A Nonstationary Poisson View of Internet Traffic

Thomas Karagiannis, Mart Molle, Michalis Faloutsos Andre Broido
Department of Computer Science & Engineering CAIDA, SDSC
University of California, Riverside University of California, San Diego
{tkarag,mart,michalig@cs.ucr.edu broido@caida.org

Abstract—Since the identification of long-range dependence in to establish its self-similar nature. Similar observations were
network traffic ten years ago, its consistent appearance across presented for wide area Internet traffic in [36], where it was
numerous measurement studies has largely discredited Poisson-g 54 shown that interarrival times are described by heavy tailed

based models. However, since that original data set was collected,d. tributi Th L f self-similarity in Int t traffi
both link speeds and the number of Internet-connected hosts have IStributions. € origins of sefl-similarity in Internet tratfic

increased by more than three orders of magnitude. Thus, we now have been mainly attributed to heavy tail distributions of trans-
revisit the Poisson assumption, by studying a combination of his- fer sizes [10] [44] [34]. Apart from long-range dependence, it
torical traces and new measurements obtained from a major back- has been observed that Internet traffic presents complex scal-
bone link belonging to a Tier 1 ISP. We show that unlike the older i, ang multifractal characteristics that were usually associated
data sets, current network traffic can be well represented by the . S

Poisson model for sub-second time scales. At multi-second scales\,’v'th, Round—Tr.lp Time (RTT) delay [16] [41] [47] [37] [19]. In .
we find a distinctive piecewise-linear non-stationarity, together addition, studies have argued whether or not TCP congestion

with evidence of long-range dependence. Combining our obser- control contributes to the observed scaling [42] [43] [29].

Characteization of network waffic that, wihen viewed across very . \Ve believe itis time to reexamine the Poisson traffic assump-
long time scales, exhibits the observed long-range dependencelion in relation to the traffic carried within the Internet core.
This traffic characterization reconciliates the seemingly contra- Long before the identification of self-similar characteristics in
dicting observations of Poisson and long-memory traffic charac- Internet traffic, Poisson packet arrivals and the independence
teris_tics. It also seems to be in gen_eral agreement with recent the- assumption were widely used as the basis for network model-
oretical models for large-scale traffic aggregation. ing and analysis [24]. Despite the tendency of the community
to discard Poisson models as being overly simplistic, they can
be used to represent the limiting behavior of an aggregate traf-
. fic flow created by multiplexing large numbers of independent
Does the observed long-range dependence make PoissQfiices [23] [39]. Thus, given the tremendous growth of the
based_ models obsolete? This is a key question for our_work. Internet backbone in recent years, we anticipate that any pe-
During the last decade, there has been ample evidence-Qfiarities due to individual flows might cancel out due to the
long-range dependence, scaling phenomena and heavy tajlgg numper of different multiplexed flows. Thus, we revisit the
distributions in various aspects of network behavior. Speciftyisson assumption subject to the following caveats:
cally, it has been observed that packet interarrival times are de- ) o ) :
scribed by marginal distributions with heavier tail than that of Aggregated trafflc_vs. individual flows: We consider the
the exponential. Furthermore, networking series such as the mbined packet arrival stream generated by all sources, rather

gregate number of packets and bytes in time, have been sh& fOCLéS'ng on thfe SU?SEt of p?ﬁke;.s gleneral'igdl bydalslngle
to exhibit correlations over large time scales (i.e., Iong—ranigurce' ecause ol our tocus on the highly-multipiexed Inter-

I. INTRODUCTION

dependence) and self-similar scaling properties. These fi 't core, such primary performan_ce me.tT'CS as packet_ delays
ings resulted in invalidating the traditionally used assumptior."ilgq t_)uffer occupancies should be insensitive to the details of an
in modeling and simulations, namely that packet arrivals a‘%d'v'dual flow.
Poisson and packet sizes and interarrival times are mutually inldle periods vs. back-to-back packetsit is well known that
dependent. the packet interarrival time distribution may deviate from the
The first empirical evidence of self-similar characteristic8oisson model for very small values because of multiple-packet
in local area network traffic were presented in the pioneefeterministic sequences. In our case, the primary cause will be
ing work in [28]. The authors performed a rigorous statisbusy periods” at the upstream router, which transmits back-to-
tical analysis of Ethernet traffic measurements and were abRCk packets until it manages to empty the queue. In other stud-
ies, fixed delay transaction-oriented protocols like NFS, and

DATFf;i;AWOVK Vga’fl ,\SAUSPF')\IO&%% gif B%elNggngREEr\Ts%ram At’\“g ggggglgg,Ta rocessing time bottlenecks in the hosts have been identified
awar -00-1- , an grant 1IS- . dermil et S :
Inc., and DIMI matching fund DIMOO-10071. and DARPA award FTN F30602§S the causes for particular “spikes” appearing in the interar-

01-2-0535 rival time distribution [18]. Such short-range artifacts can be



incorporated into the Poisson model as “packet trains” [20]. the identification of LRD behavior at large time-scales and the
The effect of the scale of observation: For moderately different scaling behavior of traffic at smaller time-scales.
loaded network resources, the system will rapidly respond toln addition, the issue of LRD modeling versus nonstation-
any short-range transients in the load. Thus, by measuring tréy was also raised in earlier network studiesgarding the
system’s behavior across larger time scales, individual transiéanous Bellcore traces [11] [12] [14]. However, in the Bellcore
events become less significant relative to the long-term avéaces, the arrival process clearly deviates from Poisson, which
ages, allowing us to determine the steady-state behavior of th@ot the case in our backbone traces. Given this difference in
system. Eventually, however, we may reach a point, where ftine behavior, we find important to revisit this issue.
ther increases in the length of the measurement period can ad-inally, what do our observations mean to a practitioner? Our
tually hurt us because of the presence of nonstationarity. Mdraces suggest that Poisson models should not be abandoned es-
specifically, long-term nonstationarity can interfere with varipecially in the Internet core with high speeds, and high levels
ance calculations because the global average across very lafgeaffic multiplexing. For example, simulations may get suffi-
time scales may drift very far away from the short-term aveciently accurate results by varying the arrival rate of a Poisson
age. To see why such discrepancies might make things obscprecess.
rather than just different, we offer the following analogy. The rest of this paper is structured as follows: Section Il
Consider the problem of determining correlation between tigéves a brief description of self-similarity and long-range de-
motions of two insects wandering randomly around a small ggrendence. Section Il describes our traces. Sections IV and V
den. To an observer in the garden who watches the two bugemonstrate the Poisson and nonstationary nature of Internet
their motions might appear completely independent and unctnaffic. Section VI presents the scaling behavior of backbone
related. However, to an observer watching the two bugs framaffic. Section VII concludes the paper.
outer space, the motions of the two bugs appear almost perfectly
correlated, since they are never more than a few inches apart as Il. DEFINITIONS
they traverse a daily rotation of the earth around its axis, which
is itself embedded in an annual orbit of the earth around theThis section briefly presents concepts that will be used in
sun. Clearly, estimating the motions of the two bugs relative tbe paper and a brief description of long-range dependence and
some “average” derived from celestial-scale measurementsédf-similarity.
not appropriate for solving this problem! Similarly, we should We extensively use theomplementary cumulative distribu-
not try to normalize all network measurements relative to sortien function (CCDF)throughout this paper. The CCDF is de-
far away global long-term average value that the system méyed as,F'(t) = 1 — F(t), whereF'(¢) is the cumulative dis-
never reach within the time scales relevant to the calculationtabution function (CDF). The CCDF of the exponential distri-

its primary performance metrics. bution with mean/\ is
In this paper, we show and explain the coexistence of Pois- . iy
son distributions and long-range dependence in traces from Fe(t)=e"",t>0.

the MFN and WIDE backbonesTraffic can be viewed from
two different perspectivesMultifractal scaling as described
in [16] [15] [47] or nonstationary Poisson modeling. Morg

Long-range dependence measures the memory of a process.
tuitively, distant events in time are correlated. This corre-
tion is captured by thautocorrelation function (ACFE)p(k),

ificall findi ized in the following’, . .
specifically, our findings can be summarized in the followin hich measures the similarity between a sefgsand a shifted

points: . .
. . . version of itself :
o Packet arrivals appear Poisson at sub-second time ersion of itself, Xy
sc':ale's:The pack'eF mterarrlvals.follow an 'exponefntlalidls— k) — El(Xy — p)(Xipr — )]
tribution. In addition, packet sizes and interarrival times p(k) = o2

appear uncorrelated. These observations agree with tradi- o
tional modeling of network arrivals as Poisson processe¥/herey, o are the sample mean and standard deviation respec-
« Internet traffic appears nonstationary at multi-second tively. If a stationary process has nonsummable autocorrelation
time scales:We demonstrate that traffic oscillates arounfinction [4], thatisy~,= , p(k) = oo, then this process isng-
a global mean, in a piecewise linear manner. range dependentntuitively, there is non-zero correlation even
« Internet traffic exhibits long-range dependence (LRD) for infinitely largek. On the contrary, short-range dependence
at scales of seconds and abovén agreement with previ- 1S characterized by quickly decaying correlations (e.g., ARMA

ous findings, we observe that Internet traffic exhibits LRIOC€SSes). _ _
properties at large time-scales. Self-similarity describes the phenomenon where certain

Our work in perspectiveOur work attempts to reconciliate properties are preserved irrespective of scaling in space or time.

. . T TH
the seemingly contradictory observed phenomena of LRD afitochastic proces (¢) is self-similar if X (at) = o™ X (1),
POISSO_n packet ar_nvals. Olj” StUdy does not contradpt the Ob“I’he same question also appears in all disciplines where LRD modeling is
servations of previous studies. For example, we confirm batpplied, such as finance [25].



TABLE |
OC48TRACES ANALYZED.

August 2002, 14 (11:00 - 11:20) January 2003, 15 (10:00 - 10:10) April 2003, 24 (00:00-00:20)
Direction 0 Direction 1 Direction O Direction 1 Direction O Direction 1
Bytes 58.2G 92G 21G 24G 14.8G 17.4G
Packets 140.8M 145M 41.2M 34.6M 28.8M 42.5M
Mean Rate 333Mbps 612Mbps 318Mbps 278Mbps 98Mbps 116Mbps
Mean Flows/sec 18,590 19,118 16,193 18,783 8,712 9,494
% TCP bytes (packets)| 89.7 (58.7) 97.2 (92.6) 91.4 (88.8) 96.1(91.1) 96.7 (91) 95(86.6
% UDP bytes (packets) 9.8 (40.6) 2.2 (6.7) 49 (8.1) 3.2(6.9) 3.1(8) 4(12.7)
where H is the self-similarity parameter, namely tharst ex- The WIDE backbone traces were captured in a trans-Pacific
ponent 100Mbps link. They are 15 minute traces taken daily at 14:00

In time-series, second-order self-similarity describes thecal time (JST). We use traces from June 2003. The BC-
property that the correlation structure (ACF) of a time-series iBA\ug89 trace was taken at 11:25 (EDT) on August 29, 1989
preserved irrespective of time aggregation. Simply put, the aan an Ethernet at the Bellcore Morristown Research and Engi-
tocorrelation function of a second-order self-similar time-serieeering facility. It consists of 1,000,000 packets (approximately
is the same in either coarse or fine time scaldwe aggregated 3142.82 seconds). Finally, the LBL-PKT-4 was captured on

processX (™) (k) is defined as follows: January 21, 1994, 14:00-15:00 (PST) at Lawrence Berkeley
Laboratory (approximately 1.3M packets).
(m) 1 b N Our primary focus in this work is on the OC48 backbone
X(k) = m Z Xy k=1,2,.., [E]' traces. These were taken on CAIDA monitor located at a
i=(k=1)m+1 SONET OC48 (2.5 Gbps) link that belongs to MFN, a US Tier
A stationaryprocess; is asymptotically second-order self-1 Internet Service Provider (ISP). _ _
similar [35], if The traces were collected by Linux-based monitor with Dag
4.11 network cards and packet capture software originally de-
. 1 loped at the University of Waikato [31] and currently pro-
lim p(k) = =[(k+ 1) — 262" + (k — 1)2H]. verop y _ : y P
Fooo p(k) 2 [(k+1) + )7 duced by Endace [13]. The nominal resolution of the Dag 4.11

Second-order self-similar processes are characterized b%aéd timestamp is 3&s. A number of technological factors pre-

hyperbolically decaying autocorrelation function and are exte ent Dag from reaching corresponding precision. The largest
sively used to model long-range dependent processes.
The notion of stationarity refers to the stability of the beh

source of uncertainty is Sonet overhead that makes interpreta-
a\}i_on of time differences underik problematic [31]. The traf-
ior. Most traffic models assume, explicitly or implicitly, astabléIC IS momtored in both directions. The captqred packet traces
behavior over a period of time. The stationarity assumption J ntain 44 bytes of each packet, enough to include the IP and
critical when self-similar behavior is studied, since nonstatio CP/UDP headers. . .
We analyze three different backbone traces captured in Au-

arity can lead to misidentification of self-similarity. Further- ust 2002, January 2003 and April 2003. Table | shows the spe-

more, all Hurst exponent estimation methodologies assum ]@1 .
. . ) . . . ... Ciflc dates these traces were collected, the mean rate in Mbps,
stationary time-series and their estimates are quite sensitive {0

the existence of nonstationarities. the average number of flows per second, as well as the total

While the concepts of self-similarity and long-range depe[q_umber of packets and bytes for each trace. In general, the link

dence are often used interchangeably in the literature, they ' rgfuﬁlsé'%nu'Su?s\t/et:ggzvlﬂgpﬁg's g&tr;hieu)iﬁig;% rr]1 O(Ifd;;ecrtg(?
not equivalent. Although second-order self-similarity usuall 9 9 PP

o o )
implies long-range dependence (i.e., nonsummable ACF), gtely 24%, the utilization for the rest of the traces is rarely

. - o .7’ ogver 15%. The number of active flows per second varies be-
reverse is not necessarily true. In addition not all self-smﬂir 0 P

i . . tween 15,000 - 20,000 for the January and August traces, and
processes are long-range dependent (e.g., Brownian motion etween 8,000 - 12,000 for the April traces.

TCP accounts for the vast majority of the traffic. Approxi-
IIl. DATA DESCRIPTION mately 95% of the bytes and 90% of the packets are transfered

We use three types of traces for our study: a) Internet baakith TCP. However, UDP represents a significant portion of the

bone traces from an OC48 link, b) traces from the WIDE backetal traffic for direction 0 of the August dataset. In this trace,

bone maintained by thIAWI Working Group Traffic Archive there is a UDP flood which significantly increases the percent-

and the WIDE project [2] [9], and c) the “well-knowrBC- age of UDP packets.

pAug89andLBL-PKT-4traces [1] which were analyzed in [28] Overall, the traffic on this measured backbone link multi-

and [36] respectively. plexes a wide variety of diverse sources, since the Tier 1 ISP
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Fig. 1. CCDF of packet interarrival times for OC48 link traces, for aggregate (total), TCP and UDP traffic. The distributions can be well
approximated by an exponential distribution.
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Fig. 2. Distributions of packet interarrival times for the WIDE, LBL and BC traces.

has rich infrastructure in Asia and Europe. distribution both for the OC48 traces, as well as for the WIDE
Throughout the paper, we will use these traces interchang@ackbone traces.
ably. Although we will be presenting figures for some of the An interarrival time distribution consists of two portions [5].
traces in each case, the results presented apply to all descripg@ that can contain back-to-back packets and another for
traces irrespective of the direction of the link, unless otherwiggickets that are guaranteed to be separated by idle time. For
specified. heavily utilized links, interarrival times are function of packet
sizes since many packets are sent back-to-back. For links that
IV. TRAFFIC APPEARSPOISSON ATSUB-SECONDTIME  are overprovisioned, the distribution tends to contain most prob-
SCALES ability in the “idle” portion.
In this section, we show that the distribution of packet inter- For the link in question, packet interarrival times can be
arrival times of backbone traffic can be well described by aslosely approximated by an exponential distribution. The
exponential distribution. Furthermore, packet sizes and interpacket interarrival distributions for one of the MFN traces, for

rival times appear independent. the aggregate (total), TCP and UDP traffic is shown in Fig. 1.
R _ _ The CCDF of packet interarrival times is a straight line when
A. Distribution of Packet Interarrival Times the Y axis is plotted in log scale, which corresponds to expo-

We study the interarrival distributions of all the backboneential distribution.
traces described in section Ill. We find that the packet inter- A closer look at the CCDF reveals that there is a trivial de-
arrival time distribution is well approximated by an exponentiadiation from the exponential line at two points: the tail of the
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Fig. 3. Autocorrelation function of packet interarrival times and packet sizes and sample cross correlation. All the correlation coefficients are
within the 95% confidence intervals except for a small number of coefficients for small lags.

distribution and for small interarrival times. The tail represen. Independence

a minimum portion of the distribution (less tha®=%). On  \we separately examine and show independence of packet
the other hand, the shape of the distribution for small values @bes and interarrival times of the OC48 link traces. The inde-
interarrival times (less thany6) is the effect of back-to-back pendence is validated using various tests: a) the autocorrelation
packets and Layer 2 technologies. However, linear least sQUaI&8F) and cross-correlation (XCF) functions, b) the Box-Ljung
fitting shows that the CCDF is well described by an exponegtatistic, c) the visual inspection of consecutive arrivals, and d)
tial with confidence 99.99%. Similar observations hold for thg,e conditional probabilities.
interarrival time distribution of SpeCifiC packet sizes (i.e., inter- Corre'ation functions: F|g 3 presents the autocorre'a_
arrival distribution of 1500-byte packets); interarrival times argon and cross-correlation functions calculated for 200 lags for
exponentially distributed. 40,000 consecutive packet arrivals for the packet sizes and in-
terarrivals series. Theizesseries consists of the actual packet
Nevertheless, exponential distribution for packet interarrivd|;es as individual packets arrive; tigerarrivals series con-
times is not specific only to our OC48 traces. Fig.2(a) shows tgits of the timestamp differences between consecutive packets.
packet interarrival CCDF for a WIDE backbone trace (June 18part from some limited correlation at small time lags, sizes
2003). The distribution is qualitatively similar to the distribuzng interarrivals are not correlated. The trivial correlation at
tions of the OCA48 traces. With 99.89% confidence the distribgma| time lags close to zero indicated by correlation coeffi-
tion is well described by the exponential distribution. Note th@fents that are just outside the 95% confidence interval of zero
the bandwidth of the WIDE link is 100Mbps and despite thgstrajght lines just above and below zero), is the effect of back-
huge bandwidth difference with the OC48 link (2.5Gbps), bog.-pack packets and phenomena that cause the interarrival dis-
Ii.nks are characterized by exponentially distributed interarrivdpution to deviate from the exponential for interarrival times
times. less than .
Increasing the number of lags or the size of the series (num-
To highlight the differences between current backbone traggsy of packet arrivals in this case) does not have any effect on
and past Ethernet-link traces, Fig. 2(b) and 2(c) show the CClife ACF or XCF. However, nonstationarity can interfere with
and histogram of interarrival times for the LBL and BC tracegqriance calculations (see sections V, VI) when the correlation
We present the CCDF of one of the traces and the histogram©tstimated across nonstationary time intervals. This is an ar-
the other, since both traces have similar characteristics. Th@isct of the way the ACF and XCF functions are estimated. A
shapes are in agreement with distributions that have been gRange in the mean of the series will result in distant events in
served in Ethernet traffic [18], [20] in the mid '80s and earlyime to seem correlated according to the ACF or XCF, while
'90s, before the identification of self-similarity. The spikes Se&fiey are not (recall the bug analogy from the introduction).
in the histogram (caused mostly by request-response protocolsgox.- jung statistic: The Box-Ljung statistic [301); is de-
result in the deviation of the CCDF at the early values of thged as:

distribution. Furthermore, the tail of the distribution is heav- ko2
ier than that of an exponential distribution indicating the effects Qr =n(n+2) Z rii,
of individual flow characteristics in these limited Ethernet links i=1

(10Mbps). wherer; is the autocorrelation coefficient for lags< i < k



andn is the length of the series. Thg, statistic is compared Packet size

with x? distribution withk degrees of freedom in order to test 04— MFN OC-43, 2003:01-3,10:00. dir. 1
the null hypothesis. For large valuesfothe following approx- [ T L L M
imation for theyx? distribution with% degrees of freedom can °_ S ARG R T 1
be used [27]: ]

Wotoa = k(L= oo+ 21-0V/2/(0R))%,

g

SEEC Sk R R s

wherez; _, is the upper percentile of th&¥ (0, 1) distribution.
We applied the test for lags 1 up to 200, for varying numbers
of consecutive packet arrivals for both the interarrival times and
packet sizes. The Box-Ljung statistic shows that both variables
can be considered i.i.d with 95% confidence for up to a certain
number of consecutive packet arrivals. Increasing the lag pro-
duces similar results. Furthermore, independence is valid for a
large number of consecutive arrivals. The point where depen- |
dence appears differs with the trace and time within the trace. A e i SR L,

. . . . 200 400 600 800 1000 1200 1400 0 0.4
For interarrival times, independence holds for 20,000 consecu- size (K)
tive packet arrivals on the average according to the test. For the

packet sizes seres the average is approximately 16,000 congily Saler ot o ¢ of LO%0.000 conseeutue packet el
utive packet arrivals. indicative of dependence between sizes.

Consecutive arrivals: We visually examine size and inter-
arrival time scatter plots of consecutive packet arrivals similar
to Fig. 4. Although this type of figures does not prove inde-
pendence, it can reveal dependencies in the dataset. The X axis
shows the size of packet arrivia) while the Y axis shows the ol N\
size of packet arrival 4 1. Fig. 4 demonstrates that the plot is
symmetric and no specific trends can be seen. At the end of X
and Y axes of the figure, we plot the histogram of packet sizes
for reference. 10°L

Conditional probabilities: Examining the conditional prob-
abilities of sizes and interarrivals also points to independence.% 107}
We study the probabilities of sizes and interarrival times condi-
tioned on the value of the previous size or interarrival time re-  10°; ‘
spectively. For example, each straight line in Fig. 5 presents the P
CCDF of packet interarrival times conditioned on the previous 107
interarrival time being within seven different bins. Because the CoEe
exponential distribution falls off rapidly with increasing time, 0 50 100 150 200 250
the bin sizes increase with powers of 2 (i.e.,[0322-4us...64- Interarrival ime (microsec)
128us). If the interarrival times W_ere 'ndependem’ the IInelgig.s. CCDFs for interarrival times conditioned on the previous inter-
would fall on top of each other, as is the case for Fig. 5. arrival being in seven different bins based on powers of two.
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C. Burst Sizes

To stress-test the claim for the memoryless properties @f bytes in a busy period are well approximated by exponential
Poisson arrivals and independence, we studied bursts of padistributions. This is irrespective of the interarrival time that is
ets. A burst describes successive packet arrivals with interased as théoundaryfor distinguishing between idle and busy
rival times less than a default value, which is considered to periods.
the idle period. However, in our traces the idle period cannot
be identified by the interarrival distribution. Thus, in order to
define bursts, we use different values of interarrival time. If the
arrival process is memoryless, the characteristics of the burst
should remain the same irrespective of the interarrival time thatln this section, we demonstrate that Internet traffic is nonsta-
defines the idle period. We find that the distributions of the dtionary. Furthermore, we discuss a number of possible causes
ration of the busy/idle period, as well as the number of packdéading to nonstationarity and characterize the behavior.

V. TRAFFIC APPEARSSURPRISINGLY SMOOTH, BUT
NONSTATIONARY, AT MULTI-SECOND TIME SCALES



Number of bytes per 10msec

BC—pAug89, 10Mbps 1989 — 08— 29, 1989, 11:25 (EDT)

Cumulative byte count

107 BC-pAug89, 10Mbps, 1989 — 08— 29, 1989, 11:25 (EDT)

12000

10000

8000‘

yies

* 6000

4000

2000 ‘

ol

Fig. 6.

minute window. RIGHT: The same data presented as cumulative bytes sent as a function of time looks surprisingly smooth, although clearly
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A. Traffic has become smoother over time.

Fig. 6 displays approximately 6 minutes of data from thB- Possible causes for nonstationarity.
well-known BC-pAug8%acket trace dataset [1], [28] in terms Among the overwhelming number of studies documenting
of both the familiar image of chaotically-varying byte countself-similarity and long-range dependence in Internet traffic, a
per 10 msec. interval, as well as a cumulative display of tot@w authors have identified various examples of nonstationarity.
bytes sent as a function of tinvaithout using any data aggre- In [45] [46], for example, the authors examine different notions
gation or smoothing The smoothness of the cumulative grapbf stationarity for various end-to-end performance parameters
(Fig. 6, right) is striking, in comparison to the more familiabf network traffic. It is suggested that the notion of stationar-
chaotically varying appearance of the per-interval graph (Fig.i6y depends on the scale of observation. Moreover, the authors
left). In particular, we see that despite the burstiness of indivighow that many processes (e.g., loss episodes) can be well mod-
ual packet arrivals, the slope of the cumulative traffic curve éded as i.i.d withirchange free regionsvhere stationarity is as-
well defined for time scales on the order of seconds. Althouglamed. This concept of describing the overall network behav-
the slope may remain relatively constant for several minutesiat as a series of piecewise-stationary intervals seems equally
atime, itis clearly a time-varying function.

Fig. 7 shows that current Internet backbone traffic exhibit®n, we speculate on several possible mechanisms that could be
similar nonstationarity. In Fig. 7 we show the cumulative nunresponsible for creating the piecewise-stationary traffic patterns
ber of packets sent over a 2 second interval from the Awe have observed in the data.
gust 2002 dataset. Notice that the total number of individual Clearly, the simplest possible explanation for nonstationarity
data points in each curve is approximately the same, since th¢he variation of the number of active sources over time. This

L L L L L L
0.6 0.8 1 1.2 1.4 1.6 1.8 2

changes in link speed (2.5 Gbps vs. 10Mbps) and measurement
period (2 sec. vs. 6min.) between these two figures are comple-
mentary. However, the slope of the new dataset is significantly
smoother than the earlier graph, and shows a distinctive pattern
of piecewise linear segments separated by well-defined corners.
The spikes shown near the bottom of Fig. 7 highlight the
points at which the rate changes. The height and direction of
each spike represents the relative magnitude of change in the
slope. In order to find the change points, a one-dimensional
version of theCanny Edge Detectoalgorithm is applied [6].
The algorithm is often used in image processing to reveal ob-
ject boundaries. The algorithm works as follows: first, Gaus-
sian filtering is applied to the time-series to filter out high fre-
uency noise. Then, the point where the gradient (i.e., deriva-
) reaches a peak value (i.e., a “ridge line”) is found. The
ridge lines are finally refined by setting to zero all points that
are on the sloping edges leading up to the peak, but not actually
there.

applicable to our traffic data. Thus, in the remainder of this sec-
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20 sec intervals (each of which contains approximately 2 million data pointsjiterarrival times obtained from multiple trace files.

Fig. 8. Variation of Hurst exponent with time and index of dispersion (IDI)

is obviously responsible for (large) diurnal traffic variationsJow(s), orindirectly, by inserting or removing other traffic from
and the authors in [7] [8] suggest that it may also be a signi-distant link and hence triggering a change in rate for the ac-
cant factor over much shorter time periods until the number tie flow(s) that use both links. This would be especially true
multiplexed sources becomes large enough to drive the arrif@l highly reactive TCP streams that suddenly see more bitrate
process to Poisson and sizes to independent. Although this axailable [38]. According to the routing persistence results re-
planation could certainly apply to links that support a relativelgorted in [46], approximately 10% of the commercial Internet
small number of multiplexed sources (e.g., LAN segments simoutes had lifetimes of a few hours or less. Moreover, their cu-
ilar to the well-knownBC-pAug8arace), it seems far less rea-mulative distribution function for route lifetimes (based on sam-
sonable as a possible explanation for the piecewise-linear valing more than 36,000 host-pairs) was very flat across short
ations we found in our OC-48 traces because the numbertiofie scales. Thus, since routing update protocols are specifi-
individual flows that were both large and fast enough to creatally designed to avoid synchronization in the update times, and
visible rate changes at these scales was extremely small.  since the entire Internet contains a huge number of routers, we
Another obvious possibility is to consider self-similarity incannot reject the possibility that the mean time between routing
the traffic generation process. In this case, we must try to digedates of both types visible to our measurement point is below
tinguish between nonstationarity and long-range dependenee¢ second. This hypothesis will be left as the subject of further
since it is well known that LRD estimators can be fooled bgtudy.
nonstationary behavior (such as trends or periodicity). For thisHowever, perhaps the most convincing explanation for this
reason, the authors in [28] suggest partitioning the time-serigpe of nonstationary behavior comes from [39], where the au-
into disjoint segments and separately calculating the valuethbrs carefully develop a methodology for quantifying the de-
the Hurst exponent for each segment. We applied the same priation from the Poisson limit of an aggregated arrival pro-
cedure to our OC48 traces by partitioning one of the 20 minugess composed of large numbers of highly-variable individ-
traces to form 60 disjoint time-series, each containing appraxal streams, when viewed over a wide range of different time
imately 2 million samples from 20 sec intervals. The resultscales. In particular, they show how aggregation of sources
of our analysis are shown in Fig. 8(a), which shows that thgn “transfer” variability (which originated from the stationary,
Hurst exponent value varies significantly over time, oscillatingigh-variance packet interarrival time distribution representing
between 0.5-0.7 for small scales. Similar observations hold f@single source) to the aggregate arrival process (which quickly
the case of larger scales where the Hurst exponent value vatigi@s on the characteristics of an almost-perfect Poisson pro-
between 0.65-0.9. This suggests that our current Internet ceegs with a time-dependent mean arrival rate). Consequently,
traces are nonstationary, at least for time scales on the ordett@ly show how the aggregate arrival process can behave like
approximately one hour. Poisson process in conjunction with small buffer sizes, but not
We also considered the possibility that routing changes mighith large buffer sizes, because of the cumulative variability
be responsible for the variations in the piecewise linear trafaused by large numbers of small long-term covariance terms.
fic rates. Note that a routing change could affect the measutadther words, these many small deviations from the Poisson
traffic on our link eitherirectly, by inserting or removing our limit may occasionally align themselves in peculiar ways to cre-
measurement link from the paths followed by a (set of) activae artifacts that are visible across large time scales, similar to
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Fig. 9. Characterizing the piecewise-linear structure of the data. LEFT: Autocorrelation function for the magnitude of the rate change sequence
falls within the 95% confidence window of zero. RIGHT: The CCDF for the distribution of the length of the change free intervals follows the
exponential distribution.

the beats produced by two tuning forks set to nearly identichiat, ¢; does not depend on the specific part of the trace but it
frequencies. does depend on the length of the series used. That is, its value
Such deviations can be visualized using the index of dispeemains approximately the same when estimated at any disjoint

sion for intervals (IDI) [39], which is defined as the sequengsiece of the trace with the same number of points. However,
{c2}, k > 1, where: when the number of samples in the series is increased past the
KVar(Sy) point where more than 5-10 second_s are rgpresented ((_a.g., more
oy than500, 000 — 2,000,000 consecutive arrivals depending on

[E(Sk)] the OC48 traces), it increases due to the piecewise nonstation-
and the random variablg, is the sum ofc consecutive interar- arity. For Fig. 8(b), we used 500,000 arrivals to estimate IDI.
rival times? Notice that if the arrival process is an ideal Poisson

process, then we should havg = 1 for everyk. However, if . Characterizing the nonstationarity.

the arrival process has higher variance at some time scale, theJFO quantify the behavior of the aggregate traffic process over

o Will tend to increase as a function bf longer time scales, we studied both timagnitudeof the rate

i b . -
etyF :?f. t?asgz-z zg?z\;\lssegové’fnﬁ;retso ?:T aluf?é:rt];o[régjf f,(;; Zlagct th(‘:é]ange events that separate each interval (i.e., the height of the
' 9: ' P Bikes“ in Fig. 7) and thedurationsof the piecewise-linear

Poisson assumption to be quite effective over short ranges %ange free intervals between each “spike”. Our results are

hatc? ~ 1 for small val r Il r L .
t ?“Ck or small values of), but to 9 adually degrade asshown in Fig. 9. We found that the magnitude of the rate change
k increases. For example, the authors in [39] found that when L .
! . : ._évents appears to be uncorrelated beyond a significant negative

aggregating 60 voice sources (each having a squared coefficien : . : . .

ha : . cqrrelation at distance one. This negative correlation at lag one
of variation of 18.1), the Poisson assumption was very good . ; . . .

. : implies that an increase in rate is followed by a decrease. This
for arrival sequences of length less than approximately 50, be-

yond whichc2 began to increase almost linearly. Notice th IS also evident from the alternation of direction of changes in

. . . Fig.7. However, the remainder of the ACF is very flat and falls
the well-knownBC-pAug8race is a very poor fit to the Pois- =", , :
o . within the 95% confidence interval of zero. We also found that
son distribution, but the recent traces obtained from both our . .
0C-48 link and the 100 Mbos trans-Pacific link monitored bt e durations of the change free intervals follow the exponen-
P Yal distribution. Although we do not show it here because of

the WIDE project show a remarkably good fit, even for large L .
2t Proj . y 9 9 ace limitations, the ACF for the durations of the change free
block sizes. Except for the April 2003 trace, all of our recen s : .
; X . intervals fell within the 95% confidence interval of zero.
traces fit the Poisson assumption very well even when we in- . . :
. . These results are consistent with theoretical results on the
crease the arrival sequence lengths into the thousands. Note . .
aggregation of large numbers of independent renewal streams

2[39] includes the following remark about the IDI. “This technique appliesinder theintermediate connection rateodel in [17], where

much more broadly, and we believe that it can greatly help understand ot{)¢s increase the number of active sources in proportion to the
complex arrival processes in queueing systems (and elsewhere).” We agree,

and would further like to emphasize its advantage of normalizing the autoc@vailable service rate t(_) maintain a constant normalized load.
variances across the interarrival time sequerfcé; }, with respect toE[X]  They show that the variability of the aggregate arrival process

rather toV ar(X). Hence the magnitude ef is a meaningful quantity, which _ _ : ;

allows us to gletzarmine thactual significangmf the correlations across a dis- converges to a non S,table’ non-Gaussian propgss with a zero
tance ofk steps. In contrast, the autocorrelation functipfk), is normalized Mmean and stationary incremehtFhus, by combining our ob-
by the standard deviatiom, = p(0), so we can only compare thelative sig-

nificanceof correlations across different distances — without knowing whether3In [17], they also show that the limit process is continuous, has finite mo-
any of these deviations are significantly greater than zero. ments of all orders, is second-order self-similar, but not self-similar.
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large scales the behavior is the same.

Fig. 10. Wavelet (Haar) energy versus scale for byte counts. (tiBfé%e x 10us.)
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characterized by a dichotomy between small and large scales.
To analyze the scaling behavior, we study the series of byte
and packet counts with smallest aggregation level ats10o
overcome accuracy related problems of the Hurst exponent es-
timators [26] [32] [22] [40], all common estimators [4] [40] [3]
are applied to each series.

Our analysis shows that backbone traffic is characterized by
long-range dependence. However, the intensity of correlation
depends on the scale of observation. Specifically, in all traces
analyzed we observe a dichotomy in the scaling in agreement
with previous studies [16] [15] [47]. The point of change is
within the millisecond scales, albeit different for each case.
However, the pattern is the same: At scales below the point
of change the Hurst exponent is just above 0.6, while at larger
scales it varies between 0.7 and 0.85 depending on the trace and
the estimator usetl Table Il summarizes the points of change
for the value of Hurst exponent. Similar observations hold for
the packet counts case.

Fig. 10(a) presents the scaling behavior of byte counts us-
ing the wavelet estimator for the aggregate, TCP and UDP traf-

Fig. 11. ACF calculated with global mean and moving average medit. The base wavelet used is the Haar wavelet for scales 6-25

based on a Gaussian window. Correlation coefficients drop to z
after first lags when local nonstationarities are removed with movi

average.

3&34%3-5min). Because of the dominance of the TCP traffic
(Ta

ble 1), the energy line for the UDP traffic appears lower in
both figures. Fig. 10(a) demonstrates that the scaling behavior
of the aggregate traffic is highly correlated with the behavior

servations with these theoretical results, we conjecture that tfel CP traffic. Both show the change in the value of the Hurst
nonstationarity of the Poisson traffic rate may be well describ&®m 0.62 to 0.8 at the same scale (16). On the contrary, UDP

by a Markovian random walk model.

V1. TRAFFIC APPEARSLRD AT LARGE TIME SCALES

In this section, we study the scaling behavior of the backbof¥ated by our observations in the previous sections. We cal-
traffic using the same set of OC48-link traces from which weHlated the ACF coefficients for 400 lags using two different
showed nonstationary Poisson behavior at multi-second tiMy@ys: @) The regular ACF function described in section Il and

scales. Our observations across large time scales show that

scaling behavior does not follow the pattern of the aggregate
traffic or TCP traffic.

In order to highlight the thin line between long-range depen-
dence and nonstationarity, we offer the following example mo-

Figures showing the result of the Hurst exponent estimators for our traces

backbone traffic demonstrates I_ong—range depen_dence as_ rﬂg@'been omitted due to space limitations. However all show with 99% confi-
sured by the Hurst exponent estimators. The scaling behaviodédsce similar dichotomy and Hurst exponent values.



b) replacing theglobal average used in the ACF, bymaoving durations of the change free intervals were found to be expo-
average(calculated using a Gaussian window), thus removingentially distributed and uncorrelated, while the change events
local nonstationaritiegrom the calculation of the autocorrela-themselves appeared to be stationary with only a trivial one-
tion function. Fig. 11 shows the effect of removing “nonstastep (negative) correlation in the increments. We note that these
tionarity” from the January OCA48 trace on the autocorrelatiambservations are also consistent with the theoretical results for
function. The correlations fall within the 95% confidence intetarge-scale aggregations of renewal processes which have been
val of zero, after Imsec when the moving average is used. Tderived under the assumption of scaling the number of sources
magnitude of the correlation depends mostly on the standamid network capacity together to keep the normalized offered
deviation (sigma) of the Gaussian window, and also on its sidzead fixed. We also show that this type of traffic model (i.e.,

On the other hand, when the Hurst exponent estimatd?sisson with nonstationarity at multi-second time scales) is
are applied to the Gaussian moving average function, we findnsistent with the kind of long-range dependence that is com-
that the smoothed function has the same Hurst exponent (amnly observed in network data over larger time scales.
proximately 0.8) as the original series at large enough scales|t would be interesting to analyze more data traces from: a)
Fig. 10(b) presents the scaling behavior for the aggregate traiitier backbone links, and b) links towards the periphery of the
after the Gaussian smoothing. Because high frequency naiggwork. It could very well turn out that different links exhibit
has been removed, the smoothed curves have lower energgifiérent behavior especially at small time scales as suggested
small scales. On the other hand, high frequency noise is presgyitome interesting recent studies [21] [47]. Scaling phenom-
in Fig. 11, where there are only deviations from the local aena especially at small time scales may be sensitive to the traffic
erage. At larger scales, the scaling behavior is the same asiig in terms of applications and the idiosyncrasies of low level
original aggregate traffic (Fig. 10(b), beyond scale 13). protocols.

However, since this same Gaussian moving average funcQur work has also left a number of interesting questions
tion can also be thought of as an approximation to the pieaghanswered, which remain as subjects for further study. Most
wise linear rate function described in the section V with its colmportantly, is the type of nonstationary behavior we see at
ners rounded off, we now have two different perspectives of thqulti-second time scales sufficient to explain everything, or
same nonstationarity: exponentially distributed, stationary Ugire there even-larger scale effects remaining to be discovered?
correlated increments and long-term correlatfoni@/hile this  Another important open issue is finding the mechanism that is
description of the rates series is in agreement with fraction@lsponsible for the distinctive piecewise-linear variation in the
Gaussian noise theory, this is clearly a question for further stughte.
in the future! Finally, we found that focusing on the proper time scale

turned out to be a recurring theme in our work as well as in
VIl. CONCLUSIONS many of the references cited. Just as the analogy of the two

In this paper, we revisit the validity of the Poisson assumb-ugs in the garden shows it is important to avoid excessively

. - L arge scales, we must also be careful not to focus on too small
tion by examining a number of current and historical traces Q

Internet traffic. We find that at sub-second time scales, ba&—tlme scale. AIth_ough Wh'tt pom_ted out that the right time

. . : Scale must be an increasing function of load placed on a net-
bone traffic appears to be well described by Poisson packet af-

. : ) : work resource [39], Norros [33] has observed that network traf-
rivals. Our study provides evidence for how the ongoing pattefn o ; . .
X . ic sources have the flexibility and intelligence to adapt their
of Internet evolution may potentially affect the future charac- L - : ;
- . : . ransmission policies to the resources currently available in the
teristics of its traffic, as shown by our traces. We conjecture . ) -
. ; : 7 . : network. Thus, we conjecture that the traffic characteristics for
that the particular way in which this increase in scale is unfold-

in . : oo 2 Internet backbone may continue to grow even better be-
g seems to be pushing the Internet in the general dlrechonho ed in the future
easier-to-understand and better-behaved traffic models (i.e., tRyed! utare.
Poisson assumption) — or at least not in the direction of sophis-
ticated traffic models!

More specifically based on traces from the MFN and WIDE
backbones, we found that up to sub-second time scales traf-
fic is well characterized by a stationary Poisson model. This

is important because it covers the relevant time scales for the

delivery of a single pac!<et (ie., the Round-Trip T_‘m‘?)- Be- We would like to thank Constantinos Dovrolis and Mark
yond that point, the traffic seems to take on a distinctive for@ ovella for their valuable comments and constructive criti-

of nonstationary behavior, which consists of short intervals Qfsm. Thanks are also due to kc claffy and Margaret Murray
“change free regions” punctuated by sudden change events. I Heir support
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