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Abstract Phase-type distributions constitute a very
versatile class of distributions. They have been used in a
wide range of stochastic modelling applications in areas
as diverse as telecommunications, finance, biostatistics,
queueing theory, drug kinetics, and survival analysis.
Their use in modelling systems in the healthcare in-
dustry, however, has so far been limited. In this paper
we introduce phase-type distributions, give a survey of
where they have been used in the healthcare industry,
and propose some ideas on how they could be further
utilized.
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1 Introduction

Since their introduction by Neuts [38] in 1975, phase-
type (PH) distributions have been used in a wide range
of stochastic modelling applications in areas as diverse
as telecommunications, finance, teletraffic modelling,
biostatistics, queueing theory, drug kinetics, reliability
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theory, and survival analysis (see Fackrell [12, Chapter
1] for a survey). PH distributions have enjoyed such
popularity because they constitute a very versatile
class of distributions defined on the nonnegative real
numbers that lead to models which are algorithmically
tractable. Their formulation also allows the Markov
structure of stochastic models to be retained when they
replace the familiar exponential distribution.

Erlang [11], in 1917, was the first person to ex-
tend the exponential distribution with his “method of
stages”. He defined a nonnegative random variable
as the time taken to move through a fixed number
of stages (or states), spending an exponential amount
of time with a fixed rate in each one. Nowadays we
refer to distributions defined in this manner as Erlang
distributions. Neuts [38] generalized Erlang’s method
of stages by defining a PH random variable as the time
spent in the transient states of a finite-state continuous-
time Markov chain with one absorbing state, until
absorption.

Prior to Neuts’s work much of the research in
stochastic modelling and queueing theory relied on
random variables of interest and service times being
modelled by the exponential or Erlang distributions,
and point and interarrival processes by the Poisson or
Erlang renewal processes. PH distributions constitute
a much more useful class of distributions for a number
of reasons. First, they form a versatile class of distri-
butions that are dense in the class of all distributions
defined on the nonnegative real numbers. That is, they
can approximate any nonnegative distribution arbitrar-
ily closely (see Asmussen [2, Theorem 4.2]), although
the number of states needed may be large. Second,
since they have a simple probabilistic interpretation in
terms of continuous-time Markov chains, they exhibit
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a Markov structure which enables an easier analysis of
models that use them instead of general distributions.
Lastly, the use of PH distributions in stochastic models
often enables algorithmically tractable solutions to be
found. If PH distributions are used, many quantities
of interest that are used in algorithms to compute per-
formance measures can be expressed simply in terms
of the inverse and exponential of matrices that contain
only real entries. These calculations can nowadays be
done relatively easily using a suitable software package
such as MATLAB r©.

For a comprehensive theoretical treatment of PH
distributions see Neuts [39, Chapter 2]. Latouche and
Ramaswami [29, Chapter 2] is a very readable intro-
duction to the topic. The literature on the theory and
application of PH distributions is vast and both of the
abovementioned books provide extensive bibliogra-
phies. The two entries in the Encyclopedia of Statistical
Science on PH distributions, Shaked and Shanthikumar
[50], and Asmussen and Olsson [4], also provide excel-
lent introductions to the subject.

Over the last two decades PH distributions have
been used to some extent in healthcare modelling, and
their usage has increased over the last two or three
years. However, the extent to which they have been
implemented is somewhat limited. First Coxian (see
Cox [8]) distributions (a subclass of PH distributions)
have been used almost exclusively. Most researchers
have avoided using general PH type distributions be-
cause they present some problems, but at the expense
of developing more versatile models. One particular
problem with general PH representations is that they
are considerably overparameterized, whereas Coxian
representations are not. Fitting Coxian distributions of
the same order to data requires a lot less parameter es-
timations (see Section 4 for a discussion of this aspect).
Second, the healthcare area in which PH (Coxian)
distributions have been used most widely has been in
modelling the length of stay of patients in geriatric
facilities. While this work has been quite good it is
hoped that with this paper PH distributions can be
better understood by modellers and used in a broader
variety of ways in the healthcare sector.

The paper is organized as follows. In Section 2 we
introduce the exponential distribution and continuous-
time Markov chains before formally defining PH
distributions. We include a subsection on fitting PH
distributions. Section 3 contains a detailed discussion
on where PH distributions have been used in the
healthcare industry. In Section 4 we propose some
ways in which PH distributions could be further

utilized in healthcare modelling. The paper concludes
with Section 5.

2 Phase-type distributions

2.1 The exponential distribution

The exponential distribution is ubiquitous in stochastic
modelling, mainly because of its simplicity and ability
to model random lengths of time reasonably well. For
example, it has been used to model the length of stay
in a hospital bed, or the time between presentations
to an emergency department. In this short subsection
we introduce the exponential distribution and list some
of its properties. Refer to Norris [43, Section 2.3] or
Ross [47, Section 5.2] for further information about the
exponential distribution.

A continuous nonnegative random variable T is dis-
tributed according to an exponential distribution with
parameter λ > 0, if its distribution (or cumulative distri-
bution) function, defined for t ≥ 0, is given by

F(t) = P(T ≤ t) = 1 − e−λt. (1)

The density (or probability density) function of T, de-
fined for t ≥ 0, is given by

f (t) = F ′(t) = λe−λt. (2)

The expected value of T, or its mean, is E(T) = 1
λ

, and

its variance is V(T) = 1
λ2 .

The simplicity in using the exponential distribution
in stochastic modelling is not only due to its formulation
in terms of a single parameter λ, but also because of
the so called memoryless property. That is, for s, t ≥ 0,
P(T > s + t|T > t) = P(T > s), see Norris [43, pages
70–71] or Ross [47, pages 201–204]. The memoryless
property enables simple expressions for many perfor-
mance measures of stochastic models that use the ex-
ponential distribution to be given. We also remark here
that the exponential distribution is the only continuous
distribution that exhibits the memoryless property.

While the exponential distribution has been used
extensively in stochastic modelling, its main drawback
is its lack of versatility, being characterized by only
one parameter. We need to seek another, more ver-
satile class of distributions which exhibit some of the
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favourable properties of the exponential distribution.
PH distributions are one such class.

2.2 Markov chains

Before we formally define PH distributions in the next
subsection, we introduce, by way of an example, the
finite-state continuous-time Markov chain, one of the
most powerful tools used in stochastic modelling, see
Norris [43, Chapter 2] or Ross [47, Chapter 6] for
further properties of Markov chains.

Figure 1 shows the state transition diagram for a
finite-state continuous-time Markov chain. The Markov
chain consists of four states labelled 0, 1, 2, and 3.
States 1, 2, and 3 are called transient states, and state
0 an absorbing state. A state is transient if once it has
been reached, the probability of returning to it is less
than one, and a state is absorbing if once it has been
reached the process stops. We choose any of states 0, 1,
2, and 3, according to the probabilities 1

10 , 1
2 , 3

10 , and 1
5 ,

respectively. The probability of being instantaneously
absorbed, that is 1

10 , is known as the point mass at zero.
Suppose that state 1 has been chosen. We spend an
exponentially distributed length of time with parameter
λ = 12 there. This parameter can be interpreted as the
(average) rate of movement out of state 1. Once we
have completed this time we move to either state 0
or state 2 with (average) rates 8 and 4, respectively.
Alternatively, we move from state 1 to state 0 with
probability 8

12 = 2
3 , or to state 2 with probability 4

12 = 1
3 .

If we chose state 0 we stop, but if we chose state 2 we
spend an exponentially distributed length of time with

2/5 1/61/31/10

(absorbing)

8

5

5

4

24

state 0

state 2state 1 state 3
12 10 6

Fig. 1 State transition diagram of a 4-state continuous-time
Markov chain with one absorbing state

λ = 10 there, and so on until absorption. The various
rates have been chosen so that absorption occurs with
probability one.

In order to describe the Markov chain we need three
descriptors.

1. A state space S = {0, 1, 2, 3}.
2. An initial state probability distribution

(α0, α) =
(

1

10

1

3

2

5

1

6

)
(3)

which governs the selection of the initial state, α0

being the point mass at zero.
3. An infinitesimal generator

Q =

⎛
⎜⎜⎝

0 0 0 0
4 −12 8 0
0 5 −10 5
2 4 0 −6

⎞
⎟⎟⎠ (4)

which governs the transitions between states.

The rows (labelled 0, 1, 2, and 3) of Q correspond
to the state we move from, and the columns (labelled
0, 1, 2, and 3) correspond to the state we move to.
The zeroth row consists of all zeros because once we
have reached state 0 (absorption) we stay there. The
remaining diagonal entries are negative and the off
diagonal entries nonnegative, with all row sums equal
to zero. The absorption rates from states 1, 2, and 3 are
4, 0, and 2, respectively. The distribution of time from
start to finish (absorption), in the Markov chain, is said
to have a PH distribution which we formally define in
Subsection 2.3. We also note that, in practice, the point
mass at zero α0 is rarely necessary and is set to zero.

2.3 Phase-type distributions

Consider a continuous-time Markov chain on a finite
state space S = {0, 1, 2, . . . , p} where state 0 is ab-
sorbing. Let the initial state probability distribution

be (α0, α) = (α0, α1, . . . , αp)

(
with

p∑
i=0

αi = 1

)
and the

infinitesimal generator be Q. The random variable that
is defined as the time to absorption, is said to have a
(continuous) PH distribution, see Neuts [39].

The infinitesimal generator for the Markov chain can
be written in block-matrix form as

Q =
(

0 0
t T

)
. (5)

Here, 0 is a 1 × p vector of zeros. The vector t =
(t10, t20, . . . , tp0)

′ (the prime denoting transpose) where,
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for i = 1, 2 . . . p, ti0 ≥ 0, with at least one of the ti0s
positive, is the absorption rate from state i. The p × p
matrix T = [tij] is such that, for i, j = 1, 2, . . . , p, with
i �= j,

tij ≥ 0, (6)

and

tii = −
p∑

j = 0
j �= i

tij, (7)

that is, t=−Te where e is a p×1 vector of ones. The
PH distribution is said to have a representation (α, T) of
order p. The matrix T is referred to as a PH generator.
The point mass at zero α0 is completely determined by
α and therefore does not need to appear in the expres-
sion for the representation. Typically representations
are not unique and there must exist at least one rep-
resentation of minimal order. Such a representation is
known as a minimal representation, and the order of the
PH distribution itself is defined to be the order of any
of its minimal representations.

To ensure absorption in a finite time with proba-
bility one, we require that every nonabsorbing state
is transient. This statement is equivalent to T being
invertible, see Neuts [39, Lemma 2.2.1], or Latouche
and Ramaswami [29, Theorem 2.4.3]. An additional
requirement on the PH representation (α, T) is that
there are no superfluous phases. That is, each phase in
the Markov chain defined by α and T has a positive
probability of being visited before absorption. If this
is the case, then we say that the PH representation is
irreducible, see Neuts [39, page 48]. This condition is
equivalent to the matrix

T∗ = T − (1 − α0)
−1Teα, (8)

being irreducible. For the definition of an irreducible
matrix see Seneta [49, pages 18 and 46]. If the rep-
resentation is reducible, we can form an irreducible
representation by simply deleting those states that are
superfluous.

A PH distribution with representation (α, T) has
distribution function, defined for t ≥ 0, given by

F(t) =
{

α0, t = 0
1 − α exp(Tt)e, t > 0,

(9)

see Neuts [39, Lemma 2.2.2], or Latouche and
Ramaswami [29, Theorem 2.4.1]. Differentiating Eq. 9

with respect to t gives the corresponding density func-
tion, defined for t > 0,

f (t) = −α exp(Tt)Te. (10)

The Laplace-Stieltjes transform of Eq. 9, which is de-
fined for s ∈ C such that 	(s) > δ where δ is the real
and negative eigenvalue of maximal real part of T (see
Neuts [40]), is given by

φ(s) =
∫ ∞

0
e−stdF(t)

= −α(sI − T)−1Te + α0. (11)

For k = 1, 2, . . ., differentiating Eq. 11 k times with
respect to s and letting s → 0 gives the kth noncentral
moment

mk = (−1)kk!αT−ke. (12)

In particular the mean of a PH distribution with repre-
sentation (α, T) is

m1 = −αT−1e,

and its variance is

m2 − m2
1 = 2αT−2e − (αT−1e)2.

We now give some examples of PH distributions.

1. The exponential distribution. The minimal repre-
sentation is

α = (
1
)

(13)

T = (−λ
)
. (14)

2. The order p generalized Erlang distribution. This
distribution can be described using a state transi-
tion diagram that has p states in series, see Fig. 2. It
is easy to see, without loss of generality, that the
states can be ordered so that the rates 0 < λ1 ≤
λ2 ≤ . . . ≤ λp.

.....

λ 
1

λ 
2

λ p

λ 
p–1

1 2 p

Fig. 2 State transition diagram for an order p generalized Erlang
distribution
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The representation for the generalized Erlang dis-
tribution corresponding to the state transition dia-
gram is

α = (
1 0 . . . 0

)
(15)

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ1 λ1 0 · · · 0
0 −λ2 λ2 · · · 0

0 0 −λ3
. . . 0

...
...

. . .
. . .

...

0 0 0 · · · −λp

⎞
⎟⎟⎟⎟⎟⎟⎠

. (16)

Figure 3 shows the density function for an order 5
Erlang distribution (that is, all rates are equal). The
density function for an Erlang distribution of order
p, defined for t > 0, is given by

f (t) = λptp−1e−λt

p! . (17)

The expression for the density function of a gener-
alized Erlang distribution is complicated by the fact
that some of the rates may be unequal.
All generalized Erlang distributions have coeffi-
cient of variation (that is, the ratio of the variance to
the mean squared) less than or equal to one. In fact,
the exponential distribution, which is a degenerate
case of the generalized Erlang distribution, is the
only one that has coefficient of variation equal to
one.

3. The order p hyperexponential distribution. This
distribution can be described using a state transi-
tion diagram with p states in parallel, see Fig. 4.
Clearly, without loss of generality, the states can be
ordered so that the rates 0 < λ1 < λ2 < . . . < λp.

Fig. 4 State transition diagram for an order p hyperexponential
distribution

The corresponding representation is

α = (
α1 α2 . . . αp

)
(18)

T =

⎛
⎜⎜⎜⎜⎝

−λ1 0 . . . 0

0 −λ2
. . . 0

...
. . .

. . .
...

0 0 . . . −λp

⎞
⎟⎟⎟⎟⎠ , (19)

with density function, defined for t > 0, given by

f (t) =
p∑

i=1

αiλie−λi t, (20)

where, for i = 1, 2, . . . , p, αi > 0 and
p∑

i=1

αi = 1.

Figure 5 shows an example of the density function
of a order 3 hyperexponential distribution.
Hyperexponential distributions have coefficient
of variation greater than or equal to one (the

Fig. 3 Density function of a
order 5 Erlang distribution
with λ1 = λ2 = λ3 = λ4 =
λ1 = 1
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Order 5 Erlang Density, λ  = (1,1,1,1,1)
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Fig. 5 Density function of an
order 3 hyperexponential
distribution with α = (0.5,

0.1, 0.4), and λ1 = 0.1,
λ2 = 1, and λ3 = 10
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f

Order 3 Hyperexponential Density, α  = (0.5, 0.1, 0.4), λ  = (0.1, 1, 10)

exponential distribution is the only one that attains
equality here).

4. The order p Coxian distribution. The state transi-
tion diagram for this distribution is shown in Fig. 6.

These distributions have representations of the
form

α = (
α1 α2 . . . αp

)
(21)

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−λ1 λ1 0 . . . 0
0 −λ2 λ2 . . . 0

0 0 −λ3
. . . 0

...
...

. . .
. . .

...

0 0 0 . . . −λp

⎞
⎟⎟⎟⎟⎟⎟⎠

. (22)

Although it is not obvious, in this case, without
loss of generality, the states can be ordered so

Fig. 6 State transition diagram for an order p Coxian
distribution

that the rates 0 < λ1 ≤ λ2 ≤ . . . ≤ λp, see Cumani
[9] or O’Cinneide [44]. Figure 7 shows the den-
sity function for an order 4 Coxian distribution.
Its shape exemplifies the extra flexibility Coxian
distributions exhibit over generalized Erlang and
hyperexponential distributions.

5. The acyclic, or triangular PH (TPH) distribution.
This type of PH distribution have generators that
are upper triangular matrices. Cumani [9] (see also
O’Cinneide [44]) showed that any TPH represen-
tation has a Coxian representation of the same or
lower order.

6. The order p unicyclic distribution. These distrib-
utions have state transition diagrams as shown in
Fig. 8.
They have representations of the form

α = (
α1 α2 . . . αp

)
(23)

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ1 λ1 0 . . . 0 0
0 −λ2 λ2 . . . 0 0

0 0 −λ3
. . . 0 0

...
...

. . .
. . .

...
...

0 0 0 . . . −λp−1 λp−1

μ1 μ2 μ3 . . . μp−1 −λp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where, for i = 1, 2, . . . , p − 1, μi ≥ 0, 0 < λ1 ≤
λ2 ≤ . . . ≤ λp, and λp >

p−1∑
i=1

μi, see O’Cinneide
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Fig. 7 Density function of an
order 4 Coxian distribution
with α = (0.1, 0.8, 0, 0.1), and
λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4
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Order 4 Coxian Density, α  = (0.1, 0.8, 0, 0.1), λ  = (1, 2, 3, 4)

[45, Section 7]. Figure 9 shows the density function
for an order 5 unicyclic distribution.
It was conjectured in O’Cinneide [45, Conjecture
4] that every PH distribution of order p has a
unicyclic representation of the same order, how-
ever, He and Zhang [25] showed that this is not, in
general, the case.

2.4 Fitting and approximating with phase-type
distributions

In order to use PH distributions to model real world
phenomena we need reliable methods to fit empirical
data and approximate probability distributions with
them. The aim of any fitting procedure is to estimate
the parameters α and T so that they best fit the data in
some sense. In approximating a probability distribution
with a PH distribution the parameters α and T need

Fig. 8 State transition diagram for an order p unicyclic
distribution

to be selected so that a predetermined function of the
approximated distribution and the approximating PH
distribution is minimized. In this subsection we give a
brief overview of some of the PH fitting and distribu-
tion approximation algorithms found in the literature.
The survey is by no means complete and we refer
the reader to the comprehensive reference lists given
in Asmussen, et al. [3], Bobbio and Cumani [7], and
Johnson [28] for more information.

Maximum likelihood estimation has been the most
popular method used to fit data and approximate dis-
tributions with PH distributions. Asmussen et al. [3]
(see also Asmussen [1]) developed an expectation-
maximization (EM) algorithm (see Dempster et al. [10],
or McLachlan and Krishnan [36]) to calculate maxi-
mum likelihood parameter estimates for general PH
distributions when fitted to empirical data. In a com-
panion paper Olsson [46] extended the algorithm so
that it could be used with right-censored and interval-
censored data. The original and extended algorithms
are available as the downloadable package EMpht.1

Bobbio and Cumani [7] developed an algorithm to fit
Coxian distributions to empirical data, with the op-
tion of including right-censored data, using maximum
likelihood estimation. In order to find the parameters
that maximized the loglikelihood function the resulting
nonlinear program was solved by combining a linear
program with a line search at each iteration. Faddy
[15, 16], and [17], Faddy and McClean [19], and

1http://home.imf.au.dk/asmus/pspapers.html.

http://home.imf.au.dk/asmus/pspapers.html


18 Health Care Manag Sci (2009) 12:11–26

Fig. 9 Density function of an
order 5 unicyclic distribution
with α = (0, 0, 0, 1, 0), λ1 = 1,
λ2 = 2, λ3 = 3, λ4 = 4 and
λ5 = 5, and μ1 = μ2 = μ3 =
μ4 = 1
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Order 5 Unicyclic Density, α  = (0, 0, 0, 1, 0), λ  = (1, 2, 3, 4, 5), μ = (1, 1, 1, 1)

Hampel [24] used maximum likelihood estimation to
fit Coxian distributions to real data. They used existing
MATLAB r© or S-PLUS r© routines (for example the
Nelder-Mead algorithm in MATLAB r©, see Nelder and
Mead [37]) to perform the required parameter estima-
tion. In Faddy [18] a penalized maximum likelihood
method was developed to fit Coxian distributions to
data. Coxian representations where T had disparate
eigenvalues (that is, diagonal entries for upper triangu-
lar matrices) were penalized in the fitting process. This
restriction resulted in smoother fitted density functions.

The method of moment matching has also been used
to fit PH distributions to data and approximate prob-
ability density functions. Johnson [28] developed an
algorithm that matched the first three moments of a
mixture of Erlang distributions to the respective mo-
ments of empirical data or a distribution. The nonlinear
optimization program, which resulted from the parame-
ter estimation or distribution approximation technique,
was solved using sequential quadratic programming.
Schmickler [48] also developed a moment matching
algorithm where the first three moments of a mixture of
two or more Erlang distributions were matched exactly
to the respective moments of an empirical distribution
function. The Nelder-Mead algorithm was used to solve
the resulting nonlinear program.

Other methods for PH fitting and approximation
have also been used. Hórvath and Telek [26] developed
a method which separately approximated the main part
and the tail of an arbitrary distribution defined on
the nonnegative real numbers with a PH distribution.
The main part of the distribution was approximated
with a Coxian distribution by minimizing any distance
(goal) function of the approximated and approximating

densities. A nonlinear programming procedure similar
to that of Bobbio and Cumani [7] was used to perform
the minimization. The tail was approximated with a
hyperexponential distribution using a heuristic method.
Faddy [13] and [14] used least squares to fit Coxian
distributions to real sample data in order to estimate
the parameters for a compartmental model used in drug
kinetics. A quasi-Newton minimization algorithm was
used to perform the parameter estimation.

3 Phase-type distributions in the healthcare industry

There have been a number of papers written on the
application of PH distributions in the healthcare liter-
ature, but as we shall see, the number of areas where
they have been used is rather limited. Most papers con-
cern the modelling of the length of stay in geriatric facil-
ities, and these papers have been written by a relatively
small pool of researchers. In this section we present a
literature review on the use of PH distributions in the
healthcare sector.

Faddy [13] used a two-compartment model, such as
the one depicted in Fig. 10, to model the outflow of
labelled red blood cells injected into a rat liver. Each
compartment represents a body organ, and the resi-
dency time the labelled cells spend in the body before
being excreted was modelled with a generalized Erlang
distribution. In the resultant fit m = 35, n = 1, λ = 7.60,
and μ = 0.22. The value of m was large because of
a delay of about 3 seconds before any outflow was
recorded. The method of least squares was used to fit
the data.
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1 2
λ λ λ λ..... m

 
m + 1

μ
m + 2

μ ..... μ

μ

m + n

Fig. 10 Two-compartment model to model the outflow of labelled red blood cells injected into a rat liver

In Faddy [14] a more complex two-compartment
model (see Fig. 11) was used to model the retention
time of a drug injected into an organ. The cycling in
the first compartment models diffusion, and the second
compartment models the drug’s clearance from the
body. The model was fitted to the renal concentrations
of an antibiotic drug in four sheep that were given
differing doses at t = 0. For n = 1 and m ≥ 4 it was re-
ported that λ = 0.028, μ = 0.018, and ν = 0.235. Again,
the method of least squares was used to fit the data.

Faddy [15] fitted Coxian distributions of increasing
order to the length of treatment for patients at risk
of suicide using maximum likelihood estimation. In
this case it was deemed that an order three Coxian
distribution was sufficient to model the data. The rep-
resentation for the Coxian distribution was given as

α = (
1 0 0

)
(25)

T =
⎛
⎝−(λ1 + μ1) λ1 0

0 −(λ2 + μ2) λ2

0 0 −μ3

⎞
⎠ , (26)

which corresponds to the state transition diagram
shown in Fig. 12.

This “drop out” representation is equivalent to the
“drop in” representation given by Eqs. 21 and 22.
Here, it was noticed that in the fitted T, λ1 + μ1 ≈
λ2 + μ2. A further order three fit with the constraint
λ1 + μ1 = λ2 + μ2 was made and compared with the
original order three fit. It was this phenomenon that

lead to the penalized maximum likelihood estimation
described in Faddy [18]. A similar approach was taken
by Faddy and Taylor [21] to model the time to onset
of bronchiolitis obliterans syndrome (BOS) for lung
transplant patients. In this case, three covariates were
also included in the model. They were the number
of rejections (x1), the number of infections (x2), and
cytomegalovirus episodes (x3) in the post operative pe-
riod before the onset of BOS. They were incorporated
via the parameters of T, that is,

λi = exp(ci−b1x1−b2x2−b3x3), i=1, 2, . . . , p − 1,

(27)

μi = exp(di−b1x1−b2x2−b3x3), i=1, 2, . . . , p,

(28)

where the parameters b1, b2, b3, c1, c2, . . . , cp−1, and
d1, d2, . . . , dp are real numbers. In the example given,
the order of the most suitable PH fit was p = 2.

McClean and Millard [35], while not specifically re-
ferring to PH distributions, fitted an order two hyper-
exponential distribution to the length of stay of patients
in a geriatric medicine department. That is, the density
function for the length of stay distribution, for t ≥ 0,
λ1, λ2 > 0, and 0 < ρ < 1, was given by

f (t) = ρe−λ1t + (1 − ρ)e−λ2t. (29)

They fitted the data for male and female patients
separately. The two states in the model represented
acute/rehabilitative (short stay) patients, and long stay

1 2 ..... m m + 1 m + 2 .....
μμμ

λ λ λ 
λ ν ν ν 

ν

m + n

Fig. 11 Two-compartment model to model the diffusion and clearance of a drug injected into a body organ
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μ μ μ
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Fig. 12 State transition diagram for a “drop out” order three
Coxian distribution

patients. Patients who left the system by either being
discharged or dying were categorized as short stay, and
those who left by being transferred elsewhere, as long
stay. The parameter ρ was estimated by the proportion
of (either male or female) short stay patients, and λ1

and λ2 by the reciprocal of the mean length of stay for
short and long stay patients, respectively. The model
was improved by fitting a mixture of a lognormal distri-
bution (for short stay) and an exponential distribution
(for long stay).

In Faddy and McClean [19] Coxian distributions of
increasing order were fitted to the male patient data
used by McClean and Millard [35] using maximum like-
lihood estimation. Two covariates, the age of patient at
admission, and the year of admission were incorporated
into the model in the same way as in Faddy [15]. Unlike
McClean and Millard [35], here the Coxian distribution
was fitted first, and then an interpretation sought. If, for
example, a three state model (see Eqs. 25 and 26) was
fitted, the states could be interpreted as representing
severity of illness, leading to a characterization for
“short stay”, “medium stay”, and “long stay” patients.
If absorption takes place from the first state then the
patient could be classified as short stay, from the second
state, medium stay, and so on. If more states are used a
similar interpretation can be given. Hence, the Coxian
distribution can be interpreted as a mixture of general-
ized Erlang distributions with, for the order three case,
mixing coefficients

p1 = μ1

μ1 + λ1
(30)

p2 = λ1μ2

(μ1 + λ1)(μ2 + λ2)
(31)

p2 = λ1λ2

(μ1 + λ1)(μ2 + λ2)
. (32)

These mixing coefficients from the fitted distribution
would model the proportion of short, medium, and long

stay patients, respectively. Faddy and McClean [19]
fitted the abovementioned dataset with an order four
Coxian distribution (loglikelihood = −9332.5) without
including the two covariates, but noted that when they
were included the loglikelihood increased to −9310.2.
They also remarked observing the same kind of para-
meter redundancy mentioned in Faddy [14].

Faddy and McClean [20] extended their earlier work
by not only modelling the length of stay in geriatric
care, but also the length of stay for geriatric patients
in community care. Penalized maximum likelihood es-
timation was used to fit the data. In McClean et al. [33] a
similar approach was taken to assign patients to clusters
(for example, short stay, medium stay, and long stay if
an order three Coxian distribution is used) based on
the time already spent in care and the two covariates,
age at admission and year of admission. The aim of this
study was to develop a model to predict how long a
patient remains in care given information about these
three predictors.

Gorunescu et al. [22] modelled the patient flow
through a hospital department using a steady state M/

PH/c/c queue (the authors refer to this queue as a
M/PH/c queue). That is, the interarrival time is ex-
ponentially distributed, the service time (time spent
occupying a bed) is distributed according to a PH
distribution, there are c beds in the department, and
the capacity of the system (queue plus beds) is c. We
can see that there is no queuing, that is, in theory,
if a patient arrives to find the ward fully occupied
they are lost to the system. In reality, depending on
their condition, such a patient would be found a bed
elsewhere. We note that, despite modelling the service
time with a PH distribution, the performance measures
that were considered, that is, the probability of all
beds being occupied (the blocking probability), and
the mean number of occupied beds, only depend on
the mean service time and not on the service time
distribution. The authors did mention this fact. Using
some real data from a geriatric department, the authors
presented an example where the minimum number
of beds was calculated given that a specified blocking
probability cannot be exceeded. The number of beds
that minimized the average cost per unit time was also
calculated.

Marshall and McClean [30] fitted conditional Coxian
distributions to the length of stay data for geriatric
patients. The term conditional was used because the
data was first categorized according to a Bayesian be-
lief network, and then fitted using maximum likeli-
hood estimation. A Bayesian belief network is a model
that links various causal characteristics of the data in
some meaningful way. For example, in the paper, each
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patient’s age, gender, and admission method con-
tributed to their Barthel grade (heavily dependent, very
dependent, slightly dependent, or independent), and
anticipated final destination (death, home, or transfer).
This information, all determined beforehand, enabled
the patient length of stay data to be categorized into
12 groups. A Coxian distribution was fitted to each
categorized dataset in turn. The aim of this approach
was to be better able to predict a patient’s length of
stay by utilizing prior information, in this case, Barthel
grade and anticipated final destination.

Xie et al. [52] modelled the length of stay of geriatric
patients in residential and nursing home care with a
more complex PH representation than had previously
been used. The times spent in residential and nursing
home care were both modelled with a Coxian distrib-
ution. Figure 13 shows the state transition diagram for
the model. Patients enter the system via the residential
home care block consisting of states 1 and 2, and spend
either a short time (state 1), or a long time (states 1
and 2) there before either leaving the system (state 0),
or progressing to nursing home care, where, again, they
can spend a short time (state 3), or a long time (states
3 and 4) before leaving. The PH representation for the
model depicted in Fig. 13 is

α = (
1 0 0 0

)
(33)

T =

⎛
⎜⎜⎝

−(λ1 + μ1 + ν1) λ1 ν1 0
0 −(λ2 + μ2) λ2 0
0 0 −(λ3 + μ3) λ3

0 0 0 −μ4

⎞
⎟⎟⎠ .

(34)

A Coxian distribution of more than order two may be
used to model the length of stay in residential or nursing

home care, resulting in a model of higher order. We
remark here that the distribution with representation
given by Eqs. 33 and 34 is Coxian since T is an upper
triangular matrix.

In order to fit the model to the data the authors first
established the number of states needed to model the
residential and nursing home length of stays separately.
They did this by fitting mixtures (not necessarily con-
vex) of exponential distributions of increasing order to
the data, and then used both the Aikaike and Bayesian
information criteria to determine the optimal number
of states required. Then, a Coxian distribution with the
appropriate structure was fitted to the whole dataset.
The authors fitted the model to some real data, and
found that the residential home care length of stay was
modelled sufficiently well with an exponential distribu-
tion, and the nursing home length of stay with an order
two Coxian distribution.

A summary of the current state of affairs with mod-
elling the length of stay in hospital departments was
given in Marshall et al. [31], and Vasilakis and Marshall
[51]. Both papers explained the various techniques for
modelling length of stay including descriptive statistics,
survival analysis, compartmental models, simulation
modelling, mixed exponential distributions, PH distri-
butions, and conditional PH distributions. In Vasilakis
and Marshall [51] some of the methods were illustrated
by modelling the length of hospital stay of stroke pa-
tients over the age of 65 in the UK.

Gribbin and McClean [23] (see also, McClean [32],
and McClean and Gribbin [34]) modelled the length of
time nurses took to return to service after a temporary
interlude with compartment models. The models were
fitted to data from the Northern Ireland nursing service
and then analysed. Here, it is interesting to note that
the focus is on human resource management in the

Fig. 13 State transition
diagram to model the length
of stay in residential and
nursing home care
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healthcare industry, rather than on the patient care
process as have been most of the other applications of
PH distributions in healthcare modelling.

This discourse on the use of PH distributions in the
health and social care sector is by no means complete,
and the reference lists given in the abovementioned
papers should be referred to for further information.

4 Phase-type distributions and modelling healthcare
processes

As mentioned in the previous section, the use of PH
distributions in the healthcare sector has been limited,
not only because of the relatively few areas in which
they have been applied, but also because of the almost
exclusive use of Coxian distributions to model lengths
of stay. In this section we propose some ways in which
the use of PH distributions could be extended in health-
care modelling.

Phase-type distributions can be used to fit any length
of stay or interarrival data, not just the ones that have
been discussed in the previous section. It appears that
Coxian distributions are used because they are easy to
fit, and also offer a simple interpretation for the length
of stay. However, if general, or even unicyclic, phase-
type distributions are used, fits with smaller order may
be achieved. For example, Fig. 14 shows an order 6
general PH distribution fitted (using EMpht) to some
data (truncated at 30 days) consisting of 4696 lengths of
stay of patients at the Royal Melbourne Hospital that

were transferred from other hospitals. The resultant
representation is

α = (
1 0 0 0 0 0

)
(35)

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3.21 3.21 0 0 0 0
0 −3.21 0 3.21 0 0

0.61 0 −0.63 0 0.02 0
0 0 0 −3.21 0 3.21
0 0 0.81 0 −0.81 0
0 0 0 0 1.65 −3.21

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(36)

The algorithm took approximately 3.5 min to perform
30,000 iterations, and the loglikelihood was −11706.92.
The fit is shown in Fig. 14. As we can see it looks very
good. It is not Coxian as the eigenvalues of T are not
all real. In fact, a Coxian distribution of order 25 is
required to achieve a fit with a greater loglikelihood!
In this situation a non-Coxian distribution gives a PH
representation of much lower order which will be easier
to use in the calculation of any performance measures
such as the mean and standard deviation of the length
of stay. Here the mean of the fitted PH distribution
is 5.6382 and its standard deviation is 6.5654. These
quantities compare favourably with the sample mean
of 5.6382, and the sample standard deviation of 6.2959.

To compare the performance of general PH distri-
butions with other PH distributions, the same dataset
was fitted (again using EMpht) with an exponential
distribution, and order 6 hyperexponential, generalized
Erlang, and Coxian distributions. Table 1 shows the

Fig. 14 Order 6 PH fit to the
length of stay histogram
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Table 1 Various PH fits to the length of stay histogram

Fit Loglikelihood order

Exponential −12818.04 1
Hyperexponential −12712.44 2
Generalized Erlang −12437.75 6
Coxian −12174.63 6
General PH −11706.92 6

loglikelihoods for the five fits. We note here that the
resultant hyperexponential fit produced by EMpht is
of order 2. Figure 15 shows the five fits. The graph is
truncated at 12 days to give a clear picture of how well
the fits perform on the main body of the histogram.

As expected, the general PH fit is the best followed
by the Coxian fit. These two distributions have the
most flexibility. The generalized Erlang fit is better
than the hyperexponential fit because, first, it is zero
at the origin, and second, it has a higher order. Curi-
ously, EMpht, even when fitting an order 25 hyperex-
ponential distribution, still produces the same order 2
fit - this may be something to do with the expectation-
maximization algorithm itself but further investigation
is beyond the scope of this paper. The exponential
distribution, of course, performs the worst.

One of the major problems with using general PH
distributions to fit data is that they are considerably
overparameterized. A general order p PH representa-

tion (with α0 = 0) requires p2 + p − 1 parameters, but
an argument using their Laplace transforms, or their
moments (see Asmussen et al. [3]), shows that only
2p − 1 parameters are required. Apart from needing to
estimate more parameters than is necessary when fit-
ting general PH distributions to data, the overparame-
terization problem means that it is virtually impossible
to develop any asymptotic properties of the estimators
and give confidence intervals for the parameter
estimates. Bootstrapping is one alternative method for
producing confidence intervals but requires many iter-
ations of the expectation-maximization algorithm, see
Asmussen [1]. On the other hand, Coxian distributions
are not overparameterized, but the development of any
asymptotic properties has not yet been undertaken.

However, despite the problem of overparameteri-
zation, the above example shows that an order 6 fit
performs better (in terms of maximum likelihood esti-
mation) than any Coxian fit of order less than or equal
to 24, and takes a lot less time to fit. In fact, (α, T)

in Eqs. 35–36 has, it appears, only 5 free parameters,
less than the required 11 parameters. Faddy [15] and
[17], and Hampel [24] observed this phenomenon when
fitting Coxian distributions to data using maximum
likelihood estimation. That is, many of the parameters
in the final fitted representations were equal, leading
to representations that depended on very few parame-
ters. The investigation and development of general PH

Fig. 15 Order 6 PH fit to the
length of stay histogram
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representations that depend on a minimum number of
parameters is the focus of ongoing research, see, for
example, He and Zhang [25], and Horváth and Telek
[27].

Another way in which PH distributions could en-
hance healthcare modelling is to use them in more
sophisticated models for lengths of stay and interarrival
times. Consider the (simplified) schematic diagram for
patient flow in a hospital shown in Fig. 16.

Patients enter the hospital via the emergency de-
partment (unit 1), or as elective patients. Patients who
have had surgery (unit 2) enter the intensive care unit
(unit 3), and then the high dependency ward (unit 4)
before being sent to one of the two wards (units 5 and
6). Emergency patients can either have surgery, or be
sent to one of the two wards. Patients may return to
the intensive care unit if their condition warrants it.
Patients are discharged only from the two wards. To
model the length of time a patient stays in hospital we
could, for i = 1, 2, 3, 4, 5, 6, model the time spent in unit
i, with an order pi PH distribution. The overall PH
distribution would have a representation of the form

α = (
α1 α2 0 0 0 0

)
(37)

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

T11 T12 0 0 T15 T16

0 T22 T23 0 0 0
0 0 T33 T34 0 0
0 0 T43 T44 T45 T46

0 0 T53 0 T55 0
0 0 T63 0 0 T66

⎞
⎟⎟⎟⎟⎟⎟⎠

. (38)

ED Theatre ICU

Ward 2 Ward 1 HD

Fig. 16 Schematic diagram for patient flow in a hospital

Here, α1 and α2 are nonnegative and nonzero vectors,
whose dimensions are 1 × p1 and 1 × p2, respectively,
with (α1+α2)e=1. Also, for i=1, 2, 3, 4, 5, 6, Tii is an
order pi PH generator, and for (i, j) ∈ {(1, 2), (1, 5),

(1, 6), (3, 4), (4, 3), (4, 5), (4, 6), (5, 3), (6, 3)}, Tij is a
pi × pj nonnegative and nonzero matrix. For this struc-
ture the absorption rate vector has the form

t =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
t5

t6

⎞
⎟⎟⎟⎟⎟⎟⎠

(39)

where t5 = −(T53 + T55)e and t6 = −(T63 + T66)e are
nonnegative and nonzero vectors of dimensions p5 × 1
and p6 × 1, respectively. All zero matrices and e vectors
have the appropriate dimension.

The simplest PH distribution with representation
(α, T) given by Eqs. 37 and 38 is where the length
of stay in each unit is exponentially distributed. In
this case the PH distribution that models the overall
length of stay would be an order 6 PH distribution that
does not have a Coxian representation because of the
cycling. In order to estimate the parameters for this
PH distribution one method is to fit an exponential
distribution to the data from each unit, and then deter-
mine the proportions of patients that move between the
units to estimate the off-diagonal entries of T. Another
method is to fit an order 6 PH distribution with the
required structure to the whole length of stay data.
The first method is probably the simplest in terms of
the fitting procedure, and more accurate, but requires
much more patient data. To get a better fit, however,
we may decide to use a PH or Coxian distribution to
model the time spent in each unit, and then combine
them to create a larger PH distribution. In this case,
fitting the data from each unit separately (given that
the data is readily available) would be relatively simple
using, say, EMpht, but estimating the parameters of the
off diagonal matrices could be problematic. Fitting the
entire distribution as a whole may be computationally
infeasible as the order of the fitting PH distribution
may be quite high.

More sophisticated methods exist to calculate per-
formance measures such as steady state probabilities,
blocking probabilities, expected waiting times, and
mean queue lengths, in queues whose arrival and ser-
vice times are modelled with PH distributions. We
have already seen in Gorunescu et al. [22] that patient
flow through a hospital ward can be modelled with a
M/PH/c/c queue. The branch of computational proba-
bility known as matrix-analytic methods (see Neuts [39],
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or Latouche and Ramaswami [29]) contains a vast liter-
ature on stochastic models that use PH distributions.
Matrix-analytic methods deal with the analysis of sto-
chastic models, particularly queueing systems, using a
matrix formalism to develop algorithmically tractable
solutions. The ever-increasing ability of computers
to perform numerical calculations has supported the
growing interest in this area. More sophisticated mod-
els such as the PH renewal process, the Markov-
modulated Poisson process, the Markovian arrival
process, and the quasi-birth-and-death (QBD) process
(see Neuts [39, 41, 42], Latouche and Ramaswami [29],
Asmussen [2], and Bini et al. [6], and the references
therein) could be implemented in health and social
care modelling. The mathematics for these models is
involved but the modelling power is considerable. For
example, Au et al. [5] developed and analysed a queue-
ing model that predicts when the emergency depart-
ment at the Royal Melbourne Hospital needs to go on
ambulance bypass.

5 Conclusion

In this paper we have introduced PH distributions,
given a brief overview of some PH fitting and ap-
proximation methods, and presented a comprehensive,
although not exhaustive, literature review on where PH
distributions have been used in the healthcare sector.
In the last section we suggested some ways in which
PH distributions could be further utilized in healthcare
modelling. In particular we have made the following
recommendations:

1. More general PH representations should be con-
sidered for fitting length of stay and interarrival
time data because of the extra flexibility. The ex-
ample given, where a general PH fit of order 6
was compared to five other PH fits, demonstrates
clearly what these representations can offer. In fact,
the author knows of no other example where a low
order (6) non-Coxian PH fit is comparable to a high
order (25) Coxian fit.

2. More sophisticated models that use general PH
distributions should be considered in modelling
healthcare systems. In Section 3 we saw that all
authors used Coxian distributions to fit length of
stay data. In most cases this was justified because
the process being modelled had patients moving
in a left-right manner (that is, with no cycling).
However, as suggested in Section 4, healthcare sys-
tems have patients moving in a more complicated
manner (for example, systems with readmissions to

particular units) and non-Coxian PH representa-
tions can model these situations better than Coxian
representations.

3. The wider literature on matrix-analytic methods
should be consulted when developing stochastic
models used in modelling healthcare systems. Here,
there is the potential to develop more power-
ful models that incorporate PH distributions (and
other models, see above) to describe systems in
healthcare.

It is encouraging to note that, more recently, the
use of PH distributions has increased. Of the thirteen
papers reviewed in Section 3, eight have been published
in the last four years. Despite this, the use of PH distrib-
utions needs to become more widespread, and the level
of sophistication of the models where they are used
needs to increase. If this is done, as has been the case in
other industries (for example, telecommunications and
finance), more powerful mathematical models can be
developed to address and solve some of the important
problems in the healthcare sector. It is hoped that, with
this paper, modellers will not only use PH distributions
more widely, but also look to the established literature
on matrix-analytic methods and stochastic modelling
for the mathematical tools required to develop suitable
models that will help address and solve problems in the
sector.
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