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Internet Traffic TendJowardPoisson and
Independent as the Load Increases

Jin Cao, William S. Cleveland, Dong Lin, Don X. Sun

Abstract— Network devices put packets on an Internet hosts send packets to one another across the Internet.

link, and multiplex, or superpose, the packets from differ- \When the transfer is completed, the connection ends.
ent active connections.

Extensive empirical and theoretical studies of packettraf-  1he headers, typically 40 bytes in size, contain
fic variables — arrivals, sizes, and packet counts — demon- much information about the packets such as their
strate that the number of active connections has a dramatic source, destination, size, etc. In addition there are 40-
effect on traffic characteristics. At low connection loads on byte control packets, all header and no file data, that

an uncongested link — that is, with little or no queueing on . ;
the link-input router — the traffic variables are long-range transfer information form one host to the other about

dependent, creating burstiness: large variation in the traf- the state of the connection. The maximum amount of
fic bit rate. As the load increases, the laws of superposition file information allowed in a packet is 1460 bytes, so

of marked point processes push the arrivals toward Poisson, packets vary in size from 40 bytes to 1500 bytes.
the sizes toward independence, and reduces the variability
of the counts relative to the mean. This begins a reductionin ~ Each packet travels across the Internet on a path

the burstiness; in network parlance, there are multiplexing made up of devices and transmission links between
gains. . _ o these devices. The devices are the two hosts at the
Once the connection load is sufficiently large, the network ends and routers in-between. Each device sends the

begins pushing back on the attraction to Poisson and inde- . . .
pendence by causing queueing on the link-input router. But packet across a transmission link to the next device

if the link speed is high enough, the traffic can get quite close ON the path. The physical medium, or the “wire”, for
to Poisson and independence before the push-back begins ira link might be a telephone wire from a home to a
force; while some of the statistical properties are changed in telephone company, or a coaxial cable in a university

this high-speed case, the push-back does not resurrect th gy . . . .
burstiness. These results reverse the commonly-held pre?bu”dmg’ or a piece of fiber connecting two devices on

sumption that Internet traffic is everywhere bursty and that t_he network of an Internet Ser\_/ice prQVider- So each

multiplexing gains do not occur. link has two devices, the sending device that puts the
Very simple statistical time series models — fractional bits of the packet on the link, and the receiving de-

sum-difference (FSD) models — describe the statistical vari- vice, which receives the bits. Each router serves as

ability of the traffic variables and their change toward Pois- L . . :
son and independence before significant queueing sets in@ receving device for one or more input links and as

and can be used to generate open-loop packet arrivals andthe sending device for one or more output links; it re-

sizes for simulation studies. ceives the packet on an input link, reads the header
Both science and engineering are affected. The magni-tg determine the output link, and sends bits of the

tude of multiplexing needs to become part of the fundamen- packet

tal scientific framework that guides the study of Internet t ) )

traffic. The engineering of Internet devices and Internetnet-  Each link has a speed: the rate at which the bits are

works needs to reflect the multiplexing gains. put on the wire by the sending device and received by
the receiving device. Units are typically kilobits/sec
|. ARE THERE MULTIPLEXING GAINS? (kbps), megabits/sec (mbps), or gigabits/sec (gbps).

Typical speeds are 56 kbps, 1.5 mbps, 10 mbps, 100
When two hosts communicate over the Internet mbps, 156 mbps, 622 mbps, 1 gbps, and 2.5 gbps.
for example, when a PC and a Web server commumhetransmission timef a packet on a link is the time
cate for the purpose of sending a Web page from ti¢akes to put all of the bits of the packet on the link.
server to the PC — the two hosts set uppanection For example, the transmission time for a 1500 byte
One or more files are broken up into pieces, head¢12000 bit) packet is 12@s at 100 mbps and 12s
are added to the pieces to form packets, and the t4t0l gbps. So packets pass more quickly on a higher-

This paper is to be published NMonlinear Estimation and Classifica- Speed link than on a Iower-speed one.
tion, eds. C. Holmes, D. Denison, M. Hansen, B. Yu, and B. Mallick, The packet traffic on a link can be modeled as a

Springer, New York, 2002. The authors are in the Computing a : : : _
Mathematical Sciences Research Division, Bell Labs, Murray Hill, N?]ﬂarked pomt process. The arrival times of the pro
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a packet arrives at the moment its first bit appea880 kilobits. An amount of traffic is allowed so that
on the link. The marks of the process are the paclaily a small percentage of packets are dropped, say
sizes. An Internet link typically carries the packets @.5%. For this Poisson and independent traffic, we
many active connections between pairs of hosts. Téwuld do this and and achieve a utilization of 95%, so
packets of the different connections are intermingléide traffic rate would be 1.425 mbps.
on the link; for example, if there are three active con- Unfortunately, we do not get to choose the traffic
nections, the arrival order of 10 consecutive packeiRaracteristics. They are dictated by the engineering
by connection number might be 1, 1, 2, 3, 1, 1, 3, Brotocols that underlie the Internet. What can occur
2, and 3. This intermingling is referred to as “statigs far less accommodating than traffic that has a con-
tical multiplexing” in the Internet engineering literastant bit rate, or traffic that is Poisson and indepen-
ture, and as “superposition” in the literature of poindent. The traffic can be vemyursty This means the
processes. following. The packet sizes and inter-arrival times are
If a link’s sending device cannot put a packet theequences that we can treat as time series. Both se-
link because it is busy with one or more other packuences can have persistent, long-range dependence;
ets that arrived earlier, then the device puts the pack@s means the autocorrelations are positive and fall
in a queue, physically, a buffer. Queueing on the def slowly with the lagk, for example, liket~ where
vice delays packets, and if it gets bad enough, afick o < 1. Long-range dependent time series have
the buffer size is exceeded, packets are dropped. Tlbisg excursions above the mean and long excursions
reduces the quality of Internet applications such below the mean. Furthermore, for the sizes and inter-
Web page downloads and streaming video. Consia@grivals, the coefficient of variation, the standard de-
a specific link. Queueing of the packet in the buffer eiation divided by the mean, can be large, so the ex-
the link’s sending device igpstream queueingo is cursions can be large in magnitude as well as long
gueueing of the packet on sending devices that pmtime. The result is large downstream queue-height
cessed the packet earlier on its flight from sendimtistributions with large variability. Now, when we en-
host to receiving host. Queueing of the packet on thaeer a link of 1.5 mbps, utilizations would be much
receiving device, as well as on devices further alotgwver, about 40%, which is a traffic rate of 0.6 mbps.
on its path islownstreangueueing. Before 2000, this long-range dependence had been
All'along the path from one host to another, the stastablished for links with relatively low link speeds
tistical characteristics of the packet arrivals and theind therefore low numbers of simultaneous active
sizes on each link affect the downstream queueir@pnnections, or connection loads, and therefore low
particularly the queueing on the link receiving devicéraffic rates. But beginning in 2000, studies were un-
The most accommodating traffic would have arrivalfertaken to determine if on links with higher speeds,
and sizes on the link that result in a traffic rate iand therefore greater connection loads, there were
bits/sec that is constant; this would be achieved if teéfects due to the increased statistical multiplexing.
packet sizes were constant (which they are not) and®ifippose we start out with a small number of active
they arrived at equally spaced points in time (whiatonnections. What happens to the statistical proper-
they do not). In this case we would know exactly hoties of the traffic as we increase the connection load?
to engineer a link of a certain speed; we would alloim other words, what is the effect of the increase in
a traffic rate equal to the link speed. There would lmeagnitude of the multiplexing? We would expect that
no queueing and no device buffers. The utilizatiothe statistical properties change in profound ways,
the ratio of the traffic rate divided by the link speedot just simply that the mean of the inter-arrivals de-
would be 100%, so the transmission resources wouletases. Does the long-range dependence dissipate?
be used the most efficiently. If the link speed weioes the traffic tend toward Poisson and independent,
1.5 mbps, the traffic rate would be 1.5 mbps. as suggested by the superposition theory of marked
Suppose instead, that the traffic is stationary wiipint processes? This would mean that the link uti-
Poisson arrivals and independent sizes. There wolif@tion resulting from the above engineering method
be queueing, so a buffer is needed. Here is havgrease. In network parlance, are there would be
we would engineer the link to get good performanceultiplexing gains.
Suppose the speed is 1.5 mbps. We choose a buffelin this article, we review the results of the new
size so that a packet arriving when the queue is neastydies on the effect of increased statistical multiplex-
full would not have to wait more than about 500 msng on the statistical properties of packet traffic on an
for 1.5 mbps this would be about 100 kilobytes, dnternet link.
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[I. THE VIEW OF THEINTERNET CIRCA 2000 inter-arrivals and packet sizes are long-range depen-
dent, although one might have guessed this from the

The study of Internet traffic beginning in the earlyesults for counts. The first report in the literature of
1990s resulted in extremely important discoveries yhich we are aware appeared in 1999 [5]. The first ar-
two pioneering articles [1], [2]: counts of packet aticles of which we are aware that sizes are long-range
rivals in equally-spaced consecutive intervals of timgpendent appeared in 2001 [10], [11].
are long-range dependent and have a large coefficienfyhile there was no comprehensive empirical study
of variation (ratio of the standard deviation to thef the effect of multiplexing, before 2000 there
mean), and packet inter-arrivals have a marginal digere theoretical investigations. Some of the early,
tribution that has a longer tail than the exponentidgbundations-setting articles on Internet traffic con-
This means the arrivals are not a Poisson process fgned conjectures that multiplexing gains did not oc-
cause the counts of a Poisson are independent anddiiie Lelandet al.[1] wrote:

inter-arrivals are exponential. The title of the secongle demonstrate that Ethernet LAN traffic is statisti-
article, “Wide-Area Traffic: The Failure of POISSOQ;a”y self-similar, ... and that aggregating streams

Modeling”, sent a strong message that the old Poisrsuch traffic typically intensifies the self-similarity
son models for voice telephone networks would nppurstiness’) instead of smoothing it.
do for the emerging Internet network. And becaug&ovella and Bestavros [3] wrote:

queue-height distributions for long-range dependenhe of the most important aspects of self-similar traf-
traffic relative to the average bit/rate are much greatgf is that there is is no characteristic size of a traffic
than for Poisson processes, it sent a signal that Kiyst; as a result, the aggregation or superposition of
ternet technology would have to be quite differemhany such sources does not result in a smoother traf-
from telephone network technology. The discovef pattern.
of long-range dependence was confirmed in Mapyrther consideration and discussion however sug-
other studies (e.g., [3], [4], [5]). The work on longyested that issues other than long-range dependence
range dependence drew heavily on the brilliant Wog@eded to be considered. Erramgial. [12] wrote
of Mandelbrot [6], both for basic concepts and for  he FBM [fractional Brownian motion] model
methodology. does predict significant multiplexing gains when a
Models of source traffic were put forward to extarge number of independent sources are multiplexed,
plain the traffic characteristics [3], [7], [8], [9]. Thethe relative magnitude is reduced b ... .
sizes of transferred files utilizing a link vary im+loyd and Paxson [7] wrote:
mensely; to a good approximation, the upper tail of .. we must note that it remains an open ques-
the file size distribution is Pareto with a shape p#on whether in highly aggregated situations, such as
rameter that is often between 1 and 2, so the megf internet backbone links, the correlations [of long-
exists but not the variance. A link sees the transfer @ihge dependent traffic], while present, have little ac-
files whose sizes vary by many orders of magnitudgal effect because the variance of the packet arrival
Modeling the link traffic began with an assumptioprocess is quite small.
of a collection of on-off traffic sources, each on (witi addition, there were theoretical discussions of the
a value of 1) when the source was transferring a fil@plications of increased multiplexing on queueing
over the link, and off (with a value of 0) when not[13], [14], [15], [16], [17]. But the problem with
Since the model has no concept of packets, just c@fch theoretical study is that results depend on the
nections, multiplexing becomes summation; the lirdssumptions about the individual traffic sources be-
traffic is a sum, or aggregate, of source processes. ggy superposed, and different plausible assumptions
cause of the heavy tail of the on process, the summgad to different results. Without empirical study, it
tion is long-range dependent, and for a small numhgas not possible to resolve the uncertainty about as-
of source processes, has a large coefficient of varggmptions.
tion. We will refer to this as then-off aggregation  with no clear empirical study to guide judgment,
theory many subscribed to a presumption that multiplexing
Before 2000, there was little empirical study ofjains did not occur, or were too small to be relevant.
packet arrivals and sizes. Most of the intuition, thé-or example, Listaret al.[18] wrote:
ory, and empirical study of the Internet was based on.. traffic on Internet networks exhibits the same
a study of packet and byte counts. It took some tinoharacteristics regardless of the number of simulta-
for articles to appear in the literature showing packeeous sessions on a given physical link.
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Internet service providers acted on this presumptidnrms or 10 ms or 100 ms. Lgt be the packet count,
in designing and provisioning networks, and equiphe number of arrivals in interval Thep; are studied
ment designers acted on it in designing devices. as a time series in
Suppose the packet traffic is the result of multiplex-
lll. FOUNDATIONS: THEORY AND EMPIRICAL ing , traffic sources on the link. Each source has
STUDY packet arrival times, packet sizes, and packet counts.

Starting in 2000, a current of research was begliie arrival times:; and the sizeg; of the superpo-
to determine the effect of increased multiplexing ogition marked point process result from the superpos-
the statistical properties of many Internet traffic varing of the arrivals and sizes of the source marked
ables, to determine if multiplexing gains occurregoint processes. The packet copyf the superposi-
[10], [19], [20], [21], [22]. tion process in intervalresults from summing the:

The empirical study of byte and packet counts ¢acket counts for the: sources in interval, theoret-
previous work was enlarged to include a study of deal considerations for thg; are, of course, the same
rivals and sizes. Of course, much can be learned fr&® those for the on-off aggregation theory described
counts, but arrivals and sizes are the more fundameavlier.
tal traffic variables. It is arriving packets with vary- Provided certain assumptions holthe superpo-
ing sizes that network devices process, not aggreg#ion theory of marked point processes prescribes
tions of packets in fixed intervals, and packet and bytertain behaviors fow;, t;, ¢;, and p; as m in-
counts are derived from arrivals and sizes, but neteases [24]. The arrivals; tend toward Poisson,
conversely. which means the inter-arrivalg tend toward inde-

In keeping with a focus on arrivals and sizependent and their marginal distribution tends toward
the superposition theory of marked point processexponential. The sizeg; tend toward independent,
became a guiding theoretical framework, replacirt there is no change in their marginal distribution.
the on-off aggregation theory that was applicable s discussed earlier, thieandg; have been shown to
counts but not arrivals and sizes [23], [24]. The twe long-range dependent for smaill Thus the the-
theories are quite different. For the on-off aggrery predicts that the long-range dependence of the
gation theory, one considers a sum of independeéxmd theg; dissipates. But the autocorrelation of the
random variables, and a central limit theorem shoywacket countg; does not change with so its long-
the limit is a normal distribution. For the superporange dependence is stable. However, the standard
sition theory, in addition to the behavior of sumgjeviation relative to the mean, the coefficient of vari-
one considers a superposition of independent markastbn, falls off likel//m. This means that the bursti-
point processes, and a central limit theorem showsss of the counts dissipates as well; the durations of
the limit is a Poisson point process with indepem@xcursions of); above or below the mean, which are
dent marks, and quite importantlfhe theorem ap- long because of the long-range dependence, do not
plies even when the inter-arrivals and marks of eacthange because the correlation stays the same, but the
superposed source point process are long-range dsagnitudes of the excursions get smaller and smaller
pendent because the statistical variability decreases.

The following discussion draws largely on the very The following assumptions for the source packet
detailed account in [19]. We will consider packet aprocesses lead to the above conclusions:
rivals and sizes, and packet counts in fixed intervalshomogeneity: they have the same statistical proper-
We omit the discussion of byte counts since their bges.
havior is much like that of the packet counts. . Stationarity: their statistical properties do not

change through time.

IV. THEORY. POISSON ANDINDEPENDENCE | jndependence: they are independent of one another

Leta;, for j = 1,2, ... be the arrival times of and the size process of each is independent of the ar-
packets on an Internet link wheye= 1 is for the first rival process.
packet,j =2 is for the second packet, and so forth. Letnon-simultaneity: the probability of two or more
t; = aj41 — a; be the inter-arrival times, and lgt be packet arrivals for a source in an interval of length
the packet sizes. We treatandg; as a marked point w is o(w) whereo(w) /w tends to zero a tends to
processa;, t;, andg; are studied as time series;jn Zero.

Suppose we divide time into equally-spaced intervals,We cannot take the source processes to be the indi-
[Ai,A(i+ 1)), fori=1, 2, ... whereA might be vidual connections; they are not stationary, but rather
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transient, that is, that have a start time and a finiplackets in the queue when packearrives, ther;
time. Instead, we randomly assign each connectiamalso the arrival time at the queue. Suppose queue-
to one ofm source processes. Suppose the start timeg is first-in-first-out. Then the order of the arriv-
are a stationary point process, andddte the arrival ing packets at the queue is the same as the order of
rate. Then the arrival rate for each source processleparting packets from the queue, gois also the
p/m. We letp — oo, keepingp/m fixed to a number packet size process for the arrivals at the queue.
sufficiently large that the source processes are stationThe effect of queueing ogy is simple. Because the
ary; som — oo. queueing does not alter the, the statistical proper-
We refer to the formation of the source processeggs of theg; are unaffected by the queueing; in par-
the assumptions about them, and the implications,tesilar, their limit of independence is not altered..
the superposition theory It is surely true that all  But statistical theory for the departure times from a
we have done with this theory is to reduce our uueue is not developed well enough to provide much
certainty about whether the superposition procesggisidance for the affect of queueing on the statistical
attracted to Poisson and independent with an uncpreperties oft; andp,. However, the properties of
tainty about whether the above construction creathe extreme case are clear. nif is so large that the
source processes that satisfy the assumptions. Buguieue never drains, then theare equal tgy; /¢, so
is a least plausible, although by no means certain, thia¢¢, take on the statistical properties@f Since the
there are cases where the source process satisfieg thend to independence, theeventually go to inde-
above assumptions over a range of values.o¥What pendence, so there is no long-range dependence. A
we have done is to create a plausible hypothesis toP@sson process is a renewal process, a point process
tested by empirical study which we describe shortlyvith independent inter-arrivals, with the added prop-
erty that the marginal distribution of the inter-arrivals
V. THEORY. THE NETWORK PUSHES BACK is exponential. The extreme process is a renewal

While we cannot verify the hypotheses of the sir"0Cess but with a marginal distributio_n proportional
perposition theory without empirical study, we caf that of the packet sizes. The extremés the count
at least quite convincingly describe a way in whicRrocess corresponding to therenewal process; this
the network can push back and defeat assumptioffaplies the coefficient variation of; is a constant, so
Oncem is large enough, significant link-input queude decrease like/./m prescribed by the superposi-
ing begins, and then grows as gets larger still; at tion theory is arres?ed, and it implies theare inde-
some point, the queueing will be large enough that tR€Ndent, so there is no long-range dependence. We
assumptions of independence of the different sou/é@ Not expect to see the extreme case in our empirical
processes and of independence of the inter-arrivaiddy. butit does provide at least a point of attraction.
and the sizes of each source process, no longer serve )
as good approximations in describing the behavior of Vl. EMPIRICAL STUDY: INTRODUCTION
the source processes. (A small amount of queueingThe superposition theory and the heuristic discus-
which almost always occurs, does not invalidate tlseon of the effect of upstream queueing provide hy-
approximation.) potheses about the statistical properties of the inter-

Consider two packetg,= 19 and; = 20. Suppose arrivalst;, the sizesy;, and the counts;. We carried
packet 20 waits in the queue for packet 19 to be trarm#t extensive empirical studies to investigate the va-
mitted. The two are back-to-back on the link, whichdity of the hypotheses [10], [19], [25].
means, because the arrival time is the first momentn the early 1990s, Internet researchers put together
of transmission, thaty is the time to put the bits of a comprehensive measurement framework for study-
packet 19 on the link, which is equal &g, /¢, where ing the characteristics of packet traffic that allows not
¢is the link speed. For example, &t 100 mbps, the just statistical study of traffic, but performance stud-
time for a 1500 byte (12000 bit) packet is 120So ies of Internet engineering designs, protocols, and al-
given g9 we knowt,y exactly. Queueing can occumigorithms [26], [27]. The framework consists of cap-
on routers further upstream than the link-input routéuring the headers of all packets arriving on a link
and affect the assumptions as well. and time-stamping the packet, that is, measuring the

The arrival times of the packets on the link, are arrival time,a;. The result of measuring over an in-
the departure times of the packets from the queterval of time is apacket trace Packet trace collec-
The departure times are the arrival times at the queian today enjoys a very high degree of accuracy and
plus the time spent in the queue. If there are no otheffectiveness for traffic study [28], [29].
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Lr;cl?g%;%lg Nuzrgber 62L2ipnkbps 1%(5% ets with back-to-back runs @for more is a measure
ATX2(00560) 23 622mbps | 13.06 of the amount of queueing on the link-input router.
COS1(90sec) 90 156mbps | 10.83 We studied this measure for many valuestofWe
ﬁcz)ﬁ(zggisnic) 19830 %ggmzz 18-% need such study to indicate when the network is likely
NZIX7 (Gmin) 100|100 mbps|~ 9,60 pushing back on the attraction to Poisson and inde-
NZIX5(5min) 100 | 100 mbps| 8.66 pendence.
NZIX6(5min) 100 | 100 mbps| 7.85 i -
NZIXG (M) 100100 mhpsl 732 Figure 1 graphs the percent of papkets whose back
NZIX4(5min) 100 | 100 mbps| 7.17 to-back runs are 3 or greater agaihsf(c). Each
BELL(5min) 500 | 100 mbps| 6.97 point on the plot is one trace. Each of the 15 pan-
NZIX3(5min) 100 | 100 mbps| 6.54 els contains the points for one link. The panels are
BELL-IN(5min) 500 | 100 mbps| 5.98 .
BELL-OUT(Gmin) | 500 | 100 mbps| 5.94 ordered, left to right and bottom to top, by the means
NZIXL(5min) 100 | 100 mbps| 4.42 of the log(c) for the 15 links, given in column 4 of
TABLE | Table I. o _
LINK: NAME INCLUDING LENGTH OF TRACESe NUMBER: Flgure l’ and Other_s like it fOI’. different values Of
NUMBER OF TRACESs LINK: SPEEDs log(c): LoG Base2  F» Show that only four links experience more than mi-
AVERAGE NUMBER OF ACTIVE CONNECTIONS nor queueing — COSl’ COSZ' A|X1’ and AIX2 —

so we would not expect to see significant push-back
except at these four. However, queueing further up-
stream than the link-input router can affect the traffic
We put together a very large database of packwbperties as well, but without creating back-to-back
traces measuring many Internet links whose speguskets, so we reserve final judgment until we see the
range from 10 mbps to 2.5 gbps, and we built S-Netpming analyses.
a software system, based on the S language for graphigure 1 also provides information about the val-
ics and data analysis, for analyzing very large packets ofc. Since the mean dbg(c) increases left to
header databases [20]. We put the database and S+idgit and bottom to top, the distribution shifts gener-
work to study the multiplexing hypotheses. ally toward higher values in this order. The smallest
For each studied trace, which covers a specificwhich appears in the lower left panel, is 5.9 con-
block of time on a link, we compute;, ¢;, ¢;, and nectlons; the largest, Wh_lch appears in the upper right
100-msp;. We also need a summary measure §anel, is 16164 connections.
the magnitude of multiplexing for the trace. At each
pointin time over the trace, the measure is the numb¥#- EMPIRICAL STUDY: FSDAND FSD-MA(1)
of active connections. The summary measuréor MODELS
the whole trace is the average number of active con-n this section we introduce two very simple

nections over all times in the trace. Here, we describRisses of stationary time series models [25], one a
some of the results of one of our empirical invesubclass of the other, that we found provide excellent
tigations in which we analyzed 2526 header packés to the inter-arrivals;, the sizes;;, and the counts
traces, 5 min or 90 sec in duration, from 6 Interngt for the 2526 traces. The models are parametric.
monitors measuring 15 links ranging from 100 mbasne of the parameters determines the amount of de-
to 622 mbps [19]. Table | shows information aboyendence. At low values of the parameter, the series
the traces. Each row describes the traces for one liflgs substantial autocorrelation and is long-range de-
The first column gives the trace group name: the tragendent. As the parameter increases, the amount of
length is a part of each name. Column 2 gives tigependence decreases. At the largest value of the pa-
number of traces. Column 3 gives the link speeghmeter, the series is independent. Other parameters
Column 4 gives the mean of the log base 2:dbr determine the marginal distribution of the series and

the traces of the link. therefore the coefficient of variation. By fitting the
Consider each packet in a trace. Arriving after ihodels to each trace, we can study the multiplexing
is a back-to-back run of packets, foik = 0,1, ...; gains by studying the changing values of the parame-

each packet in the run is back-to-back with its préers across the traces, and relating the changes to the
decessor. If packet 19 has a back-to-back run ofa@erage active connection loadf the traces.

packets, then packet 20 is back-to-back with 19, 21 isThe two model classes are fractional sum-
back-to-back with 20, 22 is back-to-back with 21, buifference (FSD) models and FSD-MA(1) mod-
23 is not back-to-back with 22. The percent of packls [25]. FSD models have two additive components:
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a simple fractional ARIMA and white noise. MA(1)Generalizations of this latter model have been named
refers to a first-order moving average [30]. FSDBsum-difference modelg32].

MA(1) models replace the white noise of the FSD The FSD-MA(1) model is

model with an MA(1). Since white noise is a spe-

cial case of an MA(1), the FSD models are a sub- 2e = V1 —0 s, + V0 n,,

class of the FSD-MA(1) models. As we will see,

the names “transformation-Gaussian FSD modelsinilar to the FSD model, but where, instead of
and “transformation-Gaussian FSD-MA(1) modelsihite noise is a first order moving-average

would convey more information about the nature of

the models, but for simplicity we will use the shorter Ny = Gy + BCu-1,
names. _ _ _ _ _
Supposer, for v =1, 2,... is a stationary time where(, is Gaussian white noise with mean 0 and

series with a marginal cumulative distribution funcvariance(1 + 5?)~', which makes the variance of,
tion F(x; ¢) where¢ is a vector of unknown param-equal to 1. If3 = 0, the moving-average component
eters. For examplef'(z; ¢) might be log-normal or is white noise so the model is simply an FSD. We
Weibull. Letz, = T(z,;¢) be a transformation of need the above restrictioh> 0. If d = 0, the model

r,, such that the marginal distribution of, is nor- is not identifiable becausg,, whose model has two
mal with mean 0 and variance 1. @~'(r) is the parameters, is a first order moving average with vari-
quantile with probabilityr of z,, thenT(z,;$) = ance 1, which has one parameter.

G (F(zy;¢)). If z, is log-normal and the vector Supposez, is an FSD-MA(1) model.  Let

¢ consists of the meap and variancer? on the log 7:(k),7s(k) andr,(k) be the autocorrelation func-

scale, thell'(z,; ¢) = (log(z,) — p)/o. tions of of z,, s,, andn,, respectively, for lags
Next we suppose that, is a Gaussian time seriesf = 0,1,2,... . Becaused > 0, s, is long-
that is, the joint distributions of all finite subsets ofange dependent, and(k) falls off like £**~! and
the time series are multivariate normal. increases at all positive lags dsncreasesr, (k) =
Let B(1+ B*) Yk =1} where{k = 1}is 1,if k = 1,
2e = V1 —0 s, + V0 n,, and is 0 ift > 1. Thus

wheres, andn, are independent of one another and —(1_ 2y 177 _
each has mean 0 and varianceri, is white noise, r(k) = (1= 0)rs(k) + 051+ 57) " {k = 1}.

that is, an uncorrelated time series.is a fractional pq p _, 1 the long-range dependent component
ARIMA (FARIMA) model [31] V1 -0 s, contributes less and less variationp
(I - B)dsu — ey + ey _Flnal_ly, whenf = 1_, z, IS White noise |f_ﬁ =0, and
is a first-order moving average otherwise.
whereBs, = 5,1, 0 < d < 0.5, ande, is white ~ The power spectrum of, is

noise with mean 0 and variance
, 4cos*(mf) 1+ %+ 2B cos(2n f)

o (1=d)I?(1-d) p:(f) = (1-0)0; ] d 2
%¢ T Tor(1 - 24) (4sin’(r 1)) b
to make the variance af, equal to 1. for 0 < f < 0.5. The frequencyf has units

zy 1s an FSD model. We coined this term becausg§cles/inter-arrival fort;, cycles/packet for;, and
the model forz, can be written as a combination otycles/interval-length fop;. p.(f) decreases mono-
fractional and summation difference operators actitgnically asf increases. Because > 0, the term
on z, and on two white noise series: sin~24(r f) goes to infinity atf = 0, so if§ < 1,
a d no matter how closé gets to 1,p,(f) gets arbitrar-
(I = B)% = (I + Blew + (I = B)ny. ily large nearf = 0, but its ascent begins closer and
These models are to FARIMA models what the vef§/oser to 0 ag gets closer to 1.
simple and widely applicable IMA(1,1) models are Figure 2 shows the power spectra for 16 FSD-

to ARIMA models [30]; the IMA(L,1) models can peMA(1) models. For ea_ch panel, the spectrum is eval-
written as uated at 100 frequencies, equally spaced on alog base

2 scale from-13to —1. The value ofl in all 16 cases
(I = B)z, = (I + B)e, + (I — B)n,,. is0.41. 6 varies from 0.39 to 0.99 by 0.2 as we go left
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Fig. 2. The log power spectrum of an FSD-MA(1) time series is plotted against frequency for different valusasiof.

to right through the columnss varies from 0 to 0.3 by 0.1 as we go from bottom to top through the rows.
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So the bottom row shows spectra for the FSD modekcept for a small fraction of intervals with low
while the other rows show the spectra for FSD-MA(Myhere oscillatory effects of Internet transport proto-
models with positives. cols broke through and created spikes in the power

For all panels, there is a rapid rise Adends to spectrum. Even in these cases, the model serves as an
0, and an overall monotone decrease in power as txeellent summary of the amount of long-range de-
frequency increases from 0 to 0.5. This is a result péndence in the correlation structure.
the persistent long-range dependence. But for eaclEstimates ot/ vary by a small amount across the
row, asf increases, the fraction of low-frequencyraces and showed no dependence.ofhe medians
power decreases, and the fraction of high-frequenioy the 15 links vary from 0.39 to 0.45 and their mean
power increases. In the bottom row, ascreases, is 0.41. Estimates d@f also show no dependence@n
the spectrum at frequencies away from 0 shows a dise mean of the 15 medians #fs 0.53. Thus the;
tinct flattening, tending toward the flat spectrum dapectra look like the spectrum in column 2 and row
white noise. In the remaining rows, the spectra, awayin Figure 2. The stability of the correlation struc-
from O, tend toward that of a gently sloping curve, theire of p; is consistent with the superposition theory,
spectrum of an MA(1). which stipulates that the correlation structure of the

We found that the 100-ms packet counis, and p; does not change with The heuristics for the ef-
the packet sizesg;, for all but a few of the 2526 fect of upstream queueing suggest that the autocor-
traces, are very well fitted by an FSD model. is relation should be changed by a large amount of up-
also typically well fitted by either an FSD model ostream queueing, but the effect does not appear to oc-
an FSD-MA(1); for the traces of some links, an FSDOezur even for AlIX1 or AlX2, where the occurrence of
MA(1) model with a positives is clearly required as back-to-back packets is the greatest. As with the co-
¢ gets large, the result of the network pushing baeificient of variation, it is possible an effect would be
on the attraction to Poisson and independence by spen for interval lengths less than 100 ms.
stream queueing.

The estimation of the parameters, especiallylof IX. EMPIRICAL STUDY: PACKET SIZES

needs considerable care. But an essential part of the, reasonable summary of the marginal distribu-
stuo_ly was visualization tools _that_valldated the 'on of the, is an atom at the minimum size of 40
sulting fitted models. The estimation and modellr}gytes’ an atom at the maximum size of 1500 bytes,
checking is discussed in detail elsewhere [25].  gn atom at 576 bytes, and continuous uniform from
40 bytes to 1500 bytes. Quantile plots [33] showed
that the marginal distribution did not change appre-
The superposition theory predicts that the coeffitably with ¢, as predicted by the superposition the-
cient of variation of they; should decrease like/\/c. ory, but did change appreciably across the 15 links.
Figure 3 graphs the log of the coefficient againgbr example, if a link has traffic in a single direction
log(¢). The theory predicts a slope ef0.5; the least from hosts with a preponderance of clients download-
squares line with slope0.5 is shown on each paneling web pages, then the frequency of 40 byte packets
The rate of decline of the log coefficients is certainlig greater and the frequency of 1500 byte packets less
consistent with a value 6f0.5. At some sites, the de-than for a link where the preponderance of hosts are
cline is somewhat faster and at others, it is slower. Iserving web pages.
terestingly, the decline has not been altered by back\We do not transform thg to a normal marginal for
to-back occurrence, as predicted by the heuristics faur FSD modeling because the transformation would
the effect of upstream queueing, even for AIX1 anabt be invertible. For analysis purposes, we treat the
AIX2 which have the largest back-to-back percentg; as is, without transformation; this amounts to a sec-
This presumably happened in part because the agd moment analysis, but it will provide adequate in-
gregation interval length is 100 ms; had we usedsaht because the correlation coefficient is still a rea-
smaller interval, an effect might have been detectedonable summary of dependence for such discrete-
The p, do not have a normal marginal untilgets continuous data.
large. A log-normal marginal does much better. Let We found that an FSD model provided an excellent
p; belog(1+ p;) normalized to have mean 0 and varifit to the ¢;. A combination of theory and empirical
ance 1. An assumption of a Gaussian procesg;f& study show that/ remains constant with, and the
a reasonable approximation for much smatleiVe estimate of the single value came out to 0.42, very
found that an FSD model fitted th extremely well, close to the 0.41 for thg!. For simplicity, we could

VIII. EMPIRICAL STUDY: PACKET COUNTS
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not resist using a value of 0.41 for the the same as G ' (F(t;; ¢)) where F is the Weibull cumulative

the estimate ofl for the p;. We fixedd to this value distribution function and is the vector of parame-

and estimated. tersa and\. Because\ changes, the transformation
Figure 4 plots the estimates®againstog(c). The changes, but the change is not large and we found

smooth curve on each panel is a loess fit using fiie transformations are well approximated by a single

bust locally linear fitting and a smoothing parametéansformation, the sixth root @f. So for simplicity

of 1 [33]. Loess is a nonparametric procedure thgk ysed* — t;/(j.

puts curves through data by a moving local polyno- we found that an FSD model or an FSD-MA(1)
mial fitting procedure, the same in spirit, but not ithodel provided an excellent fit tg except for a
detail, as a moving average smoothing a time serigga|| fraction of intervals with low: where oscil-

The overallresultin Figure 4 is thagoes to 1 with, |atory effects of Internet transport protocols broke
so the spectrum changes as shown in the bottom ri@Wough and created spikes in the power spectrum.
of Figure 2. Thus the; tend toward independencezyen in these cases, the model serves as an excellent

as prescribed by the the superposition theory. An ifgmmary of the amount of long-range dependence in
crease in the percent of back-to-back packets withhe correlation structure.

for the COS1, COS2, AIX1, and AIX2 links does not Thegretical results show that the valueddbr the
’ g1

heuristics for the effect of upstream queueing. is the same as that for th, so the estimate of for
_ thet; was taken to be 0.41, that fp}. This was done
X. EMPIRICAL STUDY: INTER-ARRIVALS rather than estimating from thet: because, wheé

We found, using Weibull quantile plots, that thgets close to 1, the long-range dependent component
marginal distribution of the inter-arrivals is well apaccounts for such a small fraction of the variation in
proximated by the Weibull distribution across all valthe; thatd is poorly estimated.
ues ofc. The back-to-back packets result in devia- We fitted an FSD-MA(1) with! = 0.41 to the 2526
tions from the Weibull, but because packet sizes vanaces. Figure 6 graphs estimatesiaigainstog(c).
by a factor of 1500/40 = 37.5, the deviations afBhe smooth curve on each panel is a loess fit with
spread across the distribution, and overall the appragbust locally linear fitting and a smoothing param-
imation remains excellent, even for the traces witgter of 1. 1.2% of the estimates are less than4
the largest occurrence of back-to-back packets. Téed are not shown on the plot. Our model check-
Weibull has two parametersy, a scale parameter,ng showed that the MA(1) component was impor-
and )\ a shape. When is 1, the Weibull is an ex- tant for producing a good fit for the largest values
ponential, the inter-arrival distribution of a Poissoaf ¢ at NZIX7, NZIX, AlIX1, and AIX2. The latter
process. When < 1, the tail is heavier than that oftwo sites show a large back-to-back occurrence, but
the exponential. not the first two. However, queueing upstream from

Figure 5 plots estimates of the Weibull shape pthe link-input router can affect the inter-arrivals with-
rameter,\, againstog(c). The smooth curve on eachout introducing back-to-back packets. In other words,
panel is a loess fit with robust locally linear fittingour measure of back-to-back packets in Figure 1 does
and a smoothing parameter of 1. The overall resuolbt tell the whole story of upstream queueing.
is that the shape estimates are less than 1, and asFor 5 < 0.1, n, = (, + (,_1 IS nearly white noise.
increases, the shape tends toward 1. Consider th&/Ben3 = 0.1, the variance of,, is 1/(1 + .1%) =
links with the largest meatvg(c) — NZIX, COS2, 0.990, son,, whose variance is 1, is very close to
COS1, AIX2, and AIX1. Almost all of the values ofwhite noise. But whe = 0.3, the variance of, is
c exceed2!?, but few values for the remaining site®.917, so,, contains significant correlated variation.
do so. For these top five, most estimates @xceed It is only at NZIX7, NZIX, AIX1, and AIX2 thatj is
0.9. For the remaining, most estimates are below Ot8liably above 0.1, getting as high as 0.3. At the other
The top five appear to have a limit slightly less thainks, /5 is small enough, taking the greater variability
1; the back-to-back packets exert just enough inflof estimates ag decreases into account, that it is rea-
ence to keep the estimates slightly below 1, but thissenable to omit the MA(1) component, that is, using
a small matter since a Weibull with shape of 0.95 jast an FSD model. In particular, at COS1 and COS2,
exceedingly close to exponential. g is small.

Because the; have a Weibull marginal, the trans- Figure 7 graph8 againstog(c). The smooth curve
formation that takes them to normalityT{¢,; ) = on each panel is a loess fit with robust locally linear
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fitting and a smoothing parameter of 1. The oveand their marginal changes toward the distribution of
all result is that? goes to 1 withc. The long-range packet sizes divided by the link speed. On a link with
dependence of; dissipates, tending either to shorta sufficiently large speed that the increasing connec-
range dependence, an MA(1), or to independentien load can bring the traffic to Poisson and indepen-
Thus all panels of Figure 2 convey the behaviors dénce before substantial upstream queueing occurs,
the power spectra of the. the onset of queueing does not resurrect the long-
These results fok, 4, andd are consistent with therange dependence. All this means that the burstiness
superposition theory and the heuristics for the effeat traffic, once thought to pervade the whole Internet,
of upstream queueing. Multiplexing creates an attragissipates with the connection load. There are multi-
tion to Poisson in the;; A andf tend toward 1 as theplexing gains.
theory prescribes. But the network succeeds in pushinspired by these results on multiplexing gains,
ing back in some cases, keepiAglightly less than theoretical and empirical studies have now demon-
1, and causing values gffor some links that indicate strated that queueing on an Internet device tends to

short-term dependence. that of Poisson arrivals and independent sizes as the
load increases, just as one would expect [10], [21].
X1. OPEN LOOP GENERATION OF PACKET This means that if a link speed is sufficiently large,
TRAFFIC queueing distributions relative to the bit/rate of the

The FSD models fitted to the sizes and intettaffic get dramatically smaller.
arrivals can be used for open-loop generation of syn-The foundations of traffic analysis and modeling
thetic traffic for simulation studies. The inter-arrivashould reflect these results. The dramatic change
marginal is Weibull; the parameters areand ). in the statistical properties with the connection load
The packet size marginal has atoms at specific pacReakes clear that the load needs to play a central role
sizes and has a continuous part that is uniform Hg-analysis and modeling. Theory must reflect the
tween 40 bytes and 1500 bytes; the parameters @@d. Empirical study must encompass a range of
the probabilities at the atoms. The inter-arrivals apgcket traces from small loads to large.
generated by Gaussian FSD variables with d = 0.41The results have important implications for Inter-
transformed to the Weibull marginal; the parameteriet device engineering and Internet traffic engineer-
6,. The packet sizes are generated by Gaussian F8D- On links with low speeds, at the edges of the
variables with d = 0.41 transformed to the discret&iternet close to the user hosts, connection loads can-
continuous marginal; the parameterfis a, A, 6;, not get large, and traffic remains highly bursty. But
and#, change with: according to certain models toon links with high speeds, toward the core of the In-
reflect the multiplexing gains, so ontyis specified to ternet and carrying traffic made up of large numbers

carry out generation. of connections, the traffic can be close to Poisson and
independence, so the burstiness is gone. Engineer-
XII. THERE AREMULTIPLEXING GAINS ing studies that are meant to apply to the Internet as

The results here show that an increasing numpevhole, and that use synthetic or I|v_e packet traffic
of simultaneous active connections causes a dram#%@SSess performance, need to consider packet traces
change in the statistical properties of packet traf@ying across a wide range of link speeds and con-
fic on an Internet link. Starting at low connectioff€ction loads. Many issues of Internet engineering
loads on an uncongested link, packet arrivals tend f#2€d to0 be revisited to determine how protocols, algo-
ward Poisson and packet sizes tend toward indep8H2MS, device design, network design, and network
dence as the load increases. A component of |Or;%9w5|_on|ng s_ho_uld change_to reflect the e:ffec_t of the
range dependence is retained in each of these v&langing statistical properties of the traffic with the
ables, but the effect of the component gets incre&9@nnection load.
ingly small. Packet counts have a stable autocorre-
lation structure that does not change with the load,
but the standard deviation of the counts relative toJoerg Micheel, Waikato University and National
the mean gets small, so the counts become smodthboratory for Applied Network Research, was a
The network pushes back on this attraction to Poissaenitical resource for measurement, making it possible
and independence through upstream queueing, whighus to assess the reliability of the timestamps used
also increases with the connection load; very shamtthe empirical analysis. Mark Hansen provided nu-
term autocorrelation can develop in the inter-arrivals)erous helpful editorial comments.
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