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Internet Traffic TendsTowardPoisson and
Independent as the Load Increases

Jin Cao, William S. Cleveland, Dong Lin, Don X. Sun

Abstract— Network devices put packets on an Internet
link, and multiplex, or superpose, the packets from differ-
ent active connections.

Extensive empirical and theoretical studies of packet traf-
fic variables — arrivals, sizes, and packet counts — demon-
strate that the number of active connections has a dramatic
effect on traffic characteristics. At low connection loads on
an uncongested link — that is, with little or no queueing on
the link-input router — the traffic variables are long-range
dependent, creating burstiness: large variation in the traf-
fic bit rate. As the load increases, the laws of superposition
of marked point processes push the arrivals toward Poisson,
the sizes toward independence, and reduces the variability
of the counts relative to the mean. This begins a reduction in
the burstiness; in network parlance, there are multiplexing
gains.

Once the connection load is sufficiently large, the network
begins pushing back on the attraction to Poisson and inde-
pendence by causing queueing on the link-input router. But
if the link speed is high enough, the traffic can get quite close
to Poisson and independence before the push-back begins in
force; while some of the statistical properties are changed in
this high-speed case, the push-back does not resurrect the
burstiness. These results reverse the commonly-held pre-
sumption that Internet traffic is everywhere bursty and that
multiplexing gains do not occur.

Very simple statistical time series models — fractional
sum-difference (FSD) models — describe the statistical vari-
ability of the traffic variables and their change toward Pois-
son and independence before significant queueing sets in,
and can be used to generate open-loop packet arrivals and
sizes for simulation studies.

Both science and engineering are affected. The magni-
tude of multiplexing needs to become part of the fundamen-
tal scientific framework that guides the study of Internet
traffic. The engineering of Internet devices and Internet net-
works needs to reflect the multiplexing gains.

I. ARE THERE MULTIPLEXING GAINS?

When two hosts communicate over the Internet —
for example, when a PC and a Web server communi-
cate for the purpose of sending a Web page from the
server to the PC — the two hosts set up aconnection.
One or more files are broken up into pieces, headers
are added to the pieces to form packets, and the two
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hosts send packets to one another across the Internet.
When the transfer is completed, the connection ends.

The headers, typically 40 bytes in size, contain
much information about the packets such as their
source, destination, size, etc. In addition there are 40-
byte control packets, all header and no file data, that
transfer information form one host to the other about
the state of the connection. The maximum amount of
file information allowed in a packet is 1460 bytes, so
packets vary in size from 40 bytes to 1500 bytes.

Each packet travels across the Internet on a path
made up of devices and transmission links between
these devices. The devices are the two hosts at the
ends and routers in-between. Each device sends the
packet across a transmission link to the next device
on the path. The physical medium, or the “wire”, for
a link might be a telephone wire from a home to a
telephone company, or a coaxial cable in a university
building, or a piece of fiber connecting two devices on
the network of an Internet service provider. So each
link has two devices, the sending device that puts the
bits of the packet on the link, and the receiving de-
vice, which receives the bits. Each router serves as
a receiving device for one or more input links and as
the sending device for one or more output links; it re-
ceives the packet on an input link, reads the header
to determine the output link, and sends bits of the
packet.

Each link has a speed: the rate at which the bits are
put on the wire by the sending device and received by
the receiving device. Units are typically kilobits/sec
(kbps), megabits/sec (mbps), or gigabits/sec (gbps).
Typical speeds are 56 kbps, 1.5 mbps, 10 mbps, 100
mbps, 156 mbps, 622 mbps, 1 gbps, and 2.5 gbps.
Thetransmission timeof a packet on a link is the time
it takes to put all of the bits of the packet on the link.
For example, the transmission time for a 1500 byte
(12000 bit) packet is 120�s at 100 mbps and 12�s
at 1 gbps. So packets pass more quickly on a higher-
speed link than on a lower-speed one.

The packet traffic on a link can be modeled as a
marked point process. The arrival times of the pro-
cess are the arrival times of the packets on the link;
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a packet arrives at the moment its first bit appears
on the link. The marks of the process are the packet
sizes. An Internet link typically carries the packets of
many active connections between pairs of hosts. The
packets of the different connections are intermingled
on the link; for example, if there are three active con-
nections, the arrival order of 10 consecutive packets
by connection number might be 1, 1, 2, 3, 1, 1, 3, 3,
2, and 3. This intermingling is referred to as “statis-
tical multiplexing” in the Internet engineering litera-
ture, and as “superposition” in the literature of point
processes.

If a link’s sending device cannot put a packet the
link because it is busy with one or more other pack-
ets that arrived earlier, then the device puts the packet
in a queue, physically, a buffer. Queueing on the de-
vice delays packets, and if it gets bad enough, and
the buffer size is exceeded, packets are dropped. This
reduces the quality of Internet applications such as
Web page downloads and streaming video. Consider
a specific link. Queueing of the packet in the buffer of
the link’s sending device isupstream queueing; so is
queueing of the packet on sending devices that pro-
cessed the packet earlier on its flight from sending
host to receiving host. Queueing of the packet on the
receiving device, as well as on devices further along
on its path isdownstreamqueueing.

All along the path from one host to another, the sta-
tistical characteristics of the packet arrivals and their
sizes on each link affect the downstream queueing,
particularly the queueing on the link receiving device.
The most accommodating traffic would have arrivals
and sizes on the link that result in a traffic rate in
bits/sec that is constant; this would be achieved if the
packet sizes were constant (which they are not) and if
they arrived at equally spaced points in time (which
they do not). In this case we would know exactly how
to engineer a link of a certain speed; we would allow
a traffic rate equal to the link speed. There would be
no queueing and no device buffers. The utilization,
the ratio of the traffic rate divided by the link speed,
would be 100%, so the transmission resources would
be used the most efficiently. If the link speed were
1.5 mbps, the traffic rate would be 1.5 mbps.

Suppose instead, that the traffic is stationary with
Poisson arrivals and independent sizes. There would
be queueing, so a buffer is needed. Here is how
we would engineer the link to get good performance.
Suppose the speed is 1.5 mbps. We choose a buffer
size so that a packet arriving when the queue is nearly
full would not have to wait more than about 500 ms;
for 1.5 mbps this would be about 100 kilobytes, or

800 kilobits. An amount of traffic is allowed so that
only a small percentage of packets are dropped, say
0.5%. For this Poisson and independent traffic, we
could do this and and achieve a utilization of 95%, so
the traffic rate would be 1.425 mbps.

Unfortunately, we do not get to choose the traffic
characteristics. They are dictated by the engineering
protocols that underlie the Internet. What can occur
is far less accommodating than traffic that has a con-
stant bit rate, or traffic that is Poisson and indepen-
dent. The traffic can be verybursty. This means the
following. The packet sizes and inter-arrival times are
sequences that we can treat as time series. Both se-
quences can have persistent, long-range dependence;
this means the autocorrelations are positive and fall
of slowly with the lagk, for example, likek�� where
0 < � � 1. Long-range dependent time series have
long excursions above the mean and long excursions
below the mean. Furthermore, for the sizes and inter-
arrivals, the coefficient of variation, the standard de-
viation divided by the mean, can be large, so the ex-
cursions can be large in magnitude as well as long
in time. The result is large downstream queue-height
distributions with large variability. Now, when we en-
gineer a link of 1.5 mbps, utilizations would be much
lower, about 40%, which is a traffic rate of 0.6 mbps.

Before 2000, this long-range dependence had been
established for links with relatively low link speeds
and therefore low numbers of simultaneous active
connections, or connection loads, and therefore low
traffic rates. But beginning in 2000, studies were un-
dertaken to determine if on links with higher speeds,
and therefore greater connection loads, there were
effects due to the increased statistical multiplexing.
Suppose we start out with a small number of active
connections. What happens to the statistical proper-
ties of the traffic as we increase the connection load?
In other words, what is the effect of the increase in
magnitude of the multiplexing? We would expect that
the statistical properties change in profound ways,
not just simply that the mean of the inter-arrivals de-
creases. Does the long-range dependence dissipate?
Does the traffic tend toward Poisson and independent,
as suggested by the superposition theory of marked
point processes? This would mean that the link uti-
lization resulting from the above engineering method
increase. In network parlance, are there would be
multiplexing gains.

In this article, we review the results of the new
studies on the effect of increased statistical multiplex-
ing on the statistical properties of packet traffic on an
Internet link.
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II. THE VIEW OF THE INTERNET CIRCA 2000

The study of Internet traffic beginning in the early
1990s resulted in extremely important discoveries in
two pioneering articles [1], [2]: counts of packet ar-
rivals in equally-spaced consecutive intervals of time
are long-range dependent and have a large coefficient
of variation (ratio of the standard deviation to the
mean), and packet inter-arrivals have a marginal dis-
tribution that has a longer tail than the exponential.
This means the arrivals are not a Poisson process be-
cause the counts of a Poisson are independent and the
inter-arrivals are exponential. The title of the second
article, “Wide-Area Traffic: The Failure of Poisson
Modeling”, sent a strong message that the old Pois-
son models for voice telephone networks would not
do for the emerging Internet network. And because
queue-height distributions for long-range dependent
traffic relative to the average bit/rate are much greater
than for Poisson processes, it sent a signal that In-
ternet technology would have to be quite different
from telephone network technology. The discovery
of long-range dependence was confirmed in many
other studies (e.g., [3], [4], [5]). The work on long-
range dependence drew heavily on the brilliant work
of Mandelbrot [6], both for basic concepts and for
methodology.

Models of source traffic were put forward to ex-
plain the traffic characteristics [3], [7], [8], [9]. The
sizes of transferred files utilizing a link vary im-
mensely; to a good approximation, the upper tail of
the file size distribution is Pareto with a shape pa-
rameter that is often between 1 and 2, so the mean
exists but not the variance. A link sees the transfer of
files whose sizes vary by many orders of magnitude.
Modeling the link traffic began with an assumption
of a collection of on-off traffic sources, each on (with
a value of 1) when the source was transferring a file
over the link, and off (with a value of 0) when not.
Since the model has no concept of packets, just con-
nections, multiplexing becomes summation; the link
traffic is a sum, or aggregate, of source processes. Be-
cause of the heavy tail of the on process, the summa-
tion is long-range dependent, and for a small number
of source processes, has a large coefficient of varia-
tion. We will refer to this as theon-off aggregation
theory.

Before 2000, there was little empirical study of
packet arrivals and sizes. Most of the intuition, the-
ory, and empirical study of the Internet was based on
a study of packet and byte counts. It took some time
for articles to appear in the literature showing packet

inter-arrivals and packet sizes are long-range depen-
dent, although one might have guessed this from the
results for counts. The first report in the literature of
which we are aware appeared in 1999 [5]. The first ar-
ticles of which we are aware that sizes are long-range
dependent appeared in 2001 [10], [11].

While there was no comprehensive empirical study
of the effect of multiplexing, before 2000 there
were theoretical investigations. Some of the early,
foundations-setting articles on Internet traffic con-
tained conjectures that multiplexing gains did not oc-
cur. Lelandet al. [1] wrote:
We demonstrate that Ethernet LAN traffic is statisti-
cally self-similar, : : : and that aggregating streams
of such traffic typically intensifies the self-similarity
(‘burstiness’) instead of smoothing it.
Crovella and Bestavros [3] wrote:
One of the most important aspects of self-similar traf-
fic is that there is is no characteristic size of a traffic
burst; as a result, the aggregation or superposition of
many such sources does not result in a smoother traf-
fic pattern.
Further consideration and discussion however sug-
gested that issues other than long-range dependence
needed to be considered. Erramilliet al. [12] wrote
: : : the FBM [fractional Brownian motion] model

does predict significant multiplexing gains when a
large number of independent sources are multiplexed,
the relative magnitude is reduced by

p
n : : : .

Floyd and Paxson [7] wrote:
: : : we must note that it remains an open ques-

tion whether in highly aggregated situations, such as
on Internet backbone links, the correlations [of long-
range dependent traffic], while present, have little ac-
tual effect because the variance of the packet arrival
process is quite small.
In addition, there were theoretical discussions of the
implications of increased multiplexing on queueing
[13], [14], [15], [16], [17]. But the problem with
such theoretical study is that results depend on the
assumptions about the individual traffic sources be-
ing superposed, and different plausible assumptions
lead to different results. Without empirical study, it
was not possible to resolve the uncertainty about as-
sumptions.

With no clear empirical study to guide judgment,
many subscribed to a presumption that multiplexing
gains did not occur, or were too small to be relevant.
For example, Listaniet al. [18] wrote:
: : : traffic on Internet networks exhibits the same

characteristics regardless of the number of simulta-
neous sessions on a given physical link.
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Internet service providers acted on this presumption
in designing and provisioning networks, and equip-
ment designers acted on it in designing devices.

III. FOUNDATIONS: THEORY AND EMPIRICAL
STUDY

Starting in 2000, a current of research was begun
to determine the effect of increased multiplexing on
the statistical properties of many Internet traffic vari-
ables, to determine if multiplexing gains occurred
[10], [19], [20], [21], [22].

The empirical study of byte and packet counts of
previous work was enlarged to include a study of ar-
rivals and sizes. Of course, much can be learned from
counts, but arrivals and sizes are the more fundamen-
tal traffic variables. It is arriving packets with vary-
ing sizes that network devices process, not aggrega-
tions of packets in fixed intervals, and packet and byte
counts are derived from arrivals and sizes, but not
conversely.

In keeping with a focus on arrivals and sizes,
the superposition theory of marked point processes
became a guiding theoretical framework, replacing
the on-off aggregation theory that was applicable to
counts but not arrivals and sizes [23], [24]. The two
theories are quite different. For the on-off aggre-
gation theory, one considers a sum of independent
random variables, and a central limit theorem shows
the limit is a normal distribution. For the superpo-
sition theory, in addition to the behavior of sums,
one considers a superposition of independent marked
point processes, and a central limit theorem shows
the limit is a Poisson point process with indepen-
dent marks, and quite importantly,the theorem ap-
plies even when the inter-arrivals and marks of each
superposed source point process are long-range de-
pendent.

The following discussion draws largely on the very
detailed account in [19]. We will consider packet ar-
rivals and sizes, and packet counts in fixed intervals.
We omit the discussion of byte counts since their be-
havior is much like that of the packet counts.

IV. THEORY: POISSON AND INDEPENDENCE

Let aj, for j = 1; 2; : : : be the arrival times of
packets on an Internet link wherej = 1 is for the first
packet,j =2 is for the second packet, and so forth. Let
tj = aj+1� aj be the inter-arrival times, and letqj be
the packet sizes. We treataj andqj as a marked point
process.aj, tj, andqj are studied as time series inj.
Suppose we divide time into equally-spaced intervals,
[�i;�(i + 1)), for i = 1, 2, : : : where� might be

1 ms or 10 ms or 100 ms. Letpi be the packet count,
the number of arrivals in intervali. Thepi are studied
as a time series ini.

Suppose the packet traffic is the result of multiplex-
ing m traffic sources on the link. Each source has
packet arrival times, packet sizes, and packet counts.
The arrival timesaj and the sizesqj of the superpo-
sition marked point process result from the superpos-
ing of the arrivals and sizes of them source marked
point processes. The packet countpi of the superposi-
tion process in intervali results from summing them
packet counts for them sources in intervali; theoret-
ical considerations for thepi are, of course, the same
as those for the on-off aggregation theory described
earlier.

Provided certain assumptions hold, the superpo-
sition theory of marked point processes prescribes
certain behaviors foraj, tj, qj, and pi as m in-
creases [24]. The arrivalsaj tend toward Poisson,
which means the inter-arrivalstj tend toward inde-
pendent and their marginal distribution tends toward
exponential. The sizesqj tend toward independent,
but there is no change in their marginal distribution.
As discussed earlier, thetj andqj have been shown to
be long-range dependent for smallm. Thus the the-
ory predicts that the long-range dependence of thetj
and theqj dissipates. But the autocorrelation of the
packet countspi does not change withm so its long-
range dependence is stable. However, the standard
deviation relative to the mean, the coefficient of vari-
ation, falls off like1=

p
m. This means that the bursti-

ness of the counts dissipates as well; the durations of
excursions ofpi above or below the mean, which are
long because of the long-range dependence, do not
change because the correlation stays the same, but the
magnitudes of the excursions get smaller and smaller
because the statistical variability decreases.

The following assumptions for the source packet
processes lead to the above conclusions:
� homogeneity: they have the same statistical proper-
ties.
� stationarity: their statistical properties do not
change through time.
� independence: they are independent of one another
and the size process of each is independent of the ar-
rival process.
� non-simultaneity: the probability of two or more
packet arrivals for a source in an interval of length
w is o(w) whereo(w)=w tends to zero asw tends to
zero.

We cannot take the source processes to be the indi-
vidual connections; they are not stationary, but rather
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transient, that is, that have a start time and a finish
time. Instead, we randomly assign each connection,
to one ofm source processes. Suppose the start times
are a stationary point process, and let� be the arrival
rate. Then the arrival rate for each source process is
�=m. We let�!1, keeping�=m fixed to a number
sufficiently large that the source processes are station-
ary; som!1.

We refer to the formation of the source processes,
the assumptions about them, and the implications, as
the superposition theory. It is surely true that all
we have done with this theory is to reduce our un-
certainty about whether the superposition process is
attracted to Poisson and independent with an uncer-
tainty about whether the above construction creates
source processes that satisfy the assumptions. But it
is a least plausible, although by no means certain, that
there are cases where the source process satisfies the
above assumptions over a range of values ofm. What
we have done is to create a plausible hypothesis to be
tested by empirical study which we describe shortly.

V. THEORY: THE NETWORK PUSHESBACK

While we cannot verify the hypotheses of the su-
perposition theory without empirical study, we can
at least quite convincingly describe a way in which
the network can push back and defeat assumptions.
Oncem is large enough, significant link-input queue-
ing begins, and then grows asm gets larger still; at
some point, the queueing will be large enough that the
assumptions of independence of the different source
processes and of independence of the inter-arrivals
and the sizes of each source process, no longer serve
as good approximations in describing the behavior of
the source processes. (A small amount of queueing,
which almost always occurs, does not invalidate the
approximation.)

Consider two packets,j = 19 andj = 20. Suppose
packet 20 waits in the queue for packet 19 to be trans-
mitted. The two are back-to-back on the link, which
means, because the arrival time is the first moment
of transmission, thatt19 is the time to put the bits of
packet 19 on the link, which is equal toq19=`, where
` is the link speed. For example, at` = 100 mbps, the
time for a 1500 byte (12000 bit) packet is 120�. So
given q19 we knowt19 exactly. Queueing can occur
on routers further upstream than the link-input router
and affect the assumptions as well.

The arrival times of the packets on the link,aj, are
the departure times of the packets from the queue.
The departure times are the arrival times at the queue
plus the time spent in the queue. If there are no other

packets in the queue when packetj arrives, thenaj
is also the arrival time at the queue. Suppose queue-
ing is first-in-first-out. Then the order of the arriv-
ing packets at the queue is the same as the order of
departing packets from the queue, soqj is also the
packet size process for the arrivals at the queue.

The effect of queueing onqj is simple. Because the
queueing does not alter theqj, the statistical proper-
ties of theqj are unaffected by the queueing; in par-
ticular, their limit of independence is not altered..

But statistical theory for the departure times from a
queue is not developed well enough to provide much
guidance for the affect of queueing on the statistical
properties oftj and pi. However, the properties of
the extreme case are clear. Ifm is so large that the
queue never drains, then thetj are equal toqj=`, so
thetj take on the statistical properties ofqj. Since the
qj tend to independence, thetj eventually go to inde-
pendence, so there is no long-range dependence. A
Poisson process is a renewal process, a point process
with independent inter-arrivals, with the added prop-
erty that the marginal distribution of the inter-arrivals
is exponential. The extremetj process is a renewal
process but with a marginal distribution proportional
to that of the packet sizes. The extremepi is the count
process corresponding to thetj renewal process; this
implies the coefficient variation ofpi is a constant, so
the decrease like1=

p
m prescribed by the superposi-

tion theory is arrested, and it implies thepi are inde-
pendent, so there is no long-range dependence. We
do not expect to see the extreme case in our empirical
study, but it does provide at least a point of attraction.

VI. EMPIRICAL STUDY: INTRODUCTION

The superposition theory and the heuristic discus-
sion of the effect of upstream queueing provide hy-
potheses about the statistical properties of the inter-
arrivalstj, the sizesqj, and the countspi. We carried
out extensive empirical studies to investigate the va-
lidity of the hypotheses [10], [19], [25].

In the early 1990s, Internet researchers put together
a comprehensive measurement framework for study-
ing the characteristics of packet traffic that allows not
just statistical study of traffic, but performance stud-
ies of Internet engineering designs, protocols, and al-
gorithms [26], [27]. The framework consists of cap-
turing the headers of all packets arriving on a link
and time-stamping the packet, that is, measuring the
arrival time,aj. The result of measuring over an in-
terval of time is apacket trace. Packet trace collec-
tion today enjoys a very high degree of accuracy and
effectiveness for traffic study [28], [29].
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Trace Group Number Link log(c)
AIX1(90sec) 23 622mbps 13.09
AIX2(90sec) 23 622mbps 13.06
COS1(90sec) 90 156mbps 10.83
COS2(90sec) 90 156mbps 10.81
NZIX(5min) 100 100 mbps 10.75
NZIX7(5min) 100 100 mbps 9.60
NZIX5(5min) 100 100 mbps 8.66
NZIX6(5min) 100 100 mbps 7.85
NZIX2(5min) 100 100 mbps 7.32
NZIX4(5min) 100 100 mbps 7.17
BELL(5min) 500 100 mbps 6.97
NZIX3(5min) 100 100 mbps 6.54

BELL-IN(5min) 500 100 mbps 5.98
BELL-OUT(5min) 500 100 mbps 5.94

NZIX1(5min) 100 100 mbps 4.42

TABLE I
LINK : NAME INCLUDING LENGTH OF TRACES� NUMBER:
NUMBER OF TRACES� LINK : SPEED� log(c): LOG BASE 2

AVERAGE NUMBER OF ACTIVE CONNECTIONS

We put together a very large database of packet
traces measuring many Internet links whose speeds
range from 10 mbps to 2.5 gbps, and we built S-Net,
a software system, based on the S language for graph-
ics and data analysis, for analyzing very large packet
header databases [20]. We put the database and S-Net
work to study the multiplexing hypotheses.

For each studied trace, which covers a specific
block of time on a link, we computeaj, tj, qj, and
100-mspi. We also need a summary measure of
the magnitude of multiplexing for the trace. At each
point in time over the trace, the measure is the number
of active connections. The summary measure,c, for
the whole trace is the average number of active con-
nections over all times in the trace. Here, we describe
some of the results of one of our empirical inves-
tigations in which we analyzed 2526 header packet
traces, 5 min or 90 sec in duration, from 6 Internet
monitors measuring 15 links ranging from 100 mbps
to 622 mbps [19]. Table I shows information about
the traces. Each row describes the traces for one link.
The first column gives the trace group name: the trace
length is a part of each name. Column 2 gives the
number of traces. Column 3 gives the link speed.
Column 4 gives the mean of the log base 2 ofc for
the traces of the link.

Consider each packet in a trace. Arriving after it
is a back-to-back run ofk packets, fork = 0; 1; : : :;
each packet in the run is back-to-back with its pre-
decessor. If packet 19 has a back-to-back run of 3
packets, then packet 20 is back-to-back with 19, 21 is
back-to-back with 20, 22 is back-to-back with 21, but
23 is not back-to-back with 22. The percent of pack-

ets with back-to-back runs ofk or more is a measure
of the amount of queueing on the link-input router.
We studied this measure for many values ofk. We
need such study to indicate when the network is likely
pushing back on the attraction to Poisson and inde-
pendence.

Figure 1 graphs the percent of packets whose back-
to-back runs are 3 or greater againstlog(c). Each
point on the plot is one trace. Each of the 15 pan-
els contains the points for one link. The panels are
ordered, left to right and bottom to top, by the means
of the log(c) for the 15 links, given in column 4 of
Table I.

Figure 1, and others like it for different values of
k, show that only four links experience more than mi-
nor queueing — COS1, COS2, AIX1, and AIX2 —
so we would not expect to see significant push-back
except at these four. However, queueing further up-
stream than the link-input router can affect the traffic
properties as well, but without creating back-to-back
packets, so we reserve final judgment until we see the
coming analyses.

Figure 1 also provides information about the val-
ues ofc. Since the mean oflog(c) increases left to
right and bottom to top, the distribution shifts gener-
ally toward higher values in this order. The smallest
c, which appears in the lower left panel, is 5.9 con-
nections; the largest, which appears in the upper right
panel, is 16164 connections.

VII. EMPIRICAL STUDY: FSD AND FSD-MA(1)
MODELS

In this section we introduce two very simple
classes of stationary time series models [25], one a
subclass of the other, that we found provide excellent
fits to the inter-arrivalstj, the sizesqj, and the counts
pi for the 2526 traces. The models are parametric.
One of the parameters determines the amount of de-
pendence. At low values of the parameter, the series
has substantial autocorrelation and is long-range de-
pendent. As the parameter increases, the amount of
dependence decreases. At the largest value of the pa-
rameter, the series is independent. Other parameters
determine the marginal distribution of the series and
therefore the coefficient of variation. By fitting the
models to each trace, we can study the multiplexing
gains by studying the changing values of the parame-
ters across the traces, and relating the changes to the
average active connection loadc of the traces.

The two model classes are fractional sum-
difference (FSD) models and FSD-MA(1) mod-
els [25]. FSD models have two additive components:
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a simple fractional ARIMA and white noise. MA(1)
refers to a first-order moving average [30]. FSD-
MA(1) models replace the white noise of the FSD
model with an MA(1). Since white noise is a spe-
cial case of an MA(1), the FSD models are a sub-
class of the FSD-MA(1) models. As we will see,
the names “transformation-Gaussian FSD models”
and “transformation-Gaussian FSD-MA(1) models”
would convey more information about the nature of
the models, but for simplicity we will use the shorter
names.

Supposexu for u = 1, 2, : : : is a stationary time
series with a marginal cumulative distribution func-
tion F (x;�) where� is a vector of unknown param-
eters. For example,F (x;�) might be log-normal or
Weibull. Let zu = T (xu;�) be a transformation of
xu such that the marginal distribution ofzu is nor-
mal with mean 0 and variance 1. IfG�1(r) is the
quantile with probabilityr of zu, thenT (xu;�) =
G�1(F (xu;�)). If xu is log-normal and the vector
� consists of the mean� and variance�2 on the log
scale, thenT (xu;�) = (log(xu)� �)=�.

Next we suppose thatzu is a Gaussian time series,
that is, the joint distributions of all finite subsets of
the time series are multivariate normal.

Let
zu =

p
1� � su +

p
� nu;

wheresu andnu are independent of one another and
each has mean 0 and variance 1.nu is white noise,
that is, an uncorrelated time series.su is a fractional
ARIMA (FARIMA) model [31]

(I � B)dsu = �u + �u�1

whereBsu = su�1, 0 < d < 0:5, and�u is white
noise with mean 0 and variance

�2� =
(1� d)�2(1� d)

2�(1� 2d)

to make the variance ofsu equal to 1.
zu is an FSD model. We coined this term because

the model forzu can be written as a combination of
fractional and summation difference operators acting
on zu and on two white noise series:

(I � B)dzu = (I +B)�u + (I � B)dnu:

These models are to FARIMA models what the very
simple and widely applicable IMA(1,1) models are
to ARIMA models [30]; the IMA(1,1) models can be
written as

(I �B)zu = (I +B)�u + (I � B)nu:

Generalizations of this latter model have been named
sum-difference models[32].

The FSD-MA(1) model is

zu =
p
1� � su +

p
� nu;

similar to the FSD model, but wherenu instead of
white noise is a first order moving-average

nu = �u + ��u�1;

where�u is Gaussian white noise with mean 0 and
variance(1 + �2)�1, which makes the variance ofnu

equal to 1. If� = 0, the moving-average component
is white noise so the model is simply an FSD. We
need the above restrictiond > 0. If d = 0, the model
is not identifiable becausezu, whose model has two
parameters, is a first order moving average with vari-
ance 1, which has one parameter.

Suppose zu is an FSD-MA(1) model. Let
rz(k); rs(k) and rn(k) be the autocorrelation func-
tions of of zu, su, and nu, respectively, for lags
k = 0; 1; 2; : : : . Becaused > 0, su is long-
range dependent, andrs(k) falls off like k2d�1 and
increases at all positive lags asd increases.rn(k) =
�(1 + �2)�1fk = 1g wherefk = 1g is 1, if k = 1,
and is 0 ifk > 1. Thus

rz(k) = (1� �)rs(k) + ��(1 + �2)�1fk = 1g:

As � ! 1, the long-range dependent componentp
1� � su contributes less and less variation tozu.

Finally, when� = 1, zu is white noise if� = 0, and
is a first-order moving average otherwise.

The power spectrum ofzu is

pz(f) = (1��)�2�
4 cos2(�f)

�
4 sin2(�f)

�d+�
1 + �2 + 2� cos(2�f)

1 + �2

for 0 � f � 0:5. The frequencyf has units
cycles/inter-arrival fortj, cycles/packet forqj, and
cycles/interval-length forpi. pz(f) decreases mono-
tonically asf increases. Becaused > 0, the term
sin�2d(�f) goes to infinity atf = 0, so if � < 1,
no matter how close� gets to 1,pz(f) gets arbitrar-
ily large nearf = 0, but its ascent begins closer and
closer to 0 as� gets closer to 1.

Figure 2 shows the power spectra for 16 FSD-
MA(1) models. For each panel, the spectrum is eval-
uated at 100 frequencies, equally spaced on a log base
2 scale from�13 to�1. The value ofd in all 16 cases
is 0:41. � varies from 0.39 to 0.99 by 0.2 as we go left



INTERNET TRAFFIC TENDSTOWARDPOISSON AND INDEPENDENT 9

-10

-5

0

5

10

15

20

theta = 0.39
beta = 0.0

0.0 0.2 0.4

theta = 0.59
beta = 0.0

theta = 0.79
beta = 0.0

0.0 0.2 0.4

theta = 0.99
beta = 0.0

theta = 0.39
beta = 0.1

theta = 0.59
beta = 0.1

theta = 0.79
beta = 0.1

-10

-5

0

5

10

15

20

theta = 0.99
beta = 0.1

-10

-5

0

5

10

15

20

theta = 0.39
beta = 0.2

theta = 0.59
beta = 0.2

theta = 0.79
beta = 0.2

theta = 0.99
beta = 0.2

theta = 0.39
beta = 0.3

theta = 0.59
beta = 0.3

0.0 0.2 0.4

theta = 0.79
beta = 0.3

-10

-5

0

5

10

15

20

theta = 0.99
beta = 0.3

0.0 0.2 0.4

Frequency (cyles/packet)

Lo
g 

S
pe

ct
ru

m
 (

de
ci

be
ls

)

Fig. 2. The log power spectrum of an FSD-MA(1) time series is plotted against frequency for different values of� and�.

to right through the columns.� varies from 0 to 0.3 by 0.1 as we go from bottom to top through the rows.



INTERNET TRAFFIC TENDSTOWARDPOISSON AND INDEPENDENT 10

So the bottom row shows spectra for the FSD model,
while the other rows show the spectra for FSD-MA(1)
models with positive�.

For all panels, there is a rapid rise asf tends to
0, and an overall monotone decrease in power as the
frequency increases from 0 to 0.5. This is a result of
the persistent long-range dependence. But for each
row, as � increases, the fraction of low-frequency
power decreases, and the fraction of high-frequency
power increases. In the bottom row, as� increases,
the spectrum at frequencies away from 0 shows a dis-
tinct flattening, tending toward the flat spectrum of
white noise. In the remaining rows, the spectra, away
from 0, tend toward that of a gently sloping curve, the
spectrum of an MA(1).

We found that the 100-ms packet counts,pi, and
the packet sizes,qj, for all but a few of the 2526
traces, are very well fitted by an FSD model.tj is
also typically well fitted by either an FSD model or
an FSD-MA(1); for the traces of some links, an FSD-
MA(1) model with a positive� is clearly required as
c gets large, the result of the network pushing back
on the attraction to Poisson and independence by up-
stream queueing.

The estimation of the parameters, especially ofd,
needs considerable care. But an essential part of the
study was visualization tools that validated the re-
sulting fitted models. The estimation and modeling
checking is discussed in detail elsewhere [25].

VIII. E MPIRICAL STUDY: PACKET COUNTS

The superposition theory predicts that the coeffi-
cient of variation of thepi should decrease like1=

p
c.

Figure 3 graphs the log of the coefficient against
log(c). The theory predicts a slope of�0:5; the least
squares line with slope�0:5 is shown on each panel.
The rate of decline of the log coefficients is certainly
consistent with a value of�0:5. At some sites, the de-
cline is somewhat faster and at others, it is slower. In-
terestingly, the decline has not been altered by back-
to-back occurrence, as predicted by the heuristics for
the effect of upstream queueing, even for AIX1 and
AIX2 which have the largest back-to-back percents.
This presumably happened in part because the ag-
gregation interval length is 100 ms; had we used a
smaller interval, an effect might have been detected.

Thepi do not have a normal marginal untilc gets
large. A log-normal marginal does much better. Let
p�i belog(1+pi) normalized to have mean 0 and vari-
ance 1. An assumption of a Gaussian process forp�i is
a reasonable approximation for much smallerc. We
found that an FSD model fitted thep�i extremely well,

except for a small fraction of intervals with lowc
where oscillatory effects of Internet transport proto-
cols broke through and created spikes in the power
spectrum. Even in these cases, the model serves as an
excellent summary of the amount of long-range de-
pendence in the correlation structure.

Estimates ofd vary by a small amount across the
traces and showed no dependence onc. The medians
for the 15 links vary from 0.39 to 0.45 and their mean
is 0.41. Estimates of� also show no dependence onc;
the mean of the 15 medians of� is 0.53. Thus thep�i
spectra look like the spectrum in column 2 and row
1 in Figure 2. The stability of the correlation struc-
ture ofp�i is consistent with the superposition theory,
which stipulates that the correlation structure of the
pi does not change withc. The heuristics for the ef-
fect of upstream queueing suggest that the autocor-
relation should be changed by a large amount of up-
stream queueing, but the effect does not appear to oc-
cur even for AIX1 or AIX2, where the occurrence of
back-to-back packets is the greatest. As with the co-
efficient of variation, it is possible an effect would be
seen for interval lengths less than 100 ms.

IX. EMPIRICAL STUDY: PACKET SIZES

A reasonable summary of the marginal distribu-
tion of theqj is an atom at the minimum size of 40
bytes, an atom at the maximum size of 1500 bytes,
an atom at 576 bytes, and continuous uniform from
40 bytes to 1500 bytes. Quantile plots [33] showed
that the marginal distribution did not change appre-
ciably with c, as predicted by the superposition the-
ory, but did change appreciably across the 15 links.
For example, if a link has traffic in a single direction
from hosts with a preponderance of clients download-
ing web pages, then the frequency of 40 byte packets
is greater and the frequency of 1500 byte packets less
than for a link where the preponderance of hosts are
serving web pages.

We do not transform theqj to a normal marginal for
our FSD modeling because the transformation would
not be invertible. For analysis purposes, we treat the
qj as is, without transformation; this amounts to a sec-
ond moment analysis, but it will provide adequate in-
sight because the correlation coefficient is still a rea-
sonable summary of dependence for such discrete-
continuous data.

We found that an FSD model provided an excellent
fit to the qj. A combination of theory and empirical
study show thatd remains constant withc, and the
estimate of the single value came out to 0.42, very
close to the 0.41 for thep�i . For simplicity, we could
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not resist using a value of 0.41 for theqj, the same as
the estimate ofd for thepi. We fixedd to this value
and estimated�.

Figure 4 plots the estimates of� againstlog(c). The
smooth curve on each panel is a loess fit using ro-
bust locally linear fitting and a smoothing parameter
of 1 [33]. Loess is a nonparametric procedure that
puts curves through data by a moving local polyno-
mial fitting procedure, the same in spirit, but not in
detail, as a moving average smoothing a time series.
The overall result in Figure 4 is that� goes to 1 withc,
so the spectrum changes as shown in the bottom row
of Figure 2. Thus theqj tend toward independence
as prescribed by the the superposition theory. An in-
crease in the percent of back-to-back packets withc
for the COS1, COS2, AIX1, and AIX2 links does not
alter the increase in�, which is consistent with the
heuristics for the effect of upstream queueing.

X. EMPIRICAL STUDY: INTER-ARRIVALS

We found, using Weibull quantile plots, that the
marginal distribution of the inter-arrivals is well ap-
proximated by the Weibull distribution across all val-
ues ofc. The back-to-back packets result in devia-
tions from the Weibull, but because packet sizes vary
by a factor of 1500/40 = 37.5, the deviations are
spread across the distribution, and overall the approx-
imation remains excellent, even for the traces with
the largest occurrence of back-to-back packets. The
Weibull has two parameters:�, a scale parameter,
and� a shape. When� is 1, the Weibull is an ex-
ponential, the inter-arrival distribution of a Poisson
process. When� < 1, the tail is heavier than that of
the exponential.

Figure 5 plots estimates of the Weibull shape pa-
rameter,�, againstlog(c). The smooth curve on each
panel is a loess fit with robust locally linear fitting
and a smoothing parameter of 1. The overall result
is that the shape estimates are less than 1, and asc
increases, the shape tends toward 1. Consider the 5
links with the largest meanlog(c) — NZIX, COS2,
COS1, AIX2, and AIX1. Almost all of the values of
c exceed210, but few values for the remaining sites
do so. For these top five, most estimates of� exceed
0.9. For the remaining, most estimates are below 0.8.
The top five appear to have a limit slightly less than
1; the back-to-back packets exert just enough influ-
ence to keep the estimates slightly below 1, but this is
a small matter since a Weibull with shape of 0.95 is
exceedingly close to exponential.

Because thetj have a Weibull marginal, the trans-
formation that takes them to normality isT (tj;�) =

G�1(F (tj;�)) where F is the Weibull cumulative
distribution function and� is the vector of parame-
ters� and�. Because� changes, the transformation
changes, but the change is not large and we found
the transformations are well approximated by a single
transformation, the sixth root oftj. So for simplicity
we usedt�j = t

1=6
j .

We found that an FSD model or an FSD-MA(1)
model provided an excellent fit tot�j except for a
small fraction of intervals with lowc where oscil-
latory effects of Internet transport protocols broke
through and created spikes in the power spectrum.
Even in these cases, the model serves as an excellent
summary of the amount of long-range dependence in
the correlation structure.

Theoretical results show that the value ofd for the
tj, or for monotone transformations oftj such ast�j ,
is the same as that for thep�i , so the estimate ofd for
thet�j was taken to be 0.41, that forp�i . This was done
rather than estimatingd from thet�j because, when�
gets close to 1, the long-range dependent component
accounts for such a small fraction of the variation in
thet�j thatd is poorly estimated.

We fitted an FSD-MA(1) withd = 0.41 to the 2526
traces. Figure 6 graphs estimates of� againstlog(c).
The smooth curve on each panel is a loess fit with
robust locally linear fitting and a smoothing param-
eter of 1. 1.2% of the estimates are less than�0:4
and are not shown on the plot. Our model check-
ing showed that the MA(1) component was impor-
tant for producing a good fit for the largest values
of c at NZIX7, NZIX, AIX1, and AIX2. The latter
two sites show a large back-to-back occurrence, but
not the first two. However, queueing upstream from
the link-input router can affect the inter-arrivals with-
out introducing back-to-back packets. In other words,
our measure of back-to-back packets in Figure 1 does
not tell the whole story of upstream queueing.

For� � 0:1, nu = �u + �u�1 is nearly white noise.
When� = 0:1, the variance of�u is 1=(1 + :12) =
0.990, sonu, whose variance is 1, is very close to
white noise. But when� = 0:3, the variance of�u is
0.917, sonu contains significant correlated variation.
It is only at NZIX7, NZIX, AIX1, and AIX2 that� is
reliably above 0.1, getting as high as 0.3. At the other
links,� is small enough, taking the greater variability
of estimates asc decreases into account, that it is rea-
sonable to omit the MA(1) component, that is, using
just an FSD model. In particular, at COS1 and COS2,
� is small.

Figure 7 graphs� againstlog(c). The smooth curve
on each panel is a loess fit with robust locally linear
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Fig. 5. An estimate of� for the inter-arrivals is plotted againstlog(c).
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Fig. 7. An estimate of� for the inter-arrivals is plotted againstlog(c).
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fitting and a smoothing parameter of 1. The over-
all result is that� goes to 1 withc. The long-range
dependence oft�j dissipates, tending either to short-
range dependence, an MA(1), or to independence.
Thus all panels of Figure 2 convey the behaviors of
the power spectra of thet�j .

These results for�, �, and� are consistent with the
superposition theory and the heuristics for the effect
of upstream queueing. Multiplexing creates an attrac-
tion to Poisson in thetj; � and� tend toward 1 as the
theory prescribes. But the network succeeds in push-
ing back in some cases, keeping� slightly less than
1, and causing values of� for some links that indicate
short-term dependence.

XI. OPEN LOOP GENERATION OFPACKET
TRAFFIC

The FSD models fitted to the sizes and inter-
arrivals can be used for open-loop generation of syn-
thetic traffic for simulation studies. The inter-arrival
marginal is Weibull; the parameters are� and �.
The packet size marginal has atoms at specific packet
sizes and has a continuous part that is uniform be-
tween 40 bytes and 1500 bytes; the parameters are
the probabilities at the atoms. The inter-arrivals are
generated by Gaussian FSD variables with d = 0.41
transformed to the Weibull marginal; the parameter is
�t. The packet sizes are generated by Gaussian FSD
variables with d = 0.41 transformed to the discrete-
continuous marginal; the parameter is�q. �, �, �t,
and�q change withc according to certain models to
reflect the multiplexing gains, so onlyc is specified to
carry out generation.

XII. T HERE ARE MULTIPLEXING GAINS

The results here show that an increasing number
of simultaneous active connections causes a dramatic
change in the statistical properties of packet traf-
fic on an Internet link. Starting at low connection
loads on an uncongested link, packet arrivals tend to-
ward Poisson and packet sizes tend toward indepen-
dence as the load increases. A component of long-
range dependence is retained in each of these vari-
ables, but the effect of the component gets increas-
ingly small. Packet counts have a stable autocorre-
lation structure that does not change with the load,
but the standard deviation of the counts relative to
the mean gets small, so the counts become smooth.
The network pushes back on this attraction to Poisson
and independence through upstream queueing, which
also increases with the connection load; very short
term autocorrelation can develop in the inter-arrivals,

and their marginal changes toward the distribution of
packet sizes divided by the link speed. On a link with
a sufficiently large speed that the increasing connec-
tion load can bring the traffic to Poisson and indepen-
dence before substantial upstream queueing occurs,
the onset of queueing does not resurrect the long-
range dependence. All this means that the burstiness
of traffic, once thought to pervade the whole Internet,
dissipates with the connection load. There are multi-
plexing gains.

Inspired by these results on multiplexing gains,
theoretical and empirical studies have now demon-
strated that queueing on an Internet device tends to
that of Poisson arrivals and independent sizes as the
load increases, just as one would expect [10], [21].
This means that if a link speed is sufficiently large,
queueing distributions relative to the bit/rate of the
traffic get dramatically smaller.

The foundations of traffic analysis and modeling
should reflect these results. The dramatic change
in the statistical properties with the connection load
makes clear that the load needs to play a central role
in analysis and modeling. Theory must reflect the
load. Empirical study must encompass a range of
packet traces from small loads to large.

The results have important implications for Inter-
net device engineering and Internet traffic engineer-
ing. On links with low speeds, at the edges of the
Internet close to the user hosts, connection loads can-
not get large, and traffic remains highly bursty. But
on links with high speeds, toward the core of the In-
ternet and carrying traffic made up of large numbers
of connections, the traffic can be close to Poisson and
independence, so the burstiness is gone. Engineer-
ing studies that are meant to apply to the Internet as
a whole, and that use synthetic or live packet traffic
to assess performance, need to consider packet traces
varying across a wide range of link speeds and con-
nection loads. Many issues of Internet engineering
need to be revisited to determine how protocols, algo-
rithms, device design, network design, and network
provisioning should change to reflect the effect of the
changing statistical properties of the traffic with the
connection load.
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