from Poisson arrivals (see Appendix A for details).
A + or — after a letter indicates that consecutive interarrival
times are consistently either positively or negatively correlated.
even if the correlation itself is not particularly strong (again,
see Appendix A).

We see immediately that TELNET connection arrivals and
FTP session arrivals are very well modeled as Poisson, both for
1 h and 10 min fixed rates. No other protocol’s arrivals are well
modeled as Poisson with fixed hourly rates. If we require fixed
rates only over 10 min intervals, then SMTP and FTPDATA
burst arrivals are not terribly far from Poisson, though neither
is statistically consistent with Poisson arrivals, and consecutive
SMTP interarrival times show consistent positive correlation.
NNTP, FTPDATA, and WWW arrivals, on the other band, are
clearly not Poisson.

That NNTP and to a lesser extent SMTP arrivals are not
Poisson is not too surprising. Because of the flooding mech-
anism used to propagate network news, NNTP connections
can immediately spawn secondary connections as new network
news is received from one remote peer and in turn offered to
another. NNTP and SMTP connections are also often timer-
driven. Finally, SMTP connections are perturbed by mailing
list explosions in which one connection immediately follows
another, and possibly by timer effects due to using the Domamn
Name Service to locate MX records |RFC974].

That FTPDATA connection arrivals are clearly not Poisson
can be readily attributed to the fact that “multiple-get” file
transfers often result in a rapid succession of FTPDATA con-
nections, one immediately following another [35]. Coalescing
multiple FTPDATA connections into single burst (Section VI)
arrivals improves the 10 min Poisson fit somewhat, but still
falls short of statistical consistency.

The finding that TELNET connection arrivals are well-
modeled as a Poisson process with fixed hourly rates is at
odds with that of [31], who found that user interarrival times
looked “roughly log-normal”. We believe the discrepancy is
due to characterizing the distribution of all of the interarrivals
lumped together, rather than postulating separate hourly rates.

Given that TELNET connection arrivals appear Poisson
over one-hour intervals, one might imagine that other human-
initiated traffic such as RLOGIN and X11 will also fit this
model. We find that RLOGIN does and X11 does not. We
conjecture that the difference is that during a single X11
session (corresponding to running an instance of xterm, say)
a user initiates multiple X11 connections. while TELNET and
RLOGIN sessions are comprised of a single TCP connection.
Thus, TELNET connection arrivals correspond to users de-
ciding to begin using the network; X11 connection arrivals
correspond to users deciding to do something new during
their use of the network. The former behavior is likely to be
close to uncorrelated, memoryless arrivals, since each arrival
generally involves a new user. The latter is much more akin
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Fig. 3. Empirical distributions of packet-interarrivals within TELNET con-
nections.

to the creation of FTPDATA connections during a single FTP
session, since a single user is involved in generating new
arrivals. Because X11 connections are created in this way,
their arrivals do not have the memoryless property and hence
are not Poisson. If we could discern between X11 session
arrivals and X11 connection arrivals, then we conjecture we
would find the session arrivals to be Poisson.

IV. TELNET PACKET INTERARRIVALS

The previous section showed that start times for TELNET
connections are well-modeled by Poisson processes. In this
section we look at the packet arrival process within a TELNET
connection. We restrict our study to packets generated by the
TELNET connection originator; this in general is a user typing
at a keyboard. We would expect the packets generated by the
TELNET connection responder to have a somewhat different
arrival process, since they will usually include both echoes
of the user’s keystrokes and larger bursts of bulk-transfer
consisting of output generated by the user’s remote commands.

Because the originator packets are initiated by a human,
we might hope that the arrival process is to some degree
“invariant”; that is, the process may be independent of network
dynamics and instead mainly reflect the delays and bursts
of activity associated with people typing commands to a
computer. Indeed, our empirical results of the interarrival
times between packets in a single TELNET connection are
consistent with the empirical Tcplib distribution found by
previous researchers. Unlike the exponential distribution, the
empirical distribution of TELNET packet interarrival times is
heavy-tailed; we show that using the exponential distribution
results in seriously underestimating the burstiness both of
TELNET traffic within a single connection and of multiplexed
TELNET traffic. Modeling TELNET packet arrivals by a Pois-
son process, as is generally done, can result in simulations and
analyses that significantly underestimate performance mea-
sures such as average packet delay.

Fig. 3 shows two empirical distributions of the interarrival
times of packets within TELNET connections. The solid line
shows the distribution used by Tcplib [11], [12]; the dashed
line shows the same for the LBL PKT-1 trace. Above 0.1 s,
the agreement is quite good, especially in the upper tail. That
different sites produce the same distribution argues heavily
that the distribution is independent of network dynamics
and instead reflects human typing dynamics. Below 0.1 s
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Fig. 4. Comoparisons between Tcplib and exponential interpacket times.

the interarrival times probably are dominated by network
dynamics; but, as stated earlier, in this paper we are not
concerned with time scales below 0.1 s.

Even ignoring the lower tail, the interarrival distribution is
not even close to exponential in shape (note that the z-axis is
logarithmically scaled). To dramatize this fact, we have also
plotted two logarithmically-scaled exponential distributions.
The lefthand one (“fit #1”) has the same geometric mean as
the LBL PKT-1 distribution, and the righthand one has the
same arithmetic mean.

The exponential fits are very poor. Using the exponential
distribution fitted to the same geometric mean will faithfully
capture only the distribution of packet interarrivals that are
between 200 and 400 ms apart. Shorter interarrivals will be
overestimated, and longer interarrivals will be underestimated.
For example, the exponential distribution models a full 25%
of the interarrivals as being less than 8 ms, and only 2% as
being longer than 1 s, but for the actual data under 2% were
less than 8 ms apart, and over 15% were more than 1 s apart.

The exponential distribution fitted to the arithmetic mean
fares even worse. For example, it predicts nearly 70% of
the packets will arrive more than 1 s apart, when the actual
observed distribution is 15% of the packets.

Thus, simple exponential distributions for packet interarrival
times, which are necessary for Poisson models of packet
arrivals, provide very poor fits to the observed distribution.
On the other hand, the main body of the observed distribution
fits very well to a Pareto distribution (doubly-exponential; see
Appendix B) with shape parameter 3 =~ 0.9, and the upper
3% tail to a Pareto distribution with 3 ~ 0.95. Interestingly, a
Pareto distribution with 3 < 1 has infinite mean and variance;
a very different beast than an exponential distribution. We will
see later that Pareto-distributed interarrivals lead to observable
large-scale correlations (Appendix C).

It is not surprising that interactive packet arrivals do not fit
a Poisson model, since earlier work looking at many different
components of interactive traffic failed to find any statistically
significant exponential fits to the observed distributions [20].
This leaves the question: What are the consequences of using
Poisson packet arrivals rather than the Tcplib distribution for
TELNET traffic?

Fig. 4 shows two views of packet arrivals from two sim-
ulated TELNET connections, each lasting 2,000 s. The first
graph shows the first 200 s, and the second graph the entire
2,000 s. Row 1 for each graph shows a connection using
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independent, identically-distributed (i.i.d.) interpacket times
from the Tcplib distribution, and row 2 shows a connection
using i.i.d. interpacket times from an exponential distribution
with a mean of 1.1 s (to give roughly the same number of
packets as the Tcplib distribution). We have plotted a dot
for each packet arrival, with the x-axis giving the time of
the arrival. In all, there were 1,926 Tcplib interarrivals and
2,204 exponential interarrivals. Over both time scales, the
packets from the connection with Tcplib interpacket times are
dramatically more clustered.

This difference in burstiness between exponential and
heavy-tailed (i.e., Teplib) interpacket times persists to some
extent for multiplexed connections. For example, we ran
10 min simulations with 100 active TELNET connections,
where all connections were active for the entire duration
of the simulation. In one simulation each connection used
Teplib interpacket times, and in the other simulation each
connection used exponential interpacket times. We found
that the multiplexed packet arrival processes with Tcplib
interpacket times remained more bursty. For each simulation,
consider the number of TELNET packets arriving during
successive 1 s intervals. For the simulation with individual
connections using Tcplib interpacket times, this aggregate
number had a mean of 92 and a variance of 240; for
the simulation with exponential interpacket times, the
aggregate number had a mean of 92 and a variance of
97. Even a high degree of statistical multiplexing failed to
smooth away the difference between the two packet arrival
processes.

One of the natural performance measures for TELNET
traffic is average packet delay. It would not be hard to construct
simulations, one using Tcplib and the other using exponential
interarrivals, where making the mistake of using exponential
interarrivals instead of Tcplib significantly underestimates the
average queueing delay for TELNET packets.

The above shows that the Tcplib packet interarrival dis-
tribution behaves quite differently than a Poisson process,
even in the presence of multiplexing. We now show that for
measured network traffic, these differences extend far beyond
the time scale of individual packets. To look at the difference
in burstiness at different time scales, we first extracted all
TELNET originator packets, except those consisting of no
user data (“pure ack”™), from the two-hour LBL PKT-2 trace.
These packets belonged to 277 separate TCP connections. Of
these connections, 4 were anomalously large and rapid (more
than 2!0 bytes transferred by the originator at sustained data
rates exceeding 8 bytes/s). These are unlikely to correspond
to human typing, were clear outliers, and are probably better
modeled as bulk transfer connections. Removing the outliers
left us with 273 connections.

We then synthesized several two-hour packet traces as
follows. For each of the TELNET connections, we synthesized
a connection with the same starting time within the two-
hour period and the same size (in packets). One of the
synthesized traces used the Tcplib empirical distribution for
the packet interarrivals within each connection (“TCPLIB”);
one used exponential interarrivals with mean 1.1 (“EXP”); and
one uniformly distributed each connection’s packet arrivals
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over the interval between when the connection began and
when during the LBL PKT-2 trace the connection terminated
(“VAR-EXP”). This last method corresponds to exponential
interarrivals with the mean adjusted to reflect the connection’s
actual observed packet rate. Thus, for the TCPLIB and EXP
schemes, we generated connections with the same starting
times and sizes (in packets) as their counterparts in the
LBL PKT-2 trace, but perhaps with different durations, while
with the VAR-EXP scheme, the generated connections shared
starting time, size, and duration.

A valuable tool for assessing burstiness over different
time-scales is the “variance-time plot” [28], [21], which we
describe here by example rather than rigorously. Suppose
we have a count process consisting of 72 000 observations,
corresponding to a two-hour trace viewed every 0.1 s. Each
observation gives the number of packet arrivals during that
0.1 s interval. The variance of this count process gives us an
indication of how bursty the traffic was when viewed on a
time scale of 0.1 s.

If however we are interested in the process’s burst-structure
on a time scale of 10 s, we could construct a “smoothed”
version of the process by averaging the first 100 observations
to obtain the process’s mean value during the first 10 s, the
next 100 observations for the next 10 s, and so on. In general
we can do this sort of smoothing for any aggregation level
M. where in this example M = 100. The variance of the
smoothed process then gives us an indication of how bursty
the traffic was when viewed on a 10 s tme scale.

A natural question is then: how does the variance change
as we progressively smooth the process? By plotting variance
versus degree of smoothing (M), we can examine how bursti-
ness changes according to the time scale used to view the
traffic.

For count processes with rapidly decaying autocorrelation
functions, such as Poisson processes, the variance of a process
aggregated to level M will be 1/M times the variance of
the unaggregated process (see Section VII-C). For processes
with more persistent autocorrelation functions, however, the
variance will decay more gradually. Given this relationship,
we can then construct a variance-time plot by smoothing the
process for different values of M and plotting the variance
of the smoothed process on the y-axis versus the aggregation
level (M) on the z-axis. We use logarithmic scales because
they allow us to immediately assess whether the variance
decays as 1/M (which will show up on the plot as a straight
line with slope —1), or more slowly (a slope more shallow than
—1), indicating slowly decaying autocorrelation or possibly
nonstationarity; that is, from the plot we can tell a great deal
about burstiness at different time scales.

Fig. 5 shows such a plot for the LBL. PKT-2 TELNET trace
and for the three schemes discussed above. Here the unaggre-
gated process (M = 1) corresponds to 72 000 observations of
the number of TELNET originator packets arriving during 0.1
s intervals. The y-axis is the variance of the aggregated process
normalized by dividing by the square of the average number
of packets per 0.1 s. This normalization allows us to compare
the variance of processes with different numbers of arrivals,
as the traces consisted of between 82 500 and 86 000 packets.
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Fig. 5. Variance-Time Plot for TELNET packet arrival process. The line
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From the plot it is immediately clear that the variance
of the TCPLIB scheme agrees closely with the LBL PKT-2
trace data, while both EXP and VAR-EXP exhibit far less
variance, indicating they are much less bursty over a large
range of time scales. Thus, the TCPLIB scheme preserves
the burstiness present in the measured traffic, while the EXP
and VAR-EXP schemes both sacrifice burstiness at larger time
scales. At very large time scales (M = 10°%), we again get
agreement between all of the schemes and the measured traffic,
because these time scales are so coarse that we are essentially
viewing each connection’s arrivals lumped together as a single
observation—differences in the distribution of the arrivals
within the connection are lost due to the coarse granularity
of our observations.

Fig. 6 shows the difference in burstiness between the
schemes explicitly. Here we plot the arrival process corre-
sponding to 5 s intervals (M = 50) for the LBL. PKT-2 trace
and for the EXP trace. The x-axis shows the time in seconds,
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and the y-axis shows the total number of TELNET packets in
each 5-s interval. The average number of packets in the two
traces are similar; the LBL PKT-2 trace has an average of
59 packets in each 5 s interval, and the fixed-rate exponential
trace has an average of 57 packets in each 5 s interval. The
variances, however, are quite different. With 5 s bins, the
LBL PKT-2 trace has a variance of 672, while the exponential
trace has a variance of 260.

Clearly, this difference in the packet-generation rate over
5 s intervals could have consequences for queueing delays in
simulations using these two different traces. As the variance-
time plot shows, the LBL PKT-2 trace is more bursty over
many time intervals, not only over the 5 s intervals shown here.
The conclusions are that using exponential packet interarrival
times for TELNET connections results in substantial under-
estimations of the burstiness of multiplexed TELNET traffic,
but using i.i.d. interarrivals drawn from the Tcplib distribution
faithfully reproduces the burst structure.

V. FULLY MODELING TELNET ORIGINATOR TRAFFIC

Section III has shown that over 1-hour periods, TELNET
connection arrivals are well-modeled as Poisson processes,
and Section IV has shown that within a TELNET connection,
packet interarrival times can be modeled using the heavy-
tailed distribution in Tcplib. The connection size in bytes
has been previously modeled by a log-extreme distribution
[34]; the distribution of the connection size in packets is
somewhat different, and seems to be better modeled by a
log-normal distribution (see below). In this section, we put
these three pieces together to comstruct a complete model
of TELNET originator traffic that is' parameterized only by
the connection arrival rate. Variance-time plots show that this
model corresponds well to empirical measurements.

First, we look at the difference in the distributions of origi-
nator bytes per connection versus originator packets. Previous
work reports that the number of bytes sent by the originator
in a wide area TELNET connection is well-modeled using a
log-extreme distribution with location parameter a = log, 100
and scale parameter 3 = log, 3.5 [35]. We experimented with
using this distribution to produce sizes for an equal number of
TELNET connections as appeared in the LBL PKT-2 trace. We
found that the distribution consistently generates connection
sizes (in bytes) much larger than the connection sizes (in
packets) observed in the trace. We attribute this difference
to two effects:

« the [34] fit was made using month-long traces of TEL-
NET connections, allowing for much longer and larger
connections than are present in our two-hour trace;
the [34] fit models conmection size in bytes and not in
packets. One generally assumes that each TELNET origi-
nator packet conveys one byte of user data, corresponding
to a keystroke. Often, however, a packet carries more than
one byte, either due to effects of the Nagle algorithm
[32] or because the TELNET connection is operating
in “line mode” [5] or “line-at-a-time mode” [36], [37].
For example, the LBL PKT-2 TELNET originator traffic
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Fig. 7. Variance-time plot comparing LBL PKT-2 trace data with the com-
plete TELNET model, FULL-TEL.

comprised about 85,000 packets carrying 139,000 user

data bytes.
Given these difficulties, we attempted to fit the observed TEL-
NET connection sizes (in packets) with another simple analytic
distribution. We found that a log,-normal distribution with
logy-mean Z = log, 100 and log,-standard deviation o = 2.24
fit the connection size in packets well visually, considerably
better than a log-extreme distribution with parameters fitted to
the data. (The exact numerical values of Z and o here should
not be taken too seriously, as they came from a small sample.)
We also found that a log-extreme distribution fit the connection
size in bytes better than a log-normal distribution, so our data
remains consistent with the models presented in [34].

Putting all of this together, we have a complete model
for TELNET traffic, FULL-TEL, parameterized only by the
TELNET connection arrival rate. FULL-TEL uses Poisson
connection arrivals, log-normal connection sizes (in packets),
and Tcplib packet interarrivals.

We then used FULL-TEL to generate three synthetic traces
of TELNET originator traffic, using a connection arrival rate
of 273 connections in 2 h. Because such traces start off with
no traffic and build up to a steady-state corresponding to the
connection arrival rate, we trimmed the traces to just their
second hour. We then used variance-time plots to compare the
traces with the second hour of the LBL. PKT-2 TELNET trace.

Fig. 7 shows the results of the comparison. In general the
agreement is quite good, though the models have slightly
higher varjance than the trace data for M > 10%. We conclude
that FULL-TEL faithfully captures TELNET originator traffic,
except to be a bit burstier on time scales above 10 s. As a
final note, we also tested the model’s fit to the LBL PKT-1
and PKT-3 TELNET traces; the results were similar.

VI. FTPDATA CONNECTION ARRIVALS

This section investigates arrival processes for FTP traffic.
Modeling FTP is particularly important because FTPDATA
connections currently carry the bulk of the data bytes in wide
area networks [6]. Section III showed that while FTP session
arrivals can be modeled as Poisson processes, this is not the
case for FTPDATA connection arrivals. This section shows
that FTPDATA connections within a session are clustered in
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bursts, and that the distribution of burst sizes in bytes is quite
heavy-tailed; half of the FTP traffic volume comes from the
largest 0.5% of the FTPDATA bursts. These large bursts are
likely to completely dominate FTP traffic dynamics.

In this paper, we do not attempt to model FTPDATA
packet arrivals within a connection. Unlike TELNET connec-
tions, where the originator packet arrival process is largely
determined by the packet generation pattern at the source,
the packet arrival process for an FTPDATA connection is
largely determined by network factors such as the available
bandwidth, congestion, and details of the transport-protocol
congestion control algorithms. Previous studies have found
that FTPDATA packet interarrivals are far from exponential
[127; this is not surprising, since the above network factors
lead to a process quite different from memoryless arrivals.

To begin, section IIl showed that FTPDATA connection
arrivals are not well-modeled as Poisson. Each FTP session
spawns a number of FTPDATA connections; one key question
is how these connections are distributed within the duration
of the FTP session.

We computed the distribution of spacing between FTPDATA
connections spawned by the same FTP session for six datasets:
LLBL-1, LBL-5, LBL-6, LBL-7, DEC-1, and UCB. Here,
“spacing” refers to the amount of time between the end of
one FTPDATA connection within a session and the beginning
of the next. Fig. 8 plots the results. In each case the upper tail
of the distribution is much heavier than exponential (the x-axis
is logarithmic), and is better approximated using a log-normal
or log-logistic distribution. Furthermore, all of the distributions
show inflection points at spacings between 2 and 6 s, indicating
bimodality. We conjecture that spacings shorter than these
points reflect sequential FTPDATA connections due to multiple
transfers (the FTP “mget” command) or a user issuing a
“list directory command” very shortly followed by a “get.”
Such closely-spaced connections might well be interpreted as
corresponding to a single “burst” of file-transfer activity. We
somewhat arbitrarily chose a spacing of < 4 s (the dashed
vertical line) as defining connections belonging to the same
burst , and we note that such spacings are not inordinately
larger than the 1-2 s spacings that can occur internal to a single
FTPDATA connection due to TCP retransmission timeouts.
Here, “somewhat arbitrarily” means that, for example, using
a cutoff spacing of 2 s instead (which actually slightly better
delimits the two modes of activity) results in virtually identical
results as those discussed in the remainder of this section.
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Fig. 9. Percentage of all FTPDATA bytes due to largest 10% FTPDATA
bursts.

With this definition of a burst of FTPDATA connections,
we analyzed the same datasets to measure the distribution of
the number of bytes transferred during a single connection
burst. The distribution proves to be remarkably heavy-tailed.
Fig. 9 shows the percentage of all FTPDATA bytes (y-axis)
due to the largest 10% of the FTPDATA bursts (z-axis). The
numbers in parentheses in the legend give the total number of
FTPDATA bursts occurring during each trace. The first vertical
line marks the upper 0.5% of the FTPDATA bursts, and the
line to its right, the upper 2%.

The key point to draw from this figure is that the upper
0.5% tail of the FTPDATA bursts holds berween 30bytes. Thus,
at any given time FTP traffic will most likely be completely
dominated by a single or small handful of bursts . Note that
this phenomenon is present in all of the connection datasets
we studied. The dataset with the least heavy tail is UK (shown
in the figure), which still held 30% of the data bytes in the
upper 0.5% tail and 55% in the 2% tail. The NC dataset lies
about halfway between UK and the others in the figure, and
the remainder lie within the bounds of the others shown in
the figure.

This finding means that for many aspects of network
behavior, modeling small FTP sessions or bursts is ir-
relevant; all that matters is the behavior of a few huge
bursts. The sizes and durations of these bursts will vary
considerably from one time to another; but they will be
present. We also note that our finding that the size of
an FTPDATA burst has a heavy tail matches a survey
conducted by Irlam [24] of the sizes of files in 1,000
file systems comprising 12 million files and 250 GB
of data: 1.9% of the files accounted for 71% of the bytes,
and 0.5% accounted for 54% of the bytes.

We performed fitting of the upper tail of the distribution of
data bytes per FTPDATA burst and found that the upper 5%
tail fits well to a Pareto distribution with 0.9 < 8 < 1.4 [34].
As the Pareto distribution is heavy-tailed (see Appendix B,
this agrees with our findings in Fig. 9. In contrast, the upper
0.5% tail of an exponential distribution always holds about
3% of the entire mass of the distribution, regardless of the
distribution’s mean.

Figs. 10 and 11 graphically illustrate the dominance of the
upper FTPDATA-burst tail. The four plots in Fig. 10 show
the FTPDATA traffic rate in bytes/minute for the LBL PKT-1,
PKT-2, PKT-3, and PKT-5 datasets, and in Fig. 11 the same is
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Fig. 10. Proportion of LBL PKT FTPDATA traffic due to largest 2%
(shaded) and 0.5% (black) connection bursts.

shown for the DEC WRL datasets. The shaded areas represent
traffic contributed by the largest 2% of the bursts, and the
black areas the largest 0.5%. The numbers in parentheses give
the number of bursts and FTPDATA connections comprising
the 2% burst upper-tail. (For example, the upper 2% tail of
the PKT-1 bursts was made up of 7 bursts consisting of a
total of 19 FTPDATA connections, while for WRL-2 this
tail was made up of 16 bursts and 1,796 connections.) We
see that sometimes bursts contain many separate connections
and sometimes not. Indeed, the distribution of the number of
connections per burst is well-modeled as a Pareto distribution.
For example, a single burst in the LBL-7 dataset was made
up of 979 separate FTPDATA connections.

For PKT-1 (364 bursts) and PKT-3 (552 bursts), the upper
2% and 0.5% tails hold around 50% and 15% of all the traffic;
for PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% and 60%.
The large degree of difference between PKT-1/PKT-3 and
PKT-2/PKT-5 illustrates how volatile the upper-tail behavior
is; a trace comprising 400 bursts (and substantially more FTP-
DATA connections) might well be completely dominated by 2
of the bursts, or it might not, since 2 is a very small sample
of the upper-tail behavior. Thus we are left in the difficult
position of knowing that upper-tail behavior dominates traffic,
but with such small numbers of bursts that we cannot reliably
use large-number laws to predict what we are likely to see
during any given trace. Furthermore, the PKT-2 and PKT-5
bursts were not geographically anomalous, either: the largest
PKT-2 burst was to a government site in Colorado, and the
largest PKT-5 burst was to a commercial site in Washington
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state. These sites are about 1,500 km and 1,000 km distant
from LBL, respectively.

For the DEC datasets, the difference in the size of the burst
tails is not so pronounced: in WRL-1 (971 bursts), WRL-3
(2,161 bursts), and WRL-4 (2,100 bursts) the 2% and 0.5%
tails hold 54-70% and 33-42% of all the traffic, while for
WRL-2 (788 bursts) they hold 45% and 18%. The lesser degree
of difference between the datasets is what we would expect:
since the datasets have considerably more bursts than their
LBL counterparts, large-number laws become more reliable in
predicting the size of the tails.

We would also like to know whether the arrivals of the
upper-tail bursts can be modeled as a Poisson process, as that
would provide a first step toward predicting their effect on
network traffic. We analyzed the 199 upper-0.5%-tail LBL-6
bursts, first removing effects due to daily variation in traffic
rates by looking at interarrivals in terms of number of interven-
ing bursts instead of seconds. We found that the dataset failed
the statistical test (Appendix A) for exponential interarrivals
at all significance levels. Thus, caution must be used if
approximating large-burst arrivals using a Poisson process;
further analysis is needed to model the burst-clustering.

VII. LARGE-SCALE CORRELATIONS AND
POSSIBLE CONNECTIONS TO SELE-SIMILARITY

We have argued in the previous sections that on any time-
scale smaller than user-session arrivals, modeling wide area
TCP traffic using Poisson processes fails to faithfully capture
the traffic’s dynamics. Recent work [28] shows that local-
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area Ethernet traffic (and perhaps wide area TCP traftic) is
much better modeled as a self-similar process, which displays
substantially more burstiness over a wide range of time scales
than do Poisson processes.

In this section we discuss the degree of “large-scale cor-
relation” present in the LBL PKT traces of TELNET traffic,
and the LBL PKT and DEC WRL traces of FTPDATA traffic
and aggregate wide area traffic. We also consider the evidence
for whether such correlation is well modeled using self-
similar processes. We begin with a discussion of the concepts
of “large-scale correlation,” “long-range dependence,” and
“self-similarity.” We next give an overview of two existing
methods for generating truly self-similar traffic, along with a
new method for producing “pseudo-self-similar” traffic. We
then discuss how the traffic models developed in this paper
might match these methods. We finish with a preliminary
assessment of the possible self-similarity of general wide
area traffic. We find the evidence inconclusive, though the
traffic clearly exhibits large-scale correlations inconsistent with
Poisson processes.

A. Definitions

We use the term “large-scale correlation” as an informal
way of describing correlations that persist across large time
scales. For example, the lower right plot in Fig. 10 shows a
40 min burst of highly correlated traffic.

A related, more precise notion of sustained correlation
is that of “long-range dependence.” A stationary process is
long-range dependent if its autocorrelation function r(k) is
nonsummable (i.e., >, r(k) = oc) [9]. Thus, the definition of
long-range dependence applies only to infinite time series.

The simplest models with long-range dependence are self-
similar processes, which are characterized by hyperbolically-
decaying autocorrelation functions. Self-similar and asymptot-
ically self-similar processes are particularly attractive models
because the long-range dependence can be characterized by a
single parameter, the Hurst parameter (which can be estimated
using Whittle's procedure [21], [28]).

In the following sections, we look at ways in which long-
range dependence in general, and self-similarity in particular,
might arise in wide area network traffic. An important point
to bear in mind is that, even if the finite arrival process
derived from a particular packet trace does not appear self-
similar, if it exhibits large-scale correlations suggestive of
long-range dependence then that process is almost certainly
better approximated using a self-similar process than using
Poisson processes. Thus, we believe that self-similar modeling
is a promising successor to Poisson modeling. It may not be ex-
actly right, but given our current understanding of networking
phenomena, it appears in any case a good approximation.

B. Producing Self-Similar Traffic

There are several methods for producing self-similar traffic
that could account for self-similarity in wide area TCP traffic.
As discussed in [28], self-similar traffic can be produced by
multiplexing ON/OFF sources that have a fixed rate in the ON

periods and ON/OFF period lengths that are heavy-tailed (see
Appendix B).

A second method for generating self-similar traffic that
could fit TCP waffic is an M/G/oo queue model, where
customers arrive according to a Poisson process and have
service times drawn from a heavy-tailed distribution with
infinite variance [9], [28]. In this model, X; is the number
of customers in the system at time ¢. The count process
{X:t}t=0,1,2,. is asymptotically self-similar (see Appendix D
for further discussion). The M/G/co model implies that
multiplexing constant-rate connections that have Poisson con-
nection arrivals and a heavy-tailed distribution for connection
lifetimes would result in self-similar traffic.

We investigated an additional method of producing arrival
processes that appear to some extent self-similar. This method
involves constructing arrivals using i.i.d. Pareto interarrivals
with 8 =~ 1, and then considering the corresponding count
process (the number of arrivals in consecutive intervals). The
goal behind the method is to explore how a simple model
of TELNET traffic might lead to self-similarity. We refer to
this method as “pseudo-self-similar” because while the traffic
it generates has large-scale correlations and the “visual self-
similarity” property [28] over many time scales, we show in
Appendix B that the traffic generated is not actually long-range
dependent (and thus not self-similar).

C. Relating the Methods to Traffic Models

1) TELNET: As explained in [28], straight lines on
variance-time plots with slopes more shallow than —1, such
as that for the PKT-2 TELNET trace in Fig. 5, are suggestive
of self-similarity. In general, the slope of an arrival process’s
variance-time plot is a function of the process’s autocorrelation
function [9], and a long-range dependent process will exhibit
slowly-decaying variances on such a plot. That is, the variance-
time plot will decline in a more shallow fashion than with siope
—1, though not necessarily in a straight line. An important
point is that such slow decline can also occur due to the
presence of nonstationarity.

In addition to looking at variance-time plots of the TELNET
traffic, we also used Whittle’s procedure [21,28] and Beran’s
goodness-of-fit test |2] to gauge the agreement between the
traffic and the simplest type of self-similar process, fractional
Gaussian noise [3]. All of the results are consistent with
self-similarity on scales of tens of seconds or more.

We postulate that two different mechanisms contribute to the
apparent self-similarity of TELNET traffic. On smaller time
scales, apparent self-similarity might arise from the fact that
within individual TELNET connections, packet interarrivals
are well modeled as i.i.d. Pareto (Section [V). Thus, individual
TELNET connections match the i.i.d. Pareto method of gener-
ating pseudo-self-similar traffic that appears self-similar over
a range of time scales (Appendix C). On larger time scales, we
note that our source model of TELNET connections presented
in Section V in some respects matches the M /G /oo model
described in the previous section. TELNET connection sizes
in packets have a long-tailed [38] distribution, in that the tail
function of a log-normal distribution decreases more slowly
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than any exponential function. While we show in Appendix E
that the M/G/oc queue with log-normal service times does
not result in long-range dependent or self-similar traffic, the
difference in tail weight between a log-normal distribution and
a Pareto distribution may be small enough that over the time
scales of interest (seconds to minutes) the traffic still appears
self-similar.

Put together, these models of TELNET traffic suggest why
the traffic might appear self-similar (or at least long-range
dependent) over many time scales. While individually the
models fall short of proving self-similarity, it could be the
case that the combination of i.i.d. Pareto interpacket times and
the M/G/co effect due to multiplexing makes TELNET traffic
truly self-similar. At a minimum, these models explain why the
traffic exhibits large-scale correlations. Further work is needed
for a definitive statement regarding actual self-snrmlanty

2) FTP: Like the model of TELNET jc discussed in the
previous section, our model of FTP traffic! ‘also fits in some
respects to the M/G/loo model of Poisson mfpvals with heavy-
tailed lifetimes. The distribution of bytes per FTPDATA burst
is heavy-tailed (Section VI), and FTP sessions have Poisson
arrivals (Section ). Over larger time scales the packet
arrival process within an FTPDATA burst can be plausibly
approximated as constant-rate. If we approximated FTPDATA
burst arrivals as Poisson (a bit of a stretch, af shown in Section
III above), and assumed that each FTPD, , A burst received
the same average rate, then multiplexed traffic would fit
the M/G/oo model above, and should be self-similar.

It turns out, though, that variance-time plots, Whittle’s
procedure, and goodness-of-fit tests of our FTP traces all
suggest that our FTPDATA traces are not well-modeled as frac-
tional Gaussian noise, although the heavy-tailed distribution
of FTPDATA bursts clearly leads to large-scale correlations.
The sole exception to this finding is the DEC WRL-3 trace,
for which the tests are consistent with seif-similarity at time
scales of 1 s or greater.

One reason the FTP traces might not be well-modeled as
fractional Gaussian noise is that the traces exhibit extremely
high burstiness, including lengthy periods during which there
is no FTP traffic. These “lulls” mean that the marginal dis-
tribution function of the arrival process has a large peak
at zero arrivals. Since fractional Gaussian noise is & form
of Gaussian process, its marginal distribution is normal, and
cannot accommodate such a peak. It is still possible that FTP
traffic is well-modeled using different self-similar processes; or
that it instead is not weill-modeled as self-similar. In this paper
we do not try to resolve this issue, but limit our discussion
to the interplay between mechanisms affecting FTP traffic
dynamics and large-scale correlations in the traffic.

Unlike TELNET traffic, where the timing of packets gener-
ated at the source is reasonably close to the timing of the same
packets transmitted on the network, the timing of FTPDATA
packets transmitted on the network is intimately related to
the dynamics of TCP’s congestion control algorithms. The
following paragraphs discuss several ways that, due in part
to the effects of TCP, multiplexed FTP traffic differs from
the M/G/oo model of self-similar traffic with constant-rate
connections. While these factors could account for our FTP
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traces not appearing statistically self-similar, they do not imply
the absence of long-range dependence.

Unlike the M/G/oo model, which best fits an environment
where all connections have the same fixed constant rate,
different FTP connections have quite different average rates,
and within a single FTP connection the average rate varies
over time. TCP’s congestion control algorithms increase the
TCP congestion window to probe for additional bandwidth,
and reduce the congestion window again in response to con-
gestion (packet drops). TCP’s window flow control has several
separate effects on the traffic pattern for an individual FTP
connection. First, over intervals less than a roundtrip time the
FTP connection does not have a constant rate; each packet is
sent only after the TCP source receives an acknowledgment for
an earlier packet. Second, if there is congestion in the network,
then an FTP connection does not have a constant rate even over
longer time intervals; the average rate over a roundtrip time
varies as the TCP congestion control window varies. Third,
whether or not there is congestion in the network, different
FTP connections will have different average rates, depending
on such factors as the TCP window and packet sizes, the
connection’s roundtrip time, and the queuing encountered in
the network. These factors give rise to serious discrepancies
between our trace data and the M/G/oo model.

One way to incorporate the effect of limited bandwidth
into the M/G/oo model would be to explore a model of an
MIG/k queue instead of an M/G/oo queue. In an M/G/k
queue, because there are only k servers, the actual arrival
times of individuals at a server would occasionally have to be
delayed until there was available capacity. While this limited
capacity would have the effect of reducing the fit of the
multiplexed traffic to a self-similar model, it does not eliminate
the underlying large-scale correlations in the M/G/oo model.
However, the M/G/k model as applied to FTP connections .
assumes that all active connections have the same constant
rate, and this is not the case in actual FTP traffic.

Another discrepancy between the M/G/co model and our
link traces concerns the effect of FTP traffic competing with
other families of traffic on a congested link. The four main
classes of traffic in our link traces were TCP, Mbone (primarily
multicast UDP audio traffic), Domain Name System requests
and replies (UDP-based), and DECnet. Unlike TCP, the UDP
protocol does not incorporate congestion-avoidance mecha-
nisms. Therefore, when TCP-based FTP traffic is competing
for bandwidth with Mbone UDP sources, only the FTP traffic
will adjust to fit the available bandwidth., The UDP traffic
will continue unimpeded. The effect of this interaction on
the overall structure of FTP traffic remains an open ques-
tion.

D. Large-Scale Correlations in General Wide Area Traffic

We finish with a preliminary look at whether wide area traf-
fic multiplexed over different protocols appears self-similar.
Fig. 12 shows variance-time plots for all of the LBL PKT
traces listed in Table II. Here, the unaggregated process
(M = 1) corresponds to observing the packets arriving during
each 0.01 s interval.
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Fig. 12, Variance-time plot for all TCP / all link-level packet arrivals in the

LBL PKT datasets.

Recall that the first three LBL PKT traces captured all TCP
packets for two hours, and the last two captured all wide area
packelts appearing on the gateway Ethernet for one hour. The
first three traces consist of between 1.7 and 2.4 million packets,
and the last two traces each have around 1.3 million packets.
The corresponding rates of packets/hour are above those of the
“low hours” in [28], so we would hope to find that the traces
exhibit exact self-similarity.

We see in Fig. 12 that PKT-4 and PKT-5, the full link-level
traces, both yield straight lines with shallow slope, consistent
with asymptotic self-similarity for M > 10 (0.1 s). For
the TCP traces, PKT-1 is concave down for small and large
M , inconsistent with exact self-similarity, PKT-2 appears
consistent with asymptotic self-similarity for M > 103 (10
s), and PKT-3 has a straight section between M = 10 and
M = 103, but not before or after, also inconsistent with exact
self-similarity.

In contrast, use of Whittle's procedure and goodness-of-fit
tests suggest that the link-level PKT-4 trace and the TCP PKT-
1 and PKT-3 traces are consistent with fractional Gaussian
processes, while the link-level PKT-5 trace and the TCP
PKT-2 trace are not. As Fig. 10 shows, the FTP traffic in
the PKT-5 and PKT-2 traces is heavily dominated by a few
large FTPDATA bursts. Thus, while large-scale correlations
are clearly present in these traces, it might be difficult to
characterize the correlations over the entire trace with a single
Hurst parameter.

Fig. 13 shows the same sort of variance-time plot for the
DEC WRL datasets listed in Table II. The least active of the
WRL datasets exceeds the most active in [28], so we would
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Fig. 13. Variance-time plot for all link-level packet arrivals in the DEC WRL
datasets.

again expect to find exact self-similarity. The variance-time
plots for WRL-2 and WRL-4 are encouraging in this regard,
lying in essentially straight lines for time scales of 0.1 s and
higher. WRL-3 lies in a straight line at time scales of | s and
higher, while WRL-1 does so only at 10 s and higher. But of
these datasets, Whittle's procedure and Beran’s goodness-of-
fit test indicate that only WRL-3 is consistent with fractional
Gaussian noise (at time scales of | s and greater). The others,
while clearly exhibiting large-scale correlations, clo not appear
to be well-modeled by a simple self-similar process. This could
be due to distorting effects of short-range dependence, better
fits to other self-similar models such as fractional ARIMA
processes [3], or the presence of nonstationarity. WRL-3 was
also the only dataset whose FTP traffic appears consistent
with fractional Gaussian noise, though we have not assessed
whether this coincidence is significant. Clearly, further work
is required to fully understand the correlational structure of
wide area traffic.

We end with a comment regarding the balance between link-
level modeling and protocol-specific modeling. One approach
to investigating self-similarity is to model multiplexed link
traffic as self-similar, without attempting to model individual
connections. This approach could have many uscs in simula-
tions and in analysis. For example, self-similar traffic could
be used instead of Poisson traffic to model cross-traffic, or
self-similar traffic could be used in simulations investigating
link-sharing between two different classes of traffic.

However, for many simulations, the simulator needs to
model individual sources. In particular, it is only from mod-
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eling of individual sources, and a direct implementation of
TCP’s congestion control algorithms, that a simulation can
take into account the effects of the TCP algorithms in different
environments. TCP’s congestion control algorithms contribute
long-term oscillations to the traffic pattern for a particular
connection, as the TCP congestion window changes over
the lifetime of the connection. In addition, TCP’s window
fiow control contributes a shorter-term periodicity to the
traffic pattern, as each packet is transmitted in response to
an acknowledgment returned for an earlier packet [16]. It
is particularly important to take into account these effects
in simulations investigating changes to either TCP, the gate-
way scheduling algorithms, or the network’s packet-dropping
algorithms.

VIII. IMPLICATIONS

This paper’s findings are summarized in the Introduction.
In this section we conclude with a look at the implications of
our results.

Several researchers have previously discussed the implica-
tions of long-range dependence (burstiness across different
time scales) in network traffic. Modeling TCP traffic using
Poisson or other models that do not accurately reflect the long-
range dependence in actual traffic will result in simulations and
analyses that significantly underestimate performance mea-
sures such as average packet delay or maximum queue size.

Reference [18] examines the burstiness of data traffic over
a wide range of time scales, and discusses the impact of
this burstiness on network congestion. Their conclusions are
that congested periods can be quite long, with losses that
are heavily concentrated; that, in contrast to Poisson traffic
models, linear increases in buffer size do not result in large
decreases in packet drop rates; and that a slight increase in
the number of active connections can result in a large increase
in the packet loss rate. They suggest that, because the level
of busy period traffic is not predictable, it would be difficult
to efficiently size networks to reduce congestion adequately.
They observe that, in contrast to Poisson models, in reality
“traffic ‘spikes’ (which cause actual losses) ride on longer-
term ‘ripples’, that in turn ride on still longer-term ‘swells’.”
They suggest that a filtered variable can be used to detect the
low-frequency component of congestion, giving some warning
before packet losses become significant.

Reference [28] discusses some additional implications of
long-range dependence of packet traffic. These include an ex-
planation of the inadequacy of many commonly-used notions
of burstiness, and the somewhat counterintuitive observation
that the modeling of individual connections can gain insight
from an understanding of the fundamental characteristics of
multiplexed traffic. In this paper, observations of the char-
acteristics of multiplexed traffic motivated our revisitation of
models for individual connections; indeed, we originally set
out to challenge the notion that wide area traffic might be
self-similar, and have come full circle.

Reference [21] examines the long-range dependence of
variable-bit-rate (VBR) video traffic. Their empirical measure-
ments of VBR traffic show strong low-frequency components,
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and they propose source models for video traffic that display
the same long-range dependence. Given the likelihood that
VBR traffic will soon comprise a significant fraction of Mbone
traffic, we soon will have wide area traffic of which a substan-
tial portion is perforce self-similar, simply due to the source
characteristics of its individual connections.

There are some additional respects in which the burstiness
and long-range dependence of aggregate traffic can affect
traffic performance. Consider a link with priority scheduling
between classes of traffic, where the higher priority class
has no enforced bandwidth limitations (other than the link
bandwidth itself). In such a partition, interactive traffic such
as TELNET might be given priority over bulk-data traffic such
as FTP. If the higher priority class has long-range dependence
and a high degree of variability over long time scales, then the
bursts from the higher priority traffic could starve the lower
priority traffic for long periods of time.

A second impact of the long-range dependence of packet
traffic concerns classes with admissions control procedures
that are based on measurements of recent traffic, rather than
on policed traffic parameters of individual connections [7]. As
has been shown by numerous researchers, such admissions
control procedures could lead to a much more effective use
of the available bandwidth [39]. Nevertheless, if the measured
class has high burstiness consisting of both a high variance and
significant long-range dependence, then an admissions control
procedure that considers only recent traffic could be easily
mislead following a long period of fairly low traffic rates. (This
is similar to a situation in California geology some decades
ago. Because there hadn’t been a large earthquake for a long
time, people began to believe it unlikely that there would be
another one.)

In summary, we should abandon Poisson-based modeling
of wide area traffic for all but user session arrivals. For
TELNET traffic, we offer a faithful model of originator traffic
parameterized by only the hourly connection arrival rate.
Modeling the TELNET responder remains to be done. For
FTP traffic, we have shown that modeling should concentrate
heavily on the extreme upper tail of the largest bursts. A wide
area link might have only one or two such bursts an hour, but
they tend to strongly dominate that hour’s FTP traffic. Finally,
our look at multiplexed TCP and all-protocol traffic suggests
that anyone interested in accurate modeling of wide area traffic
should begin by studying self-similarity.

APPENDIX A
METHODOLOGY FOR TESTING FOR POISSON ARRIVALS

To test whether a trace of connection arrivals corresponds to
a nonhomogeneous Poisson process, we first pick an interval
length I over which we hypothesize that the arrival rate does
not change. If the trace spans a total of T' time units, we divide
the entire trace into N = 7'/I intervals each of length 1. We
then separately test each interval to see whether the arrivals
during the interval are consistent with arrivals from a Poisson
process with rate fixed so that the expected number of arrivals
is the same as the number actually observed. Thus, we reduce
the problem of testing for nonhomogeneous Poisson arrivals to




PAXSON AND FLOYD: WIDE AREA TRAFFIC: THE FAILURE OF PDISSON MODELING 239

that of testing a number of intervals for homogeneous Poisson
arrivals.

Poisson arrivals have two key characteristics: the interarrival
times are both expenentially distributed, and independent. We
discuss testing for each in turn.

For each interval, we test the interarrivals for an exponential
distribution using the Anderson-Darling (A?) test. recom-
mended by Stephens in [10] because it is generally much
more powerful than either of the better-known Kolmogorov-
Smirnov or y? tests. A? is also particularly good for detecting
deviations in the tails of a distribution. A2 is an empirical
distribution test; it looks at the entire observed distribution,
rather than reducing the distribution into bins as is required
by x%.

We associate a significance level with each A? test. For
example, a lest with a significance level of 5% will correctly
confirm the null hypothesis (if it is correct) with probability
0.95; with probability 0.05, the test will erroneously declare
the hypothesis false. Thus, the significance level indicates the
proportion of “false negatives” (in general it is difficult to
assess the corresponding percentage of “false positives™). We
can use significance-level testing as follows. Supposc we test
N intervals for exponential interarrivals and K of them pass
the A? test at the 5% significance level. If the null hypothesis
is correct, then the probability of K successes in N trials will
be given by a binomial distribution with parameter p = .95.
If we find that the probability of observing K successes was
less than 5%, then we conclude with 95% confidence that the
arrival process is inconsistent with exponential interarrivals.

There are two important details for correctly applying
and interpreting the A2 test. The first is that estimating the
parameters of our model from the data to be tested alters
the significance levels of the A? test (this applies to our
null hypothesis above. in which we derive the mean of the
exponential fit from the data rather than knowing it « priori).
The second is that the number of data points tested also
alters the significance levels. In general, the more points
tested, the more likely the test will detect an incorrect null
hypothesis. [10[ gives procedures for incorporating both of
these considerations into 42 tests.

We also need to test the interarrivals for independence.
One indication of independence is an absence of significant
autocorrelation among the interarrivals. Autocorrelation can
be significant in two different ways: it can be too strong in
magnitude, or it can be oo frequently positive or negative.
We address each of these in turn.

Given a time series of 1 samples trom an uncorrelated
white-noise process, the probability that the magnitude of the
autocorrelation at any lag will exceed 1.96//n is 5%. Thus
we can test for independence by observing how often this
occurs and using a binomial test similar to the one outlined
above. (Because for many non-Poisson processes autocorre-
lation among interarrivals peaks at lag one, to keep our test
tractable we restrict it to just the lag one autocorrelation.)

We also apply one further test for independent interarrivals.
If the interarrivals are truly independent. then we would expect
their autocorrelation to be negative with probability 0.5 and
positive with probability 0.5. For Poisson arrivals, then, the

number of positive lag one autocorrelation values should be
binomially distributed with parameter p = 0.5. Given this
assumption, we assess the probability of at least the observed
number of positive values occurring. If its probability is too
low (< 2.5%) then we conclude that the interarrivals are
significantly positively correlated. Similarly, if the observed
number of negative values has probability < 2.5%, then the
interarrivals are significantly negatively correlated.

APPENDIX B
PARETO DISTRIBUTIONS

In this paper the Pareto distribution plays a role both in
TELNET packet interarrivals and in the size of FTPDATA
bursts. This appendix discusses the Pareto distribution and its
occurrence in the physical world.

The classical Pareto distribution with shape parameter 3 and
location parameter « has the cumulative distribution function
[23]:

F@)=PX<z]=1-(a/2)? a.8>0, 2 >a,
with the corresponding probability density function:
f(z) = BaPa=""1,

If B < 2, then the distribution has infinite variance, and if
3 < 1, then it has infinite mean.

The Pareto distribution (also referred to as the power-
law distribution, the double-exponential distribution, and the
hyperbolic distribution) has been used to model distributions
of incomes exceeding a minimum value, and sizes of asteroids,
islands, cities and extinction events [26], [29]. Leland and Ott
also found that a Pareto distribution with 1.05 < 3 < 1.25 is
a good model for the amount of CPU time consumed by an
arbitrary process [27].

In communications, heavy-tailed distributions have been
used to model telephone call holding times [13] and frame
sizes for variable-bit-rate video [21]. The discrete Pareto (Zipf)
distribution [1]:

Plz =n]=1/((n + 1)(n +2)) for n > 0.

arises in connection with platoon lengths for cars at different
speeds traveling on an infinite road with no passing [1, p.
95], [15, p. 40], a model suggestively analogous to computer
network traffic.

Following [28], we define a distribution as heavy-tailed if:

PIX >a)~ecz™ asz — oc,ff >0, (D

By this, we mean that for some ( and some constant ¢, the
ratio P[X > z|/(cx™?) tends to 1 as  — oc. This definition
includes the Pareto and Weibull distributions [13].

A more general definition of heavy-tailed defines a dis-
tribution as heavy-tailed if the conditional mean exceedance
(CME,) of the random variable X is an increasing function
of x [23], where

CME, = E[X - z|X > z].

Using this second definition of heavy-tailed, consider a random
variable X that represents a waiting time. For waiting times



with a light-tailed distribution such as the uniform distribution,
the conditional mean exceedance is a decreasing function of
z. For such a light-tailed distribution, the longer you have
waited, the sooner you are likely to be done. For waiting times
with a medium-tailed distribution such as the (memoryless)
exponential distribution, the expected future waiting time is
independent of the waiting time so far. In contrast, for waiting
times with a heavy-tailed distribution, the longer you have
waited, the longer is your expected future waiting time. For
the Pareto distribution with 8 > 1 (that is, with finite mean),
the conditional mean exceedance is a linear function of z [1,
p. 701:

CME, = z/(8 - 1).

The Pareto distribution is scale-invariant, in that the proba-
bility that the wait is at least 2z seconds is a fixed fraction of
the probability that the wait is at least z, for any = > a.

A related result shows that the Pareto distribution is the only
distribution that is “invariant under truncation from below”
[30], [1]. That is, for the classical Pareto distribution, for
Yy 2> T,

PIX > y|X > zo] = Pl(zo/a)X >y]. @

Hence, the conditional distribution is also a Pareto distribution,
with the same shape parameter 3 and new location parameter
o' = zo. We make use of this property in the next section.
Finally, we note that Mandelbrot argues that because the
asymptotic behavior of Pareto distributions with 3 < 2 is
unchanged for a wide variety of filters (including aggregation,
maximums, and the weighted mixture of distributions), and
because this is true of no other distribution, this invariance
could in some respects explain the widespread observance of
Pareto distributions in the social sciences [29], [30, p. 344].

APPENDIX C
PARETO INTERPACKET TIMES

In this section we give some intuition for the observed
long-range dependence of traces of TELNET traffic. Recall
that the main body of the distribution of TELNET interpacket
times fits a Pareto distribution with shape parameter 0.9,
while the upper 3% tail fits a Pareto distribution with shape
parameter 0.95. In this section we consider packets generated
by a single connection using ii.d. Pareto interpacket times,
for a Pareto distribution with shape parameter 3 and location
parameter a. We then consider the associated count process
X = {X;}i=0,1,2,. where X; is the number of packets
arriving during the ith time interval, each time interval being
a bin of width b. We give an intuitive explanation for the
observed long-range dependence of the count process by
looking at the properties of the point process of packet arrivals,
concentrating on the interpacket times. We show that while this
process is not truly long-range dependent, when observed over
a finite time scale it exhibits properties we associate with self-
similar processes. In particular, we show that aggregating the
process by increasing b does not change the dominant features
of the process.
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Let {X; (b)} denote the count process associated with
counting arrivals usmg bins of size b. We are interested in
the behavior of {X; ) } for different sizes of b.

Rather than analyzing relationships between the precise
values of different bins, we simplify the problem by Just
looking at whether, for a given i, X; ® =0 or X; ®
We refer to the former as an empty bm and the lattcr as an
occupied bin. Further, for j > i , we call X ® ja burst of
occupied bms 1f for all k, i < k < j, bin % is occupied.
Similarly, X J is a lull if all the corresponding bins are
empty. Sample paths of X are made up of alternating bursts
and lulls.

We are interested in the relative predominance of bursts
versus lulls, as we change the bin size b and the Pareto shape
parameter (3.

Suppose bin ¢ is occupied and bin ¢ — 1 is empty. Then
bin 7 begins a burst. Associated with each bin is a set of
Pareto interarrival times, beginning with I,, the arrival that
first fell into the bin. For bin i, we know that I, > b
because the previous bin is unoccupied. Consider now the
subsequent interarrivals Iniq...In4 contributing to the
burst of consecutive occupied bins. Clearly each of these
interarrivals must be < 2b, as otherwise they will skip a bin
and end the burst. Furthermore, any interarrival in the range
b < I < 2b has the potential of skipping a bin, depending on
where we are positioned in the current bin prior to the arrival.
Thus, any interarrival I > 2b definitely will end the burst, and
I > b possibly will end the burst.

Since the interarrivals are independent, we have a situation
similar to that of a geometric random variable: for any given
interarrival, it will with probability p, terminate the burst, and
with probability 1—p, continue the burst. Here p; is a function
of exactly where we are in the current bin, but is bounded as

follows:
(&) <n<(3)

where a and {3 are the Pareto location and shape parameters,
and b is the bin width.

We can then bound the expected length of a burst using
the expected value of the geometric random variables that
correspond to the lower and upper bounds in (3). Let B be
the expected number of bins spanned by a burst. It can be
shown that:

b/a, ifB=2b>a,
B =~ { log(b/a), if §=1,b> a,and
€L.V?] ifB=3%

where b > a holds if b — a = b.

Thus, for 8 = 2, as we “widen” our view by choosing b
larger and larger, we will observe longer and longer bursts;
for 8 = 1, the bursts grow longcr with increasing bin size, but
only very slowly; and for 3 = 35, the bursts have a constant
length regardless of the size of the bins (1).

Consider now the length of the lulls separating bursts. Let
L be the length of a lull, and L; be the number of bins (of size
b) spanned by the lull. Each lull is due to a single interarrival
that is possibly greater than 2b and definitely greater than b.
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Due to the Pareto distribution’s invariance to truncation from

below (2), this means that the distribution of L will be stochas-

tically bounded between P(h, ) and P(2b.3), where Pfla, 3)

denotes the Pareto distribution with parameters a and 5.
From this observation, it follows that:

o\ B
2 1
- | = <Py <k]<T—-1(-) .
t (A) < Plly <k <1 (k)

Thus, the distribution of Ly, is invariant with respect to b. That
is, regardless of the time scale over which we view the count
process, the lulls between bursts will “look™ the same.

We now can summarize the behavior of the count process

for varying values of /7.

+ For 3 = 2, the number of bins spanned by the bursts
grows linearly with b, while bins spanned by the lulls
remains constant, so aggregation fairly quickly smoothes
out the main variations of the count process.

e For [ = é the burst lengths are constant across all
tme scales, as are the lull lengths: the process appears
self-similar over all time scales.

» For 8 = L, the burst lengths (in bins) grow only very
slowly (logarithmically). This means that over a large
t:me scale, the predominance of bursts versus lulls re-
mains virtually unchanged: the process appears self-
similar over many time scales.

Figs. 14 and 15 illustrate the “visual self-similarity” [28]

of this process. Each figure plots 1,000 observations of the
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count process corresponding to i.i.d. Pareto interpacket times
for # =1 and a = 1. Nine different random seeds were used
in generating each figure. The first figure corresponds to using
a bin-width of b = 10%, while the second figure uses b = 107.
To the eye, the two sets of arrivals exhibit the same general
activity in terms of alternations of bursts and lulls and the
fairly regular ceiling of activity, though the occupied bins of
the b = 107 arrivals appear to have a higher mean than those
of the b = 10% arrivals. As predicted by the analysis above,
the average number of bins in a burst for b = 107 is somewhat
higher than for b = 10 (a factor of 2.6), while the average
Iull size is virtually the same (a factor of 1.2:. Overall, the
sustained variation even when the process is aggregated by a
factor of 104 is striking.

In general, the process associated with /3 =: 1 is similar
to that of a single TELNET connection’s traffic, which we
model using i.i.d. Pareto interpacket times with 3 = 0.95 for
the upper tail of the distribution. Thus this model explains in
part why TELNET traffic appears self-similar.

We finish with an explanation of why the count processes
associated with 4 = 1 and 3 = L are not. in fact, self-similar,
even though the balance they exhibit between bursts and lulls
suggests they might be. We have shown that the lull length
L is stochastically bounded between two Paret) distributions
with the same shape parameter /3. But for [ < [, the mean of
a Pareto-distributed random variable is infinite. The expected
burst size, on the other hand, is finite. Using these facts, and
viewing the count process’s bursts and lulls as an alternating
renewal process. it follows that, for 3 < 1, once the process
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reaches steady-state, each bin is empty with probability 1
(regardless of the value of b). The autocorrelation function
of the process is thus 0 everywhere, and hence summable,
so the process is not long-range dependent (and so cannot be
self-similar).

Even though the count processes are not strictly self-
similar, an important point remains that, when viewed over
a finite time scale (i.e., before settling into steady-state), the
count process associated with i.i.d. Pareto interarrivals (with
B < 1) appears in many ways like a self-similar process.
Assuming that this likeness persists when the process is
multiplexed, this finding gives an understanding as to why
observed TELNET traffic appears self-similar. The fact that
the count process is not truly long-range depﬁndem does not
imply that TELNET traffic is not truly self-s:mﬂar It may be
that TELNET traffic is truly self-similar but the simplifying
assumptions in our argument (i.i.d. arrivals; no multiplexing)
fail to faithfully model the traffic properties necessary for true
self-similarity.

This argument also shows that it is possible for a process
which is not long-range depeindent to appear to be so over
many time scales. This illustrates some of the dangers of
arguing for true self-similagity (or, more generally, long-range
dependence) based on (necessarily finite) measurements alone,
without a corresponding model from which to argue for self-
similarity analytically.

At the same time, the question of whether a particular (infi-
nite) model based on a finite process is long-range dependent is
only one of the questions we are exploring. Equally important
is whether or not long-range dependent models in general
are useful as parsimonious approximations to particular finite
processes arising in network traffic. Finally, we should not un-
derestimate the value of the fundamental insights and shifts in
focus that come from considering questions of self-similarity
and long-range dependence.

APPENDIX D
THE M/G /oo MODEL FOR
GENERATING SELF-SIMILAR TRAFFIC

This section briefly discusses the M/G/oc model for gen-
erating self-similar traffic [8], [9]. The M/G /oo queue model
considers customers that arrive at an infinite-server queue
according to a Poisson process with rate p. In the count process
{X:}t=0,1,2,.. produced by the M/G/co queue model, X
gives the number of customers in the system at time #. From
[8]. for customers with a service time with distribution function
F, the autocorrelation function (k) for the count process is
as follows:

r(k) = cov{X(t), X(t + k)} = p/:o(l — F(z))dz. &)

A. The M |G /oo Model and the Pareto Distribution

Consider customers with independent service times (or
lifetimes) drawn from the Pareto distribution with location
parameter a and shape parameter G, for 1 < 8 < 2 . From
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(4), the autocorrelation function r(k) is as follows:
o ()
r(k) = - dz
P A z
_ 22 ams

Following [4], the process {X:}1=0,1,2,...
self-similar if

is asymptotically

r(k) ~ kP L(k) as k — oo, 5)
for 0 < D < 1 and L a slowly-varying function.? Thus, for
a>0and 1 < B < 2, the count process of the M/G/oo
model with Pareto lifetimes is asymptotically self-similar, and
therefore long-range dependent.

From [4], the process {X;}i=0,1,2,...
only if

r(k) = 1/2((k + 1)2H

is exactly self-similar

—ok2H + (k _ l)ZH)

for 1/2 < H < 1[4], [9, p. 59]. In thlS case the process
{X:} and the aggregated process {X )} have the same
autocorrelation function. From this result, for Pareto service
times and an arbitrary arrival rate p, the count process of the
MIGloc model is not exactly self-similar.

From [8, p. 138], {X,} has a Poisson marginal distribution
with mean pu, where u is the expected service time. For the
M /G/loo model with Pareto service times, the expected service
time is Ba/(8 — 1), for 8 > 1. Thus, in this case {X;} has a
Poisson marginal distribution with mean pBa/(3 — 1).

APPENDIX E
LOG-NORMAL DISTRIBUTIONS

From [38], the log-normal distribution is called subexponen-
tial because, along with the Pareto and Weibull distributions,
the tail function is subexponential (i.e., decreases slower than
any exponential function). In that paper, the Pareto, log-
normal, and Weibull distributions are all defined as long-tailed.
In this section we show that the log-normal distribution is not
heavy-tailed, according to the definition given in (1).

We use the estimate of the upper tail function for a standard
normal random variable N as

PIN > y) ~ e 2

{14, p. 175]. Thus for X, a log-normal random variable with
scale parameter 1 and shape parameter 1,

PIX >z]~ L esten (6)
- Vv2rlogx

Thus, for some constant c,
e~ log? x/2

>zl ~
PIX 2 a]~c log x

2For a slowly-varying function L, lim,_ oo L{#2)/L{t) = 1 foraliz > 0.
Constants and logarithms are examples of slowly-varying functions.
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So X is only heavy-tailed if for some constant ¢; and some
g >0
I - L]

2~ e loga €98 o2
But we can show that for any n,
log @ €'°5 /2 > ™

for « sufficiently large. (This follows because logz > n,
therefore log® z > n log x. and therefore ¢log®« 5 gn ) So the
log-normal distribution is not heavy-tailed. Note that the log-
normal distribution is not heavy-tailed even if we expand our
definition of heavy-tailed to include slowly-varying functions,
as in (5).

A. The MG /> Model and the Log-Normal Distribution

We consider the M/G/~ model for service times with
distribution function F. It is already known (Appendix C) that
it I is a Pareto distribution, then the count process from the
M ;G /oc model is asymptotically self-similar, and therefore
long-range dependent. [n this section we show that if the
lifetimes have a log-normal distribution, then the count process
from the M /G /oc model is not long-range dependent.

From (4) and (6), we have

1 ~log® /2
(27()(—,545 e =/ 2 4y

X
r(k) ~p / log 1y
Sk

!

¢
~ —
dx.
(2m)t/2 // log x atles x)/2

The count process from the M/G/> model with log-
normal lifetimes is long-range dependent only if S g TR
is infinite. For large K,

S S L
Z r(k) ~ Z (2:)172 /k log 2 (o8 =)/2 de

k=H

p L e 1
~ (')ﬂ)l/'*" Z Z l()g_',.r,-:l'(l"'”)/2

- ke K e=k

i (x— K +1)
~ log o pllogx)/2’

1

P
(271-)1/'2

Because S0, 1/a” is finite and
Lasr==1

(0 — K +1) o < 1
log a gtlogv1/2 = glloga)/2 = g2

for x sufficiently large, then 3"77 ;. (k) is finite, and the count
process of the M /G /> model with log-normal lifetimes is
not long-range dependent.

This analysis shows that, in the limit, the behavior of
the M/G/oc queue completely changes if the service times
are log-normal and not Pareto. An important open question,
however, is over what ~ort of finite time scales are these
differences actually significant?
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