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Multiserver Queues with Impatient Customers
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Abstract

We study multiserver queues in which customers leave when their service is not started before the expiration
of a stochastic deadline. Insensitive bounds and sharp approximations for the overflow probability are derived.
Assigning costs to servers and to the Joss of impatient customers, we also consider the problem of determining
the number of servers that minimizes a certain cost function.
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1. INTRODUCTION
In many service systems, customers leave when their service is not started before a certain
deadline expires. Some examples of such service systems with impatient customers are:

(i) telecommunication networks where subscribers give up due to impatience before the
requested connection is completely established.

(ii) real-time communication systems, in which the content of a message often loses its
importance after a certain amount of time.

(iii) packet-switching communication networks in which the switching nodes have a lim-
ited buffer capacity: due to the fixed length of a service (transmission), limited buffer
capacity translates into a limitation on the waiting time.

(iv) datacommunication networks with a time-out protocol.
(v) inventory systems with storage of perishable goods.

(vi) database systems, in which a query is withdrawn when it has not been handled before
a certain deadline. Furthermore, in a parallel database system where several queries
can be handled simultaneously on different processors, a partial result of a query may
make other queries obsolete.

(vii) repairable systems subject to wear and breakdown. Components of the system may
be repaired preventively, but if preventive maintenance is delayed too long because of
limited repair capacity, then a breakdown may occur, necessitating corrective mainte-
nance: a customer loses patience and leaves the system. ”Impatience” may also occur
because a too long delay causes the violation of safety regulations.
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The last example (which led to the present study) describes a situation where overflowing
customers still require service - possibly with a different service time distribution. E. g., in an
oil platform a repair crew takes care of preventive maintenance jobs; but when a breakdown
occurs, a special repair crew may have to be flown in to perform corrective maintenance. Such
corrective maintenance may be both considerably longer and considerably more expensive
than preventive maintenance. This raises the issue of determining the number of repairmen
for preventive maintenance that minimizes total cost. To solve that problem, one needs to
know the breakdown probability as a function of the number of repairmen - or more generally,
the probability that a customer in a multiserver queue loses its patience.

The present paper is devoted to these issues. It studies the loss probability in a multiserver
queueing model with impatient customers. For that loss probability we discuss some exact re-
sults (Section 2), insensitive upper and lower bounds (Section 3), and various approximations
(Section 4). Extensive tests of these approximations reveal a near-insensitivity of the over-
flow probability with respect to the service time distribution, and - apart from a small traffic
region - a rather weak sensitivity with respect to the patience time distribution. In Section
5 the following cost minimization problem is studied: determine the number of servers, 1,
that minimizes the cost function

caim + cam(m), (1.1)

where ¢; is the cost per time unit involved in having m regular servers, m(m) is the overflow
probability, and ¢; is the cost per time unit involved in hiring extra service capacity. Section
6 contains conclusions and some suggestions for further research. In the remainder of this
introduction we present a model description and a short review of the literature on multiserver
queues with impatience.

Model description

Customers arrive at a service facility according to a Poisson process with rate A. Service
requests of successive customers are independent, identically distributed (i.i.d.) stochastic
variables Sp,n = 1,2,... with distribution B(-), with first moment 8. The service facility
has m servers. The service discipline is First-Come-First-Served (FCFS). Customers have
limited patience. If the service of a customer is not started before its patience runs out, then
it leaves the system (as far as the loss probability is concerned, an equivalent assumption
is that customers whose deadline eventually expires are rejected immediately upon arrival).
The patience times of successive customers are i.i.d. stochastic variables Gpon=1,2,...,
with distribution F(-), with first moment 7. In the sequel, F(t) = 1 — F(t). The arrival,
service and patience processes are independent stochastic processes. This M /G/m queue with
general patience time distribution will be denoted as M/G/m+G. '

Literature Review

According to Stanford[16], the reneging phenomenon appears for the first time in the queueing
literature in Palm[12], in the context of impatient telephone switchboard customers. An early
study of a multiserver queue with impatience is Barrer[4]; he determines the loss probability
in the M/M/m+D queue. Gnedenko and Kovalenko[8], Section 1.5, study the M/M/m+D as
well as the M/M/m+M model. Haugen and Skogan[9] and Baccelli and Hebuterne[2] analyze
the M/M/m+G queue. The first paper presents an approximate analysis, replacing a general
patience distribution by a two-point discrete distribution. The latter paper derives a set of



equations for the virtual waiting time distribution and the probability of having 0,1,...,m—1
customers; for M/M/m+D and M/M/m+M, this leads to explicit expressions for the loss
probability. Bhattacharya and Ephremides[5] show that the number of successful departures
and the number of customers lost over a time interval are (stochastically) monotone functions
of the arrival, service and deadline processes. An admission control problem in an impatient
customer queueing model for a telephone switch is discussed in [19, Chapter 4]. An extension
of that model, with an additional arrival stream, is presented in [6]. Finally we mention
some fundamental studies concerning single server queues with impatience: both Stanford|[16]
and Baccelli et al.[3] study the GI/G/1+G queue, using an approach based on regenerative
processes and deriving stability conditions and results for actual and virtual waiting times;
cf. also Stanford[17]. ‘

2 Exact results for the overflow probability

Most of the exact results for the M/G/m+G queue have been derived for the case of exponen-
tial services (even for the ordinary M/G/m queue hardly any exact results are known). Bac-
celli and Hebuterne[2] consider the Markov process {(N(t),n(t)),t > 0} for the M/M/m+G
queue; here

N(t) = n when the number of customers at time ¢ equals n and 0 <n <m - 1;

N(t) = L when the number of customers at time ¢ exceeds m — 1;

n(t) is the virtual offered waiting time, i.e. the time that a customer with infinite patience
would have to wait for service. It is strictly positive when N(¢) = L, and it equals zero
otherwise.

Define in the steady-state situation, which exists iff AF(co) < m/8 (see [2]):

P;:= Jim Pr{N(t) = j,n(t) =0}, j=0,...,m—1, (2.1)
v(z) = tl_l_gxo dlimo Pr{N(t) = L,z < n(t) < z + dz}/dz. (2.2)

From the Chapman-Kolmogorov equations for P;,j = 0,...,m — 1 and v(z) it follows, with
offered traffic load p := AS3:

sz%Po, j=0,...,m~—1, (2.3)

9(0) = \Pr_1, (2.4)

v(z) = v(0)ezp { A / F(u)du — mx/ﬁ} , z>0. (2.5)
u=0

m—1 [o]
The normalizing condition Y, P; + [ v(z)dz = 1 yields:
j=0 0

2 m—1

-1
- P A
Po._[1+p+2!+...+(m_1)!(1+/\J)} : (2.6)

with



J = /exp [A/F(u)du-— mx/ﬁ} dz. (2.7)
0

0

The overflow probability = is given by
oo
T= / F(z)v(z)dz; (2.8)
0

hence (cf. [2], formula (5.9)),

m—1 )
m=(1=2)1= 3 B)+ Py, ¥ it gl (29
0
€4 . - i~ _ 4 (g~ A fowed
For M/M/m+D this yields: («7 V’A 1 I = [4 /&)(1 )/U)+ ",
3 o~ (A=) -
n
T = Po%ewp[(A - m/B)]. 2.11)

For M/M/m+M, with o := §/m~:

[ e =
PO_L=O7f_!+;1—1(1+1+a+(1+a)(1+2a)+"')J , (2.12)
m—1 5
r= Po‘—“-(,z ] [1 + (p/m — 1)[;1"; 4 +(:)/(T)+ 5y T .]J . (2.13)

The following observation leads to a simpler representation for M/M/m+M. Assume that
customers whose deadline eventually expires are rejected immediately upon arrival. As far
as the loss probability is concerned, there is no difference between discarding impatient cus-
tomers rightaway or only at the expiration of their deadline; they are not served anyway, so
they do not influence other customers. The queue length process in the M/M/m+M queue
with the above-indicated immediate rejection is a birth-and-death process with death rate
7/B (7 < m) respectively m/f3 (j > m) and arrival rate A (j < m) respectively Ag; (j > m),
with g; the probability that an arriving customer is accepted when he meets j customers in
the system. Clearly go=... = gm_1 =1, and ¢; = gi-1/(1+a) for j =m,m+1,...; hence
gm+i = 1/(14+a)"*,i=0, 1, .... The probability p(2) of having 7 customers in this modified
M/M/m+M queue is:

p0) =p(0)%, i=0,...,m, (2.14)
p(m+z')=p(m)—-§—)‘19‘-)-i— i=0,1,..., (2.15)

(1 + o)™’
J



with m(z) := (i + 1)/2. The overflow probability readily follows:

oo m~—1 oo
7 o= Y p@)(1-q)=1-Y p@i)—D p(m+i)gmi

1=0 1=0 1=0
_ p S ()\’Ya)’
=

The infinite sum in the last expression converges faster than the sum in (2.13): the ratio of
the (i 4+ 1)th and the ith term equals Aya/(1 + a)**!, which is monotonically decreasing in i.

3 \Bounds for the overflow probability

In the previous section we have seen that, apart from the M/M/m+G queue, few exact
results are known for multiserver queues with impatient customers. In the present section
we shall discuss some - insensitive - bounds for the overflow probability in such multiserver
queues. Bhattacharya and Ephremides[5] consider a G/G/m+G queue. They show that the
number of lost customers over any time interval decreases stochastically when the patience
time becomes stochastically larger (i.e., when the patience time distribution F'(z) is replaced
by F(z) with F(z) < F(z) for all z > 0). We use their result to derive lower and upper
bounds for the overflow probability = in M/G/m+G. Zero patience gives
i

T L Terl = mm! T : (31)

o

Jj=0

with 7., the loss probability in the Erlang loss system M/G/m/0.
Infinite patience gives

> Ting = max]0,1 — —";f]. (3.2)

Indeed, in the case of infinite patience, i.e., an M/G/m system, only a fraction m/p of the
customers is served when p > m. Heyman[10] rigorously proves that this same lower bound
holds for the overflow probability in a G/G/m/r queue (with r waiting positions), extending
an M/G/m/r result of Sobel[14]. In fact Sobel also obtains an upper bound for the overflow
probability in M/G/m/r: p/(m + p). We can easily sharpen this bound by observing that
the overflow probability in M/G/m/r is decreasing in r, a result proven by Sonderman[15,
Section 3]. Hence an upper bound is obtained by taking r = 0, yielding m.r;. This is a better
lower bound than p/(m + p), because

e

p e
s = T g 2 Merl: (3.3)
P o t:
Remark

It is interesting to observe that the upper and lower bounds ey and 7, ¢

1. hold both for M/G/m+G and for M/G/m/r;



2. are insensitive for the patience time distribution and for r;
3. are insensitive for the service time distribution;
4. almost coincide for a large range of p values.

Figure 1 shows the overflow probability 7 for the M/M/m+D queue with A = 40, § = 1 and
v = 0,0.1,0.5,1.0,00. The only m values for which the lower and upper bounds differ by
more than 0.05 are 29 < m < 47. All figures and tables are placed at the end of the paper.

Let us compare the two systems M/G/m+G and M/G/m/r in some more detail, assuming
that arrival intensities and service time distributions are the same in both models, and that an
arriving customer in M/G/m+G who will not eventually be served is rejected immediately.
Keeping. in mind the above-mentioned insensitivity, let us first compare M/M/m+G and
M/M/m/r. The queue length process in the latter system is a birth-and-death process; the
overflow probability, as given in several textbooks, reads as follows:

e r
TM/M/m/r = FTT m;(p/m) : | (3.4)
Y &+ i le(e/m)r — m}

k=0

A comparison with (2.11) for M/M/m+D reveals a remarkable structural similarity:

TM/M/m+D = TM/M/m/r> (3.5)
when p/m = elP~™)17/8 je. when

_m p/m~1
= B m(p/m)

In fact even the distributions of the numbers of busy servers coincide for this choice of r
(of course 7 should be integer for M/M/m/r). It should be noted that the two systems
do indeed behave very similarly when r is approximately ym/8. In M/M/m/r there is a
sharp distinction between meeting at least r waiting customers upon arrival (rejection) and
meeting less than r waiting customers (acceptance). But when an arriving customer in the
M/M/m+D system (with immediate rejection) meets r + s waiting customers, than the time
until its service could start is the sum of r+s independent exponentially distributed stochastic
variables with means /m, so it has an Erlang-(r + s) distribution. When r is not too small
and s is positive (not too small), the almost deterministic character of Erlang-(r + s) shows
that the patience time v = r8/m will most likely be exceeded. When s is negative, the
reverse statement holds.

For the case of a general service time distribution and deterministic patience, one might
approximate Tas/G/m+D BY Tam/G/m/r With r given by (3.6). TM/G/m/r has been extensively
tabulated in the book [13]. Those authors have represented service times by Erlang or
hyperexponential distributions with the right mean and coefficient of variation, and have
subsequently analysed the M/Ey/m/r and M/Ha/m/r queues exactly. If r as given by (3.6) is
non-integer, one could use the table results for the two surrounding integers, and interpolate
linearly. In the next section we shall investigate some approximation possibilities for the
overflow probability in more detail.

T (3.6)



Remark

Whitt [20] has developed a heavy-traffic approximation for 7gr/g/m/r (p high but less than
m). Approximations for the Erlang loss probability 7r/q/m/o have also been developed (see,
e.g., [11]), usually distinguishing three traffic regions: p < m—C+y/m, p 2 m+Cy/m, with C
some positive constant and the (most interesting) intermediate region. Such a traffic region
distinction is also natural in our model, cf. Figure 1.

4 Approximations for the overflow probability

In this section we present and test three approximations for the overflow probability 7 in the
M/G/m+G queue.

a. A simple insensitive approzimation

In Section 2 an exact analysis of the M/M/m+G queue has been presented. The overflow
probability 7 can be determined from (2.9) using (2.3), (2.6) and (2.7). A simple explicit
representation is given for the M/M/m+D case (formula (2.11)), and a series representation
for the M/M/m+M case (formula (2.13) or (2.16)). In view of the insensitivity of the rather
tight bounds of Section 3 and the service time insensitivity of the queue length process in
another extreme case, the M/G/oo+G queue (= M/G/c0), we propose to approximate 7 in
the M/G/m+G queue by the overflow probability in the M/M/m+G queue:

THa = TrM/M/m—*-G' ‘ (41)

And unless the patience time distribution has a large coefficient of variation and m is close
to p, we recommend to use the even simpler approximation

TA' = TM/M/m+Ds (4.2)

the overflow probability in the M/M/m+D queue with the same parameters 8 and ~.

b. General patience distribution: a weighted integral
If patience is not deterministic, it might be worthwhile to use the more sophisticated approx-
imation

o]
B = /WM/M/m—{-D(:z)dF(m)a (4.3)

=0

where D(z) denotes deterministic patience z. Note that myr/ar/m+p(z) is monotonously de-
creasing in z, cf. [5], and for £ = 0 (z = oo0) wp equals the upper (lower) bound of Section
3. This gives some support to the approximation. mp can easily be evaluated for a discrete
patience time distribution. For exponentially distributed patience the evaluation becomes
somewhat more complicated; e.g., for p = m (2.10), (2.11) and (4.3) lead to a so-called
exponential integral (cf. Abramowitz and Stegun [1]).

c. General patience distribution: a weighted sum

In practice, patience behaviour will usually be closer to deterministic than to exponential.
E.g., in [2] an Erlang-3 patience time distribution is claimed to fit well measurement data
obtained for subscriber behaviour in several PABX’s in a telephone network. When the
coefficient of variation ¢; of the patience time distribution (standard deviation divided by
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mean) is indeed between 0 and 1, it seems quite natural to approximate 7 by interpolating
between TM/G[m+D and maz/G/m+pm- Our numerical experiments suggest that ¢y (and in fact
also cs?) is a suitable weighing factor:

TC = CfMM/G/m+M + (1= ¢f)Tarye/mep, for 0<e¢r <1 (4.4)

Similar weighted sum approximations, usually with weight factor cf2 have often been used
in multiserver queues; cf. Tijms(18, Chapter 4]. In (4.4) TM/G/m+M 80 Tpr/G/map are still
undetermined. For most purposes it would be sufficient to assume insensitivity w.r.t. the
service time distribution, replacing TM/G/m+. DY Tar/M/m+.- More accuracy may be obtained
by employing another idea that has been used before in the context of (mean waiting time
approximations for) multiserver queues:
TM)G[1m+G
TM/Gjm+G = TMIMjm+G—————. (4.5)
/G[m+ /M/m MMMt G
Here 1,, indicates that the speed of the single server is m-fold increased. The idea behind
this approximation is that

1. it is exact for single server queues;
2. it is exact for exponentially distributed service times;

3. the influence of the service time distribution on the overflow probability should be
roughly the same as in an m times faster single server queue (note that in the case of
exponential service, both when all m servers in M/M/m are occupied and the single fast
server in M/M/1,, is occupied, the next departure occurs after an exp(m/3) distributed
time);

4. it allows one to use known results for multi- and single server queues with impatience.
In [2], [3] Baccelli et al. present an exact analysis of M/G/1+G (7 is obtained by
solving a Volterra integral equation). The special case M/G/1+M is particularly neat.
Tijms|[18, Section 4.3.3] obtains simple exact results for Ta/p/1+D and Ta/a/14-Ds @nd
a nice simple approximation for ms/G/14p-

Numerical Results

We have seen that the upper and lower bounds in Section 3 are farthest apart in the region
around p = m. In the numerical tests, where we have to choose from a large set of possible
distributions and parameter combinations, we therefore restrict ourselves to the region around
p = m. Without loss of generality we take #=1,s0 p = \.

The approximations are compared to simulation results and a numerical approximation of
the overflow probability. The latter, which can be used only for exponential service times, is
computed by replacing J in the normalisation constant (2.6)-(2.7) by

/O-K exp [)\ /z F(u)du — mw/ﬂ] dz + /oo exp [\y — mz/ B dz (4.6)

where K has to be chosen sufficiently large (assummg that F(co) = 0). The first term in
(4.6) is integrated numerically.

The first example deals with the apprommatlon a. We have ran a number of simulations of
an M/G/m+G queue, in which the deadline distribution was varied between deterministic,



Erlang-2 and exponential, while the service time distribution was varied in such a way that
its squared coefficient of variation (c%) ranges from 0 to 2. The simulations were carried
out with the AT&T Q-+ simulation package and for the service time distributions we used
the so-called P2 distribution: deterministic for c% = 0, uniform for c% = (.25, gamma for
c2ﬁ = 0.50, 0.75, and Hyper-2 exponential for c% > 1. The results are depicted in Tables 1-3.
For each model we used a run of 40 subsimulations of 16000 arrivals each to get the indicated
accuracy. In these tables the values for c% = 1 correspond to exponentially distributed service
times and for this case the overflow probability is approximated numerically as in (4.6).
From these figures we may conclude that mp/g/m+c can be approximated quite reasonably
by replacing the service time distributions with exponential distributions. Replacing the
deadline distributions with deterministic ones on the other hand introduces a substantial
deviation in the region around p = m.

From other experiments, not represented here for lack of space, using the same numerical
approximation (4.6), it appeared that the overflow probability is insensitive for the deadline
distribution too, provided that the deadline distribution has a coefficient of variation larger
than 1; one might replace 7 by 7pr/G/m+n in such cases.

The next example illustrates the accuracy of approximations b and c. The model that
is considered is the M/M/m+D2 queue, where the D2 indicates a discrete distribution on
two points. We have chosen four of these distributions such that the squared coefficient of
variation ranges from 0.25 to 1. The exact parameters of each distribution are given in Table 4.
The mean deadline is varied over v = 0.1 (Table 5), v = 0.5 (Table 6), v = 1.0 (Table 7). It
appears that approximation ¢ is considerably better than approximation b, except for case
D2-d. Note chat for D2-d the corresponding c% equals 1, so for this distribution approximation
¢ amounts to replacing the D2 distribution by an exponential one. Apparently 7 is here even
quite sensitive to the third moment of the patience time distribution.

From other experiments involving D2 distributions we have gotten the impression that good
approximations are difficult to obtain when either of the two points of the D2 distribution
becomes close to zero or to infinite patience (in the sense that mas/a7/m4p on this one point
would be close to the upper or lower bound). Consider for instance D2-d for v = 1.0, when
the distribution is concentrated on the points 0.666666 and 4.

The final example presents approximation method ¢ for an M/M/m+E2 queue, i.e. Erlang-2
distributed deadlines. The exact and approximate results for v = 0.1, 0.5, 1.0, are depicted
in Table 8.

Conclusions

74 is a very good approximation, due to the near-insensitivity of the overflow probability for
the service time distribution. The worst results occur when vy = p/m and small coefficients
of czﬁ (smaller than 0.5). 74 is very simple, but only accurate when patience is close to
deterministic.

When taking the patience time distribution into account, ¢ is both simpler and more accu-
rate than mp. For the D2-a, D2-b and E2 patience time distributions the error in 7¢c was at
most 0.005.
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5 Optimization problem

Consider the M/G/m+G queue with the following cost structure added. The operational
costs for a server in the queue are d; per time unit. For any customer that abandons the
queue because of impatience, an external server is hired, for the duration of the service of
that customer only. The cost per time unit for such a server is denoted as dy. An elementary
application of Little’s law shows that if the internal queue has m servers, then the longrun
average cost g(m) is given by

g(m) =di *m+ X §° x dy x 7(m), (5.1)

where " is the mean service time for customers served by an external server, and w(m)
denotes the overflow probability as a function of m. We are interested in the value of m that
minimizes (5.1).

In this section we investigate the sensitivity of the optimal value of m and the sensitivity
of g(m). We illustrate this for the model M/M/m-+D, where we take * = 1. From the
experiments it appears that g(m) is a convex function of m for all the parameter settings
that we tried, although we have not been able to prove this (for M/M/m/r it is known, cf.
p. 148 of [7], that 7ar/pr/m/r is convex in m and in 7; the equivalence between M/M/ m/r
and M/M/m+D, as noted in Section 3, almost (but not quite) yields the above-mentioned
convexity result). As a result there is always a unique m that minimizes g(m).

In Figures 2, 6 and 9 we present the plots of g(m) in the M/M/m+D queue for three values of
d; : dy (or equivalently, and more importantly, Ad; : f*dz). We have not included examples
with ds < dj, since for those parameters the optimal m is always 0. In the plots it is
remarkable that although the value of m for which g(m) is minimal shows sensitivity with
respect to the value of 7, the shape of g(m) is very flat around the minimum. This means
that if we deviate from the optimal m*, then the time average costs may still be close to the
optimal g(m*).

The sensitivity of the average costs on the type of the distribution functions is reported in
Figures 3, 4, 5, 7 and 8. In Figure 3 g(m) is plotted for deterministic, Erlang-2 and exponential
deadlines. The same observation as for M/M/m+D can be made here: the optimal value m*
shows sensitivity with respect to both the type and the mean of the deadline distribution,
but g(m*) is almost insensitive. Note for instance that m* ranges from 34 for exponentially
distributed deadlines to 37 for deterministic deadlines, but throughout this region the value
of g(m) does not deviate more than 2% from g(m*). This insensitivity suggests that, for
M/G/m+G with ¢; < 1, one can accurately solve the minimization problem (5.1) by using
the simple approximation wg = 7 M/M/m+D-

In Figures 4 and 5 the time average costs are depicted for four different service time distribu-
tions and two deadline distributions. In these plots the H, distribution is a hyperexponential
distribution of order 2 with c% = 1.5. All the values of the overflow probability that are needed
to compute g(m) were obtained from simulation, except for the models with exponentially
distributed service times. These were computed exactly. Again we see that m* is sensitive
with respect to the type of the distribution functions, and that g(m*) is not sensitive. The
same remarks apply to Figures 7 and 8, which shows the same models with a different d; : d
ratio.

Note that we can interpret the extreme cases of ¥ = 0 and v = 0o as two degenerate models
where no information about the deadline is available. From the monotonicity of 7 (see [5])
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and the convexity of g we can conclude, however, that the optimal m* must be between my
and m?,, the optimal values for v = 0 and v = oo, respectively. If deadlines are tight, then
m should be chosen close to mf, while if deadlines are loose, then m around mg, seems more
appropriate. Note that (cf. (3.2)), m%, = 0if di8 > d23* and my, = p if d18 < d28".

6 Conclusions and suggestions for further research

Sharp lower and upper bounds for the overflow probability 7 in the M/G/m+G queue have
been derived, and a link between the M/G/m+G and M/G/m/r queue has been established.
Several approximations for 7 are suggested and tested, in the only region where the derived
lower and upper bounds differ considerably: m = p. The main conclusions are that = is
nearly insensitive for the service time distribution, and that, when 0 < ¢y < 1, m can be very
accurately approximated by interpolating between 7 r/pr/m+p find and mas/ar/mnr-

An interesting performance measure in the multiserver model with impatience is the mean
waiting time of accepted customers. Approximations for this mean might be obtained along
the lines of established mean waiting time approximations for the M/G/m queue, cf. [18].
Another subject that we have not covered is the ‘shortest deadline first’ service discipline.
Bhattacharya and Ephremides(5] have shown (for ./M/14+G) that for that discipline, too, the
number of lost customers over any time interval decreases stochastically when the patience
time becomes stochastically larger. Consideration of this discipline might be especially inter-
esting in connection to the optimization problem of Section 5.

An interesting optimization problem also arises when a group of m servers should be allo-
cated among N service stations (m; servers to station i) in such a way that (with an obvious
notation, cf. (5.1))

N
D Xi ® B * dagi * mi(my) (6.1)
i=1

is minimized. This is similar to a problem mentioned in Buzacott and Shanthikumar [7,
p. 149}, and can be easily solved numerically using the (assumed) convexity of m;(.).
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Overflow probability in M/G/m + D
5 vy =0.1 v =05 v=1.0
.00 | .071 £ .001 | .021 £+ .001 | .013 £ .001
25 | .075 &£ .002 | .028 &+ .002 | .014 £ .002
.50 | .077 £ .002 | .031 £+ .001 | .016 £ .002
75 | .078 = .002 | .033 + .002 | .019 £ .002
1.00 079 035 .021
1.25 | .078 £ .002 | .037 £ .002 | .022 = .002
1.50 | .081 £ .002 | .038 £+ .003 | .024 + .002
1.75 | .078 £ .003 | .038 & .002 | .024 £ .002
2.00 | .081 & .002 | .039 + .003 | .027 & .003 |

"TABLE 1. Overflow probability and 5% confidence interval

in M/G/m + D () =40, 8 =1, m = 40)

Overflow probability in M/G/m + E,
5 v=0.1 v =0.5 v=1.0
.00 | .085 £ .001 | .050 &= .001 | .037 &= .001
.25 | .088 £ .002 | .054 %+ .001 | .041 £ .001
.50 | .088 £ .002 | .058 £ .002 | .043 = .002
.75 | .089 £ .002 | .057 £ .002 | .045 x .002
1.00 .089 .061 047
1.25 | .089 &= .002 | .063 £ .002 | .048 & .002
1.50 | .089 £ .002 | .065 £ .002 | .049 £ .002
1.75 | .092 £+ .003 | .063 £ .002 | .053 £ .002
2.00 | .091 £+ .002 | .063 £ .002 | .051 £ .002

TABLE 2. Overflow probability and 5% confidence interval

in M/G/m+ Ey (A=40, § =1, m = 40)

Overflow probability in M/G/m + M
s v=0.1 v=10.5 v=1.0
.00 | .091 £ .001 | .064 = .001 | .054 £ .001
.25 | .094 4 .002 | .069 £ .002 | .057 £ .001
.50 | .094 £ .002 | .071 £ .002 | .060 + .002
75 1 .095 &£ .002 | .071 £ .002 | .062 £ .002
1.00 .095 074 .063
1.25 | .095 = .002 | .074 + .002 | .062 £ .002
1.50 | .096 £ .002 | .074 £ .002 | .065 £ .002
1.75 | .096 £ .002 | .075 £ .003 | .065 £ .002
2.00 | .095 £+ .002 | .075 £ .002 | .068 + .002

TABLE 3. Overflow probability and 5% confidence interval

in M/G/m + M (A =40, f =1, m = 40)

13
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Parameters of Dy distributions
51 ) 52 P(D = 51) C%

Ds-a 0.5 v 1.5 %~y 0.5 0.25

Dy-b | 0.2909 x~v | 1.7091 * v 0.5 0.50

Ds-c 0.1« 1.9 %~ 0.5 0.81

Dy-d | 0.666666 * v 4.0 x v 0.9 1.00

TABLE 4. Parameters of Dy distributions
Overflow probability in M/M/m + D,
Dz-a Dz-b D2-C Dg—d

m || exact | 7p TC exact | g TC exact | g TC exact | mp (¥,
30 || 271 | 269 | 271 || 275 | 271 | 273 || 279 | 275 | 275 || 272 | 271 | 276
31 || .249 | .247 | .250 || .253 | .249 | .252 || .259 | .253 | .254 || .251 | .249 | 255
32 || .228 | .225 | .229 || .233 | .228 | .231 || .238 | .232 | .233 || .230 | .228 | .235
33 .208 | .204 | .208 213 | .207 | .211 219 | .210 | .213 209 | .207 | .215
34 || 188 | .184 | .188 || .193 | .187 | .191 || .199 | .190 | .194 || .189 | .187 | .195
35 169 | .164 | .169 174 | 167 | 172 181 | 170 | 175 170 | 167 | 176
36 150 | .146 | .151 156 | 148 | .154 163 | .152 | .157 152 | .148 | .158
37 133 | .128 | .133 139 | .130 | .137 146 | .134 | .140 134 | 1131 | .141
38 || .117 | .111 | .117 |} .123 | .114 | .120 || .130 | .117 | .123 || .118 | .114 | .125
39 101 | .096 | .102 108 | .098 | .105 115 | .101 | .108 102 | .098 | .110
40 || .087 | .081 | .087 || .093 | .084 | .091 || .100 | .08 | .094 || .088 | .084 | .095
41 | .074 | .068 | .074 || .080 | .070 | .077 || .087 | .073 | .080 || .075 | .071 | .082
42 || .062 | .057 | .062 || .068 | .059 | .065 || .074 | .061 | .068 || .063 | .059 | .070
43 || .052 | .046 | .052 || .057 | .048 | .055 || .063 | .051 | .057 || .052 | .049 | .059
44 || 042 | .037 | .042 || .047 | .039 | .045 || .053 | .042 | .047 || .042 | .040 | .049
45 || .034 | .030 | .034 || .039 | .031 | .036 || .044 | .034 | .039 || .034 | .032 | .040
46 || .027 | .023 | .027 || .031 | .025 | .029 || .036 | .027 | .031 || .027 | .025 | .032
47 || .021 | .018 | .021 || .025 | .019 | .023 || .029 | .021 | .025 || .021 | .020 | .026
48 || .016 | .014 | .016 || .019 | .015 | .018 || .023 | .017 | .019 || .016 | .015 | .020
49 | .012 | .010 | .012 || .015 | .011 | .014 || .018 | .013 | .015 || .012 | .011 | .016
50 || .009 | .007 { .009 || .011 | .008 | .010 || .014 | .010 | .011 || .009 | .008 | .012

TABLE 5. Approximations B and C for the overflow probability in M/M/m + D,
(A=40,8=1,v=0.1)




Overflow probability in M/M/m + D,

DQ-a Dg—b D2-C Dz-d

m || exact | g TC exact | 7p Yo} exact | 7p TC exact | 7™p TC

30 252 | .252 | .254 257 | .255 | .256 .268 | .264 | .258 251 | .251 | .258
31 2228 | .227 | 231 234 | .231 | .233 .246 | 241 | .235 227 | 227 | 236
32 205 | .203 | .207 211 ] .208 | .210 226 | .218 | .213 .203 | .203 | .214
33 182 179 | 185 189 | .184 | (188 205 | .195 | 191 180 | .179 | .193
34 159 | .156 | .163 .168 | .162 | .167 186 | 173 | 171 157 | .156 1 173
35 138 | 133 | 141 148 | 139 | .146 167 | .151 | .151 134 | (134 | .153
36 A17 ) 1114 121 129 | 118 | 127 .149 | 130 | .132 113 | 112} 135
37 .098 | .090 | .102 111 | 097 | 108 132 | .109 | 115 .094 | .092 | .118
38 .081 | .071 | .084 .094 | .078 | .091 115 | .090 | .098 075 | .074 | .102
39 .065 | .054 | .068 .079 | .061 | .076 .100 | .073 | .083 .059 | .057 | .087
40 .051 | .040 | .054 .065 | .046 | .062 .086 | .058 | .070 045 | .043 | .074
41 039 | .028 | .043 .053 | .035 | .050 .073 | .046 | .058 .034 | .032 | .062
42 .029 | .020 | .033 .042 | .026 | .040 062 | .037 | .047 .024 | .023 | .051
43 021 | .014 | .025 .033 | .020 | .032 .051 | .030 | .038 017 | .016 | .041
44 .015 | .009 | .019 025 | .015 | .025 042 | .024 | .031 011 | .010 | .033
45 .011 | .006 | .015 .019 | .011 | .020 .034 | .019 | .024 .007 | .007 | .026
46 .007 | .004 | .011 .014 | .008 | .015 .027 | .016 | .019 .005 | .004 | .021
47 .005 | .003 | .008 .010 | .006 | .012 021 | .012 | .014 .003 | .003 | .016
48 .003 | .002 | .006 .007 | .004 | .009 .016 | .010 | .011 .002 | .002 | .012
49 .002 | .001 | .005 .005 | .003 | .006 .012 | .007 | .008 .001 | .001 | .009
50 .001 | .001 | .003 .003 | .002 | .005 .009 | .006 | .006 .001 | .001 | .007

TABLE 6. Approximations B and C for the overflow probability in M/M/m + Dy

w(m)

0.6

0.5

0.4

0.2

0.1

(A=40,8=1, v =0.5)

Bounds for 7 in M/M/m + D

AN

AN

N

20

25 30 35 40 45 50

55

FIGURE 1. Overflow probability in M/M/m + D.
In decreasing order: v = 0 (upper bound), 0.1, 0.5, 1.0, co (lower bound).
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Overflow probability in M/M/m + D,

D2~a Dg-b D2~C D2~d
m || exact | g wC exact | 7p e exact | 7p TC exact | mp TC
30 250 | .250 | .252 .252 | .251 | .252 .261 | .258 | .253 250 | .250 | .253
31 225 | .225 | .227 227 | 227 | .228 238 | .235 | .229 225 | .225 | .230
32 201 | .200 | .203 203 | .202 | .205 216 | .211 | .206 .200 | .200 | .207
33 176 | 176 | .180 180 | 178 | .182 195 | 188 | 184 A75 | 175 | 185
34 152 | 151 | .157 157 | (154 | .160 175 | 166 | .162 151 1 0150 | .163
35 128 0127 | 134 135 | 131 | 138 4| .155 | .143 | .141 JA27 ) 126 | 143
36 106 | .103 | .113 114 | 108 | .117 137 ) 122 4 122 103 | 1102 | 124
37 || .084 | .080 | .092 .095 | .086 | .098 119 1 .100 | .104 081 | .078 | 107
38 .065 | .059 | .073 .077 | .065 | .080 103 | .080 | .087 .060 | .055 | .091
39 .048 | .040 | .056 .061 | .046 | .064 .087 | .061 | .072 .043 | .034 | .076
40 || .034 | .025 | .042 || .047 | .031 | .051 .073 | .046 | .059 .028 | .017 | .063
41 .023 | .015 | .031 .035 | .021 | .039 061 | .035 | .047 017 | .009 | .051
42 .014 | .008 | .023 || .026 | .014 | .031 050 | .028 | .038 010 | .005 | .042
43 .009 | .005 | .018 018 | .010 | .024 040 | .022 | .030 005 | .003 | .033
44 .005 | .003 | .013 .013 | .007 | .019 .032 | .018 | .023 .003 | .001 | .026
45 .003 | .002 | .010 .008 | .005 | .014 025 | .014 | .018 .001 | .001 | .020
46 .002 | .001 | .008 || .006 | .003 | .011 .019 | .011 | .014 .001 | .000 | .015
47 .001 | .000 | .006 .004 | .002 | .008 .014 | .008 | .010 .000 | .000 | .012
48 || .000 | .000 | .004 (| .002 | .001 | .006 .011 | .006 | .008 .000 | .000 | .009
49 .000 | .000 ; .003 j| .001 | .001 | .004 || .008 | .005 | .006 .000 | .000 | .006
50 .000 | .000 | .002 jj .001 | .000 | .003 || .005 | .003 | .004 .000 | .000 | .005
TABLE 7: Approximations B and C for the overflow probability in M/M/m + D2 (X = 40,
v =1.0)
Time average costs in M/M/m + D, dy = 1.25 x d;
48
a7 49 o vy=o001
46 > O v=1.0
45<> ) ° - o p O < A & X 7= 10
OO OO A N
m 44 IS ba—
RN i 1T YV OU DU VY LA
x & 1 -
42 N &
&® 5 0
41 3¢
Ef Mg O
40 X o
26 28 30 32 34 36 38 40 42 44
m

FIGURE 2. Time average cost in M/M/m+ D
(A=40,8=p0"=1,dy =1.25,d, =1)



g(m)

Overflow probability in M/M/m + E,

v=10.1

v =0.5

v=1.0

m

exact

TC

exact

Tc

exact

Tc

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0.273
0.251
0.230
0.210
0.190
0.171
0.153
0.136
0.120
0.104
0.090
0.077
0.065
0.054
0.045
0.036
0.029
0.023
0.018
0.014
0.010

0.273
0.252
0.231
0.211
0.191
0.172
0.154
0.137
0.120
0.105
0.091
0.077
0.065
0.055
0.045
0.036
0.029
0.023
0.018
0.014
0.010

0.254
0.230
0.207
0.185
0.164
0.143
0.124
0.106
0.089
0.074
0.061
0.049
0.039
0.030
0.023
0.018
0.013
0.010
0.007
0.005
0.003

0.256
0.233
0.210
0.188

0.167

0.146
0.127
0.108
0.091
0.076
0.062
0.050
0.040
0.032
0.025
0.020
0.015
0.012
0.009
0.006
0.005

0.251
0.226

10.202

0.178
0.155
0.133
0.112
0.093
0.076
0.060
0.047
0.036
0.027

0.020

0.014
0.009
0.006
0.004
0.002
0.001
0.000

0.252
0.228
0.205
0.182
0.160
0.138
0.117
0.098
0.080
0.064
0.051
0.039
0.031
0.024
0.019
0.014
0.011
0.008
0.006
0.004
0.003

51
50
49
48
47
46
45

Time average costs, dy = 1.25 * d;

N N
Yz
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TABLE 8. Approximation C for the overflow probability in M/M/m + E; (A =40, 8 =1)
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FIGURE 3. Time averagg costs in M/M/m + D, M/M[m + Ey, M/M/m + M
(A=40,=0"=1,v=0.5,dy =1.25, dy = 1)
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'
Time average costs, dy = 1.25 % d;

45 8 © M/D/m/+ D
A M/Ey/m+ D
O M/M/m+D
44 N X M/Hz/m-}—D
g(m) 43 — s
5 9 _
2%
B g 1 B 7
41 & <
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m

FIGURE 4: Time average costs in M/D/m+D, M/Ey/M + D, M/M/m+ D, M/Hy/m+ D
()\=40, ,3=ﬂ*=1,’}'=0.5, d2 =1.25, dl =1)

Time average costs, ds = 1.25 * d;

46
g "o M/D/M + E,
A M/Ey/m+ E,
45 g 0O M/M/m+ Ey
g X M/Hg/m+E2
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44
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34 36 38 40 42 44 46
m

FIGURE 5: Time average costs in M/D/m~+E;, M/Ey /M +Ey, M/M |m+E,, M/H, /m+E,
(A=40, =" =1,7=05,dy = 1.25, dy = 1)
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Time average costs, do = 2 * d}

52
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FIGURE 6. Time average costs in M/M/m + D
A=40,8=0*"=1,dy=2,d; =1)
Time average costs, dp = 2.0 x d;
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FIGURE 7: Time average costs in M/D/m+ D, M/Ey/m+D, M/M/m+D, M/Hz/m+D
(/\=40a ﬂzﬂ*1}7=05> d2=2, d].:l)
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Time average costs, do = 2.0 x d;

47
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FIGURE 8: Time average cost in M/D/m+Ey, M/Ey/m+ Ey, M/M/m+ Ey, M/Ho/m+ Es
(A=407 B = p1, v=105,d,=2,d; ’—;1)

Time average costs, dy = 5 * d;
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FIGURE 9. Time average cost in M/M/m + D
A=40,8=p0"=1,dy=5,d; =1.






