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We show how to construct the best linear unbiased predictor (BLUP)
for the continuation of a curve in a spline-function model. We assume
that the entire curve is drawn from some smooth random process and
that the curve is given up to some cut point. We demonstrate how
to compute the BLUP efficiently. Confidence bands for the BLUP
are discussed. Finally, we apply the proposed BLUP to real-world
call center data. Specifically, we forecast the continuation of both the
call arrival counts and the workload process at the call center of a
commercial bank.

1. Introduction. Many data sets consist of a finite number of multi-
dimensional observations, where each of these observations is sampled from
some underlying smoothed curve. In such cases it can be advantageous to
address the observations as functional data rather than as multiple series of
data points. This approach was found useful, for example, in noise reduction,
missing data handling, and in producing robust estimations (see the books
Ramsay and Silverman, 2002, 2005, for a comprehensive treatment of func-
tional data analysis). In this work we consider the problem of forecasting
the continuation of a curve using functional data techniques.

The problem we consider here is relevant to longitudinal data sets, in
which each observation consists of a series of measurements over time that
describe an underlying curve. Examples of such curves are growth curves of
different individuals and arrival rates of calls to a call center or of patients
to an emergency room during different days. We assume that such curves,
or measurement series that approximate these curves, were collected previ-
ously. We would like to estimate the continuation of a new curve given its
beginning, using the behavior of the previously collected curves.

Although each observation consists of a finite number of points, the ob-
servation can be thought of as a smooth function. This dual representation
leads to two different approaches when attempting to solve the prediction
problem. In the discrete approach, each observation is a longitudinal vector
of length p+ q. We are interested in the prediction of the last q-length part
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2 GOLDBERG ET AL.

of the new observation, given its beginning p-length part. This can be com-
puted by treating the beginning p-length vector as the predictor variables
and the last q-length vector as the response variables. A prediction can be
found, for example, by finding the best linear unbiased predictor (see (5)).
The disadvantage of the discrete approach is that the smooth nature of the
underlying function is ignored. If, instead, the continuous approach is used,
the prediction problem might be treated naively using regression techniques
in which both the predictor and the response are functions (Ramsay and
Silverman, 2005, Chapter 16). However, these techniques do not take into
account the fact that the response function is a smooth continuation of the
predictor function.

In this paper, we choose the continuous approach. Specifically, we would
like to generalize the discrete case to the continuous one, taking the smooth
nature of the curves into account. There are three main points that need to
be addressed. First, the curves lie within an infinite dimensional space, while
the number of observed curves is finite. This indicates that a simple model
for description of the data is required. Second, the full-length curves, the
curve beginnings, and the curve continuations all lie in different functional
spaces, which, in contrast to the discrete case, cannot generally be related
by a linear projection. Third, we require that the prediction should be a
smooth continuation of the beginning of the curve (at least in the absence
of noise).

Forecasting of the continuation of a function was considered in previous
works. Besse, Cardot and Stephenson (2000), and Antoniadis, Paparodi-
tis and Sapatinas (2006), among others, developed different techniques for
curve-valued autoregressive processes. In these models, each curve describes
some longitudinal data cycle such as climate variation during a year (Besse,
Cardot and Stephenson, 2000) and television audience rates during a day
(Antoniadis, Paparoditis and Sapatinas, 2006). These models assume that
the cycles behave according to some autoregressive model. The aim of these
works is to predict the next cycles given past observed cycles. The conti-
nuity point at the beginning of each cycle, if it exists, is usually not taken
into account. The model discussed in Shen (2009) is closer to ours. Shen
discusses a curved-valued time series model in which past curves were pre-
viously observed, and the beginning part of a new curve is given. Shen first
forecasts the new curve entirely, and then updates this forecast based on
the given curve beginning using penalized least squares. However, all the
models discussed above assume some time series behavior, while the model
discussed here assumes that the curve-valued observations are independent.

The forecasting of curve continuation suggested here is based on finding
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THE BLUP FOR CONTINUATION OF A FUNCTION 3

the best linear unbiased predictor (BLUP) (Robinson, 1991). We assume
that the curves are governed by a small number of factors, possibly with
additional noise. These factors determine the main variation between the
different curves. The computation of the predictor is performed in two steps.
First, the factors’ coefficients are estimated from the beginning of the new
curve, which is defined on the first part of the segment. Second, the predic-
tion is obtained by computing the representation of the factors on the latter
part of the segment. We prove that the resulting estimator is indeed the
BLUP and that it is a smooth continuation of the beginning of the curve
(at least in the absence of noise).

The two-step procedure for obtaining the BLUP involves computation of
the mean function on both partial segments, and of the covariance operator
on both segments and between them, which can be computationally de-
manding if not performed prudently. We approximate the curve data using
a spline function space of (possibly large) finite-dimension (de Boor, 2001).
More specifically, we represent the curves using appropriate B-splines bases.
The use of splines is common in functional data analysis due to the simplicity
of spline computation, and the ability of splines to approximate smooth func-
tions. We take advantage of two more attributes of finite-dimensional spline
functional spaces. First, the functional space restriction from the whole seg-
ment to a partial segment (the beginning part or the latter part) has a natu-
ral B-spline basis that has a lower number of elements. This solves collinear-
ity problems which can render any projection on the partial segment basis
instable. Second, the knot-insertion algorithm (see de Boor, 2001, Chapter
11) ensures an efficient and stable way to compute the mean function and
covariance operators on different partial segments.

The proposed forecasting procedure yields a smooth curve which is the
best linear unbiased prediction. Note, however, that the continuation part of
the function is random, and therefore requires confidence bands. We present
confidence bands for the prediction, following Knafl, Sacks and Ylvisaker
(1985), under the assumption that the curves aries from a Gaussian pro-
cess. The bands are computed in two steps. First, confidence intervals are
computed simultaneously for a finite set of points. Then, using the fact that
splines are piecewise polynomials, a global band is found. We also suggest
a way to compute confidence bands using cross-validation. While no theo-
retical justification proof is given for the cross validation confidence bands,
they are much faster to compute, and the numerical examples in Section 5
show that this approach works considerably well.

We apply the forecasting procedure suggested here to call center data.
We forecast the continuation of two processes: the arrival process and the

imsart-aoas ver. 2009/08/13 file: fda090510sub.tex date: May 11, 2010



4 GOLDBERG ET AL.

workload process (i.e., the amount of work in the system; see, for example,
Aldor-Noiman, Feigin and Mandelbaum, 2009). In call centers, the forecast
of the arrival process plays an important roll in determining staffing lev-
els. Optimization of the latter is important since salaries account for about
60-70% of the cost of running a call center (Gans, Koole and Mandelbaum,
2003). Usually, call center managers utilize forecasts of the arrival process
and knowledge of service times, along with some understanding of customer
patience characteristics (Zeltyn, 2005), to estimate future workload and de-
termine staffing level (Aldor-Noiman, Feigin and Mandelbaum, 2009). The
disadvantage of this approach is that the forecast of the workload is not per-
formed directly, and instead it is obtained using the forecast of the arrival
process. Reich (2010) showed how the workload process can be estimated
explicitly, thereby enabling direct forecast of the workload. In this work we
forecast the continuation of both the arrival and workload processes, given
past days’ information and the information up to some time of the day. We
compare between the results for the arrival process and the workload pro-
cess. We also compare our results for the arrival process to those of other
forecasting techniques, namely, to the techniques that were introduced by
Weinberg, Brown and Stroud (2007) and Shen and Huang (2008).

The paper is organized as follows. The functional model and notation are
presented in Section 2. The main theoretical results are presented in Sec-
tion 3, were we first show how to construct the BLUP for the continuation
of a curve. Next, we show how the BLUP can be computed efficiently. Confi-
dence bands are discussed in Section 4. In Section 5 we apply the estimator
to real-world data, comparing direct and indirect workload forecasting, and
comparing our results to other techniques. Concluding remarks appear in
Section 6. Technical proofs are provided in the Appendix.

2. The functional model. In this section we present the model and
notation that will be used throughout this paper. Let X be a random func-
tion defined on the segment S = [0, T ], and let the random functions X1 and
X2 be the restrictions of X to the segments S1 = [0, U ] and S2 = [U, T ], re-
spectively, for some 0 < U < T . Our goal is to estimate X2 given information
regarding X1.

We assume that X is of the form

X(t) = µ(t) + φ(t)′h ,

where µ(t) is the mean function, h = (h1, . . . , hp) is a random vector with
mean zero and covariance matrix L, L is diagonal with L11 ≥ . . . ≥ Lpp >
0, and φ(t) = (φ1(t), . . . , φp(t))′ is a vector of orthonormal functions. We
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assume that the functions µ and φj have a basis expansion with respect to
some B-spline basis b = (b1, ..., bN )′, defined on some fixed knot sequence
τ . We denote this B-spline space by Sk,τ where k denotes the the splines’
order. Thus, we can write µ(t) = b(t)′µ and φ(t) = A′b(t), for some p × 1
vector µ and N × p loading matrix A. Thus, we have

(1) X(t) = b(t)′
(
µ+Ah

) .= b(t)′x ,

where x = µ+Ah. We think of N , the ambient functional space dimension,
as being much larger then p, the dimension of the subspace which spanned
by the random function X.

We assume that instead of seeing X, we actually observe some noisy
version of X, namely

Y (t) = X(t) + ε(t) ,

where ε(t) = ψ(t)′ε is some random function independent of X(t), ε is a
q × 1 zero-mean random vector with diagonal covariance matrix Σ, and ψ
is a vector of functions. Since X(t) is a (random) linear combination of
φ1(t), . . . , φp(t), we consider the noise as the part of the observed function
Y (t) that cannot be explained using such linear combinations. Hence we
assume that ψ is orthogonal to φ. However, note that this orthogonality is
not necessarily preserved when ψ and φ are restricted to one of the segments
S1 or S2. We assume that ψ also has an expansion with respect to the basis
b and hence ψ(t) = B′b(t) for some N × q loading matrix B. Using this
notation we may write

(2) Y (t) = b(t)′
(
µ+Ah+Bε

)
.

The covariance functions u(s, t) = Cov(X(s), X(t)) and v(s, t) = Cov(Y (s), Y (t))
can be written by b(s)′(ALA′)b(t) .= b(s)′gb(t) and b(s)′(ALA′+BΣB′)b(t) .=
b(s)′Gb(t), respectively. We define the correspondence covariance operators
from Sk,τ to itself for functions f ∈ Sk,τ as

(γf)(t) =
∫
S
u(s, t)f(s)ds = b(t)′gWf

(Γf)(t) =
∫
S
v(s, t)f(s)ds = b(t)′GWf

where W =
∫
S b(s)b(s)

′ds, and f is the expansion of the function f in the
B-spline basis.

We now introduce the notation for X1 and X2 and their respective noisy
versions Y1 and Y2. Let τ1 and τ2 be knot sequences that agree with τ on
the segments [0, U) and (U, T ], respectively, and have knot multiplicity of k
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at U . Let Sk,τi for i = 1, 2 be the k-ordered spline space with knot sequence
τi and let bi(t) = (bi1(t), . . . , biNi(t)) be its corresponding B-spline basis. We
wish to represent Xi and Yi (i = 1, 2) using the representations of X and Y .

Note that when the functions µ(t), φj(t), ψj(t), v(s, t) and u(s, t) are
known on [0, T ], they are also known on S1 and S2. Thus, it is enough to
represent these functions using the bases bi in order to obtain representations
for Xi and Yi. Recall that µ(t) = b(t)′µ for some vector of coefficients µ.
Using the knot-insertion algorithm (see de Boor, 2001, Chapter 11) we obtain
new vectors µi such that (a) µ(t) = bi(t)′µi for all t on which bi is defined
and (b) µi is obtained from µ by truncation and a change of at most k
coefficients. Similarly, using the knot-insertion algorithm, we can obtain the
loading matrices Ai and Bi such that φ(t) = Aibi(t) and ψ(t) = Bibi(t) for
all t on which bi is defined. Summarizing, we have

Xi(s) = bi(s)′
(
µi +Aih

) .= bi(s)′xi(3)
Yi(s) = bi(s)′

(
µi +Aih+Biε

) .= bi(s)′yi

v(s, t) = bi(s)(AiLA′j +BiΣB′j)bj(t) .= bi(s)′Gijbj(t)
u(s, t) = bi(s)(AiLA′j)bj(t) .= bi(s)′gijbj(t)

for i, j = 1, 2 and for each s ∈ Si and t ∈ Sj .
We define the operators γij and Γij from Sk,τj to Sk,τi for i, j = 1, 2 by

(γijf)(t) =
∫
Sj

u(s, t)f(s)ds = bi(t)′gijWjf(4)

(Γijf)(t) =
∫
Sj

v(s, t)f(s)ds = bi(t)′GijWjf ,

where Wj =
∫
Sj
bj(s)bj(s)′ds, and f is the expansion of the function f in

bj .
The model discussed above will be used for the estimation of X2 given

Y1. Note that the distributions of X and Y are generally not known. In a
realistic situation one needs to estimate the model components. Recall that
Y (t) = b(t)′

(
µ + Ah + Bε

)
, where h and ε are random vectors with zero

mean and covariance matrices L and Σ, respectively. Before discussing the
forecasting procedure, we briefly discuss how estimation of µ, L,Σ and the
loading matrices A and B can be performed.

Assume that the functions Y (1), . . . , Y (m) were drawn according to the
distribution law of Y . We distinguish between two scenarios. In the first
scenario we assume that the functions Y (1), . . . , Y (m) were observed. In this
case one can estimate the various components of Y using functional principal
component analysis (functional PCA). This can be done either by using
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PCA on the coefficients of the functions or by introducing some smoothness
using regularized functional PCA (see, for example, Ramsay and Silverman,
2005, Chapters 8 and 9). The matrices L and Σ are then determined by
the eigenvalues of the PCA decomposition while the loading matrices A and
B consist of the coefficients of the principal components with respect to
the basis b. The size of L and Σ can be estimated using the gaps in the
eigenvalues of the PCA decomposition.

In the second scenario, we assume that some noisy discrete observations
are given; for example in the following form

Z(i)(tij) = Y (i)(tij) + eij ,

for i = 1, . . . ,m, j = 1, . . . , nj , and 0 ≤ ti1 < . . . < tinj ≤ T , and where
eij ∼ N(0, σ2) are independent. In this case, one can first estimate the func-
tions and then use functional PCA as described above. The simplest way
to estimate the functions is to estimate each function separately, using, for
example, regression splines (de Boor, 2001, Chapter 14). This method is
used in the numerical examples in Section 5. Others, such as Kneip (1994)
and Besse, Cardot and Ferraty (1997), suggest to estimate all the functions
simultaneously. Both methods use some sort of functional PCA. These meth-
ods suggest ways to estimate the length of h. The method by Besse, Cardot
and Ferraty (1997) also assumes a splines environment, as in our case.

3. The construction of the BLUP. Given Y1, the noisy version of
the beginning part of the random function X, our goal is to find a good
estimator for X2, the continuation of X1.

Following Robinson (1991), we say that X̂2 is a good estimator of X2 given
Y1 if the following criteria hold:

(C1) X̂2 is a linear function of Y1.
(C2) X̂2 is unbiased, i.e., E[X̂2(t)] = µ(t).
(C3) X̂2 has minimum mean square error among the class of linear unbiased

estimators.

Two more demands regarding the estimator that seems desirable in our
context are

(C4) The random function X̂2 lies in the space Sk,τ2 .
(C5) When no noise is introduced, i.e., when Y1 = X1, the concatenation of

X̂2 to X1 lies in Sk,τ ; in other words, the combined function

X̂ =

{
X1(t) 0 ≤ t ≤ U
X̂2(t) U < t ≤ T
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is smooth enough.

An estimator that fulfills (C1)-(C5) will be referred to as a best linear unbi-
ased predictor (BLUP). In this section we will show how to construct such
a BLUP and prove that is is defined uniquely.

Remark 3.1. Note that the definition of unbiased estimator in (C2) is
not the usual definition. A more restrictive criterion is

(C2*) X̂2 is unbiased in the the following sense E[X̂2(t)|Y1] = E[X2(t)|Y1].

We will show that when Y is a Gaussian process, this criterion is fulfilled
by the proposed BLUP as well.

Remark 3.2. The analogous results in the multivariate case are well
known. Here best estimator means estimator that meets criteria (C1)-(C3).
Let Z = (Z1, Z2)′ be a random vector such that

E

[
Z1

Z2

]
=

(
m1

m2

)
, Var

[
Z1

Z2

]
= R =

(
R11 R12

R21 R22

)
.

Then the BLUP of Z2|Z1 is given by

(5) Ẑ2 = m2 +R21R
+
11(Z1 −m1)

where R+
11 is the Moore-Penrose pseudoinverse of R11 (see, for example,

Marsaglia, 1964).

In the following, we define the linear operators that are the analogs of the
matrices R+

11 and R21 from the multivariate case. This enables the construc-
tion of a uniquely-defined BLUP for X2.

We begin with defining the operator Γ+
11 : Sk,τ1 → Sk,τ1 , which is the

functional equivalent of R+
11. Define the function

v+
11(s, t) = b1(s)′W−1

1 G+
11W

−1
1 b1(t) ,

for every s, t ∈ S1. Note that W1 is invertible since it is a Gram matrix of
basis functions (see Sansone, 1991, Theorem 1.5). Define

(Γ+
11f)(t) =

∫
S1

v+
11(s, t)f(s)ds = b1(t)′W−1

1 G+
11f ,

where f is the expansion of the function f in the B-spline basis b1. The
following lemma justifies the notation of Γ+

11 as a pseudoinverse operator.
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Lemma 3.3. With probability one,

Γ11Γ+
11(Y1 − µ) = Γ+

11Γ11(Y1 − µ) = Y1 − µ .

See proof in the Appendix.
We are now ready to define the estimator for X2 given Y1, similarly to

estimator (5) in the multivariate case, by

(6) X̂2(t) = µ(t) + γ21Γ+
11(Y1 − µ)(t) = b2(t)′

(
µ2 + g21G

+
11(y1 − µ1)

)
,

for every t ∈ S2. Then we have

Theorem 3.4. The estimator X̂2 meets criteria (C1)-(C5) and is unique
up to equivalence. Moreover, if Y is a Gaussian process, then X̂2 meets
criterion (C2*) as well.

Proof. We show that (C1)-(C5) hold, one by one.
(C1) holds because X̂2 is indeed a linear transformation of Y1 as can be

seen from (6).
(C2) holds since

E[X̂2(t)] = b2(t)′
(
µ2 + g21G

+
11(E[y1 − µ1])

)
= b2(t)′µ2 = µ(t) .

(C3) states that X̂2 should minimize the mean square error among all the
unbiased linear estimators . Let X̃2 be another linear unbiased estimator.
Then we can write X̃2 = (X̃2−X̂2)+X̂2. Since both X̃2 and X̂2 are unbiased,
X̃2 − X̂2 is an unbiased linear estimator of zero, hence it is of the form
b2(t)′M(y1 − µ1) for some N2 ×N1 matrix M . Moreover, it can be shown
that Cov(X2 − X̂2, X̃2 − X̂2) = 0. Indeed,

Cov
(
(X2 − X̂2)(s), (X̃2 − X̂2)(t)

)
= E[(X2 − X̂2)(X̃2 − X̂2)(t)]
= b2(s)′E[(x2 − µ2)(y1 − µ1)′]M ′b2(t)
−b2(s)′E[µ2 + g21G

+
11(y1 − µ1)(y1 − µ1)′]M ′b2(t)

= b2(s)′
(
g21M

′ + g21G
+
11G11M

′)
)
b2(t) = 0 .

where the last equality follows from Lemma 3.3.
To see that X̂2 minimizes the mean square error, note that

E[(X2 − X̃2)2(t)] = E[(X2 − X̂2)2(t)] + E[(X̃2 − X̂2)2(t)] + 2E[(X2 − X̂2)(X̂2 − X̃2)(t)]
= E[(X2 − X̂2)2(t)] + E[(X̃2 − X̂2)2(t)] ≥ E[(X2 − X̂2)2(t)] ,(7)

which proves that X̂2 minimizes the mean square error and is unique up to
equivalence.
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(C4) holds by construction.
(C5) states that when no noise is introduced, X̂2 a smooth continuation

of X1. First, note that by Lemma 3.3

X1(t) = b1(t)′
(
µ1+G11G

+
11(x1−µ1)

)
= b1(t)′

(
µ1+A1(LA′1G

+
11)(x1−µ1)

)
.

By definition we also have

X̂2(t) = b2(t)′
(
µ2+g21G

+
11(x1−µ1)

)
= b2(t)′

(
µ2+A2(LA′1G

+
11)(x1−µ1)

)
.

Define X̂(t) = b(t)′
(
µ(t) + A(LA′1G

+
11)(x1 − µ1)

)
. It follows from the defi-

nitions of µi, Ai and bi that X̂(t) agrees with X1 on S1 and with X̂2 on S2.
Since X̂ ∈ Sk,τ , the result follows.

Finally, if Y is a Gaussian process, then y1 and x2 are normally dis-
tributed such that Var(y1) = G11 and Cov(x2,y1) = g21. Following Marsaglia
(1964) we obtain

E[X2(t)|Y1] = b(t)′E[x2|y1] = b(t)′
(
µ2 + g21G

+
11(y1 − µ1)

)
(8)

= X̂2(t) = E[X̂2(t)|Y1]

and criterion (C2*) is met.

It should be noted that when the parameters of the model are estimated
(see end of Section 2) and a Gaussian model is assumed, the estimator X̂2

can be considered as an empirical Bayes estimator. Indeed, the estimation
of the distribution of h and ε can be considered as estimating the prior
distribution, while the the computation of X̂2 as in (8) is in fact finding the
posterior mean given the data Y1.

From a computational point of view, the computation of X̂2 may seem
heavy. Indeed by (6) it involves finding the pseudoinverse of G+

11 which is an
N1 ×N1 matrix. However, a simpler expression can be found. Recall that

G11 = [A1, B1]

[
L 0
0 Σ

] [
A′1
B′1

]
.= CSC ′ .

where C = [A1, B1] and S =

[
L 0
0 Σ

]
. Using Lemma A.1.3 with T =

S1/2C ′ we have

G+
11 = CS1/2

((
S1/2C ′CS1/2

)+
)2

S1/2C ′

= CS1/2
(
S−1/2(C ′C)+S−1(C ′C)+S−1/2

)
S1/2C ′

= C(C ′C)+S−1(C ′C)+C ′ ,
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which involves the pseudoinverse computation of a (p+ q)× (p+ q) matrix.
Finally, instead of assuming that Y1(t) = b1(t)′

(
µ1 + A1h + B1ε

)
, one

may assume that
Y1(t) = b1(t)′

(
µ1 +A1h+ ε̃1

)
where ε̃1 is a N1 × 1 mean zero random vector with σ2I covariance matrix
and I is the identity matrix. In this case,

(9) X̂2(t) = b2(t)′
(
µ2 + g21(A1LA

′
1 + σ2I)−1(x1 − µ1)

)
which is the ridge regression estimator (Hoerl and Kennard, 1970). Once
again, a simpler expression can be obtained using some matrix algebra (see
Robinson, 1991, Eq. 5.2). We have

g21(A1LA
′
1+σ2I)−1 = A2LA

′
1(A1LA

′
1+σ2I)−1 = A2

(
A′1A1 + σ2L−1

)−1
A′1 ,

and hence X̂2(t) = b2(t)′
(
µ2 + A2

(
A′1A1 + σ2L−1

)−1
A′1(x1 − µ1)

)
, which

involves only the inverse of a p× p matrix.

4. Confidence Bands. In Section 3 we suggested the estimator X̂2

for the continuation of the function X1. In this section we would like to
construct confidence bands for this estimator. We consider two kinds of
confidence bands. The first is a global confidence band. A global confidence
band with confidence level (1 − δ)100% is defined as a pair of functions,
the upper band fU and the lower band fL, such that P (fL(t) < X2(t) <
fU (t) for all t ∈ S2) ≥ 1− δ. We also consider local confidence bands. Local
confidence bands do not require that the last condition holds simultaneously
for all t; rather we are looking for a pair of functions gU and gL such that
for all t ∈ S2, P (gL(t) < X2(t) < gU (t)) ≥ 1− δ.

Our construction of both global and local confidence bands is based on
the technique introduced by Knafl, Sacks and Ylvisaker (1985). The idea
is the following. We first create simultaneous confidence intervals for some
finite set of point. Then, using the attributes of spline functions, we com-
plete this band for all points of S2. The computation of these bands can be
computationally demanding. Hence, we suggest also confidence bands that
are based on cross-validation. While these confidence bands do not have the
theoretical guarantee of the former, they are simple to compute and seem
to work reasonably well (see Section 5, Table 4).

In the following, we assume that X and Y are Gaussian processes. There-
fore X2 is also a Gaussian process and, by (8), E[X2|Y1] = X̂2. Similarly, we
have

Cov(X2(s), X2(t)|Y1) = b2(s)′
(
g22 −G21G

+
11G12

)
b2(t) .
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12 GOLDBERG ET AL.

Define

Z(t) =
X2(t)− X̂2(t)

Var(X2(t)|Y1)1/2
,

then Z(t) is a zero-mean Gaussian process with variance 1 for each t.
Let t1, . . . , tm be the breaks in τ2, i.e., the knots of τ2, ignoring knot

multiplicity. Let ti,j = ti + j−1
k−1(ti+1 − ti), j = 1, . . . , k − 1. Define the

following grid
G = {t1,1, t1,2, . . . , tm−1,k−1, tm} ,

i.e., G is a grid that includes all the breaks in τ2 and there are k− 2 equally
spaced grid points between each two successive breaks of τ2. We are inter-
ested in computing simultaneous confidence intervals for the points in G. In
other words, for a given δ, we would like to find zδ such that
(10)
P (max

t∈G
|X2(t)− X̂2(t)| > zδVar(X2(t)|Y1)1/2) = P (max

t∈G
|Z(t)| > zδ) ≤ δ .

zδ can be found using simulations or by utilizing the inequality (Knafl, Sacks
and Ylvisaker, 1985, Eq. (1.8) )
(11)

P (max
t∈G
|Z(t)| > a) ≤ P (|Z(t1,1)| > a)+

m−1∑
i=1

k−1∑
j=1

P (|Z(ti,j)| ≤ a , |Z(ti,j+1)| > a) .

Recall that the trajectories of (X2(t)− X̂2)|Y1 are in Sk,τ2 . Hence for each
segment between two successive breaks of τ2, say [ti, ti+1], the trajectories
are k-ordered polynomials. Let p(t) be a restriction of such a trajectory to
[ti, ti+1]. p(t) can be written, using Lagrange polynomials, as

p(t) =
k∑
j=1

`(t)p(ti,j) ; `j(t) =
k∏

r=1, r 6=j

t− ti,r
ti,j − ti,r

.

Note that for all t ∈ [ti, ti+1], |p(t)| ≤
∑k
r=1 |`(t)|p(ti,j). Hence, if

(12) |p(ti,j)| < zδVar(X2(ti,j)|Y1)1/2) for j = 1, . . . , k ,

then for all t ∈ [ti, ti+1]

(13) |p(t)| < zδ

k∑
j=1

|`j(t)|Var(X2(ti,j)|Y1)1/2) .= zδDti(t) .

By (10) we have that with probability greater than or equal to 1− δ, the in-
equality in (12) holds simultaneously for all i. Thus, with probability greater
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THE BLUP FOR CONTINUATION OF A FUNCTION 13

than or equal to 1 − δ, the inequality in (13) also holds. Define the pair of
functions (fU , fL) on S2 such that for all t ∈ [ti, ti+1]

(14) fU (t) = X̂2(t) + zδDti(t) ; fL(t) = X̂2(t)− zδDti(t) .

Then (fU , fL) are global confidence band for X2|Y1 with a confidence level
greater than or equal to 100(1− δ)%. Note that fU and fL are continuous.

For local confidence bands, we can define the pair of functions (gU , gL)
on S2 such that for all t ∈ [ti, ti+1]

(15) gU (t) = X̂2(t) + ẑδDti(t) ; gL(t) = X̂2(t)− ẑδDti(t) ,

where
ẑδ = max

i
min

{
zδ : P

(
max
j=1,...,k

|Z(ti,j)| > zδ

)
≤ δ

}
.

Using ẑδ ensures that gU and gL are continuous. The estimation of ẑδ can be
done using the relation in (11). We note that in the computation of ẑδ we
demanded that between each two successive breaks in τ2, with probability
greater than 1 − δ the trajectories of X2 will stay within the band. While
this can be restrictive if the distance between successive points in τ2 is large,
a simple solution is to take the set G to be more dense.

We remark here on some issues related to the confidence bands defined
in (14-15). First, note that the bands are conservative, meaning that the con-
fidence level is greater than 100(1−δ)%. Second, we have assumed thatX2|Y1

is a Gaussian process with known distribution. Third, the computation of zδ
(or ẑδ) can be demanding. Hence, we suggest to estimate confidence bands
from the data using some sort of cross-validation. Compute Var(X2(t)|Y1)1/2

for all t ∈ G, and let D̂(t) be the k-ordered regression spline function with
knot sequence τ2 of the points {(t,Var(X2(t)|Y1)1/2) : t ∈ G}. We suggest
the following confidence bands

(16) f̂U (t) = X̂2(t) + CGlobalD̂(t) ; ĝU (t) = X̂2(t) + CLocalD̂(t) ,

and similarly for f̂L and ĝL where CGlobal and CLocal are computed using
cross-validation as described below. Assume that the functions Y (1), . . . , Y (m)

were observed. Partition the functions to K folds Fj : j = 1, . . . ,K. Compute
X̂2(t) and D̂(t) for each subset of K − 1 folds. Define

CGlobal,j = min

c > 0 :
1
|Fj |

∑
Yi∈Fj

I{|Yi(t)− X̂2(t)| < cD̂(t) for all t ∈ G} > 1− δ


CLocal,j = min

c > 0 : min
t∈G

 1
|Fj |

∑
Yi∈Fj

I{|Yi(t)− X̂2(t)| < cD̂(t)}

 > 1− δ


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14 GOLDBERG ET AL.

where I{B} is the indicator function of the set B. Then we suggest to choose
CGlobal and CLocal to be the median of CGlobal,j and CLocal,j respectively. We
note that the suggestion to extend the confidence bands from points in the
grid to the whole segment using regression splines seems reasonable when
the grid is fine enough. In the numerical examples of Section 5 we compute
the confidence bands using the cross-validation technique.

5. Numerical Examples. In this section we apply the estimator X̂2

to call center data. We are interested in forecasting the continuation of two
processes: the arrival process and the workload process. The estimators of
these two processes play an important roll in determining staffing level at
call centers (see, for example, Aldor-Noiman, Feigin and Mandelbaum, 2009;
Shen and Huang, 2008; Reich, 2010). Usually, staffing levels are determined
in advance, at least one day ahead. Here we propose a method for updating
the staffing level, given information obtained throughout the beginning of
the day. As noted by Gans, Koole and Mandelbaum (2003) and by Shen
and Huang (2008), such updating is operationally beneficial and feasible.
If performed appropriately, it could result in higher efficiency and service
quality: based on the revised forecasts, a manager can adjust staffing levels
correspondingly, by offering overtime to agents on duty or dismissing agents
early, calling in additional agents if needed, increasing or reducing cross-
selling, and transferring agents to other activities such as email inquiries
and faxes.

This section is organized as follows. We first describe the arrival and work-
load processes (Section 5.1). We then describe the data (Section 5.2) and the
forecast implementation (Section 5.3). The analysis appears in Sections 5.4-
5.6. Finally, confidence bands are discussed in Section 5.7.

5.1. The arrival and workload processes. We define the arrival process
of day j, aj(t), as the number of calls that arrive on day j during the time
interval [t − c, t], where t varies continuously over time and c is some fixed
constant. Note that aj(t) itself is not a continuous function, but when the
call volume is large and this function does not change drastically over short
time intervals, it can be assumed that the function aj(t), for each day j,
arises from some underlying deterministic smooth arrival rate function λ(t)
plus some noise (Weinberg, Brown and Stroud, 2007). In this case aj(t)/c
can be considered as an approximation of the smooth function λ(t). We
now describe the workload process wj(t) for each day j. The function wj(t)
counts the number of calls that would have been handled by the call center
on day j at time t, assuming an unlimited number of agents and hence no
abandonments. From a management point of view, the advantage of looking
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THE BLUP FOR CONTINUATION OF A FUNCTION 15

at wj(t) over looking at aj(t) is that wj(t) reflects the number of agents
actually needed at each point in time. However, as opposed to the process
aj(t), which is observable in real time, the computation of wj(t), for a specific
time t, involves estimation of call durations for abandoned calls and can be
performed only after all calls entered up to time t are actuality served (see the
discussion at Aldor-Noiman, Feigin and Mandelbaum, 2009; Reich, 2010).

5.2. The data. The data used for the forecasting examples were gathered
at a call center of a large U.S. commercial bank. The bank has various types
of operations such as retail banking, consumer lending, and private banking.
Since the call arrival pattern varies over different types of services, we restrict
attention to retail services, which account for approximately 70% of the calls
(see Weinberg, Brown and Stroud, 2007). The first two examples are of the
arrival process and the workload process, for weekdays between March and
October 2003. The data for the first example consists of the arrival counts
at five-minutes resolution between 7:00 AM and 9:05 PM (i.e., c = 5 in
the definition of aj(t)). The data for the second example consists of average
workload, also in five-minutes resolution, between 7:00 AM and 9:05 PM.
There are 164 days in the data set after excluding some abnormal days such
as holidays. Figure 1 shows arrival count profiles for different days of the
week.

The third example explores the arrival process during weekends between
March and October 2003. There are 67 days in the data set (excluding one
day with incomplete data). As can be seen from Figure 1, the weekend
behavior is different from that of the working days, and there is a Saturday
pattern and a Sunday pattern. The data for this example consists of the
arrival counts at fifteen-minutes resolution between 8 AM and 5 PM. The
change in interval length from the previous two examples is due to the
decreased call-counts. The change in day length is due to the low activity in
early morning and late afternoon hours on weekends (see Figure 1).

In the first and second examples, we used the first 100 weekdays as the
training set and the last 64 weekdays as the test set. For each day from
day 101 to day 164, we extracted the same-weekday information from the
preceding 100 days. Thus, for each day of the week we have about 20 training
days. For the third example, the test set consists of weekend days 41 to 67
while the training set for each day consist of its previous 40 weekend days.
Thus, similarly, for each day we have about 20 training days. Additionally,
we used the data from day start, up to 10 AM and up to 12 PM. All forecasts
were evaluated using the data after 12 PM, which enabled fair comparison
between the results of the different cut points (10 AM and 12 PM). We also
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16 GOLDBERG ET AL.

Fig 1. Arrival count in five-minutes resolution for six successive weeks, grouped according
to weekday (Friday was omitted due to space constraints). There is a clear difference
between workdays, Saturdays, and Sundays. For the working days, it seems that there is
some common pattern. Between 7 AM and 10 AM the call count rises sharply to its peak.
Then it decreases gradually until 4 PM. From 4 PM to 5 PM there is a rapid decrease
followed by a more gradual decrease from 5 PM until 12 AM. The call counts are smaller
for Saturday and much smaller for Sunday. Note also that the main activity hours for
weekends are 8 AM to 5 PM, as expected.

compare our results to the mean of the preceding days, from 12 PM on.
For a detailed description of the first example’s data, the reader is referred

to Weinberg, Brown and Stroud (2007), Section 2. For an explanation of
how the second example’s workload process was computed, the reader is
referred to Reich (2010). The data for the third example was extracted
using SEEStat, which is a software written at the Technion SEELab1. We
refer the reader to Donin et al. (2006) for a detailed description of the U.S.
commercial bank call-center data from which the data for all three examples
was extracted. The U.S. bank call-center data is publicly downloaded from
SEESLab server1.

5.3. Forecast implementation. The forecast was performed by Matlab
implementation of the BLUP algorithm from Section 3, where we enable
regularization as in (9). For the implementation we used the functional data

1SEELab: The Technion Laboratory for Service Enterprise Engineering. Webpage:
http://ie.technion.ac.il/Labs/Serveng
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THE BLUP FOR CONTINUATION OF A FUNCTION 17

analysis Matlab library, written by Ramsay and Silverman2. The Matlab
code, as well as the data sets, are downloadable (see Supplement A). The
parameters for the forecast were chosen using 10-fold cross-validation (see
end of Section 2). We computed local confidence bands with 95% confidence
level using cross-validation, as described in (16). We quantified the results
using both Root Mean Squared Error (RMSE) and Average Percent Error
(APE), which are defined as follows. For each day j, let

RMSEj =

(
1
K

K∑
k=1

(Njk − N̂jk)2
)1/2

; APEj =
100
K

K∑
k=1

|Njk − N̂jk|
Njk

,

where Njk is the actual number of calls (mean workload) at the k-th time
interval of day j in the arrival (workload) process application, N̂jk is the
forecast of Njk, and K is the number of intervals.

5.4. First example: Arrival process for weekdays data. Forecasting the
arrival process for the first example data was studied by both Weinberg,
Brown and Stroud (2007) and Shen and Huang (2008). Weinberg, Brown and
Stroud assumed that the day patterns behave according to an autoregressive
model. The algorithm they suggest first gives a forecast for the current
day based on previous days’ data. The algorithm estimates the parameters
in the autoregressive model using Bayesian techniques. An update for the
continuation of the current day forecast is obtained by conditioning on the
data of the current day up to the cut point. We refer to this algorithm as
Bayesian update (BU) for short. Similarly, the algorithm by Shen and Huang
assumes an autoregressive model and gives a forecast for the current day.
They then update this forecast using least-square penalization, assuming an
underlying discrete process. We will refer to this algorithm as penalized least
square (PLS).

Comparison between the results of all three algorithms for the first data
set appears in Table 1. Note that for all of the algorithms and all of the cate-
gories there is improvement in the 10 AM and 12 PM forecasts over the fore-
cast based solely on past days. The RMSE mean decreases by about 5-13%
for the 10 AM forecast, and by 12-15% for the 12 PM forecast, depending on
the algorithm. It should be noted that the algorithms by Weinberg, Brown
and Stroud and by Shen and Huang use information from all 100 previous
days and the knowledge of the previous day call counts. In comparison, the
BLUP algorithm uses only the same weekday information (∼20 days) and

2The functional data analysis Matlab library can be download form ftp://ego.psych.

mcgill.ca/pub/ramsay/FDAfuns/Matlab/
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18 GOLDBERG ET AL.

the previous day information is not part of its training set. Nevertheless, the
results are similar.

The forecasting results for the week that follows Labor Day appear in Fig-
ure 2. It can be seen that for the Tuesday that follows Labor Day (Monday)
the call counts are much higher than usual. This is captured, to some degree,
by the 10 AM forecast and much better by the 12 PM forecast. The same
phenomenon occurs, with less strength, during the Wednesday and Thurs-
day following Labor Day, until on Friday all the forecasts become roughly
the same. It seems that the power of the continuation-of-curve forecasting
is exactly in such situations, in which the call counts are substantially dif-
ferent than usual throughout the day, due to either predictable events, such
as holidays, or unpredictable events.

5.5. Second example: Workload process for weekdays data. The second
example consists of the workload process for weekdays data for the same
period as the first example. We forecast the workload process based on
these sets of data: previous days’ data, up to 10 AM data, and up to 12
PM data. We refer to this forecast as direct workload forecast since we use
past workload estimation as the basis for the forecast. An alternative (and
simpler) workload forecasting method was proposed by Aldor-Noiman, Feigin
and Mandelbaum (2009). Aldor-Noiman, Feigin and Mandelbaum suggest
to forecast the workload by multiplying the forecasted arrival rate by the
estimated average service time (see Aldor-Noiman, Feigin and Mandelbaum,
2009, Eq. 21). We refer to this method as indirect workload forecasting.

Comparison between the two methods appears in Table 2. Following
Aldor-Noiman, Feigin and Mandelbaum (2009), we estimated the average
service time over a 30 minute period for indirect workload computations.

Example 1 Previous day 10 AM 12 PM
RMSE mean BU PLS BLUP BU PLS BLUP

Minimum 12.46 11.08 11.51 11.07 11.51
Q1 14.11 14.00 13.31 13.51 13.56 13.33 13.27

Median 16.40 15.50 14.87 14.69 14.80 14.60 14.17
Mean 19.11 17.86 16.48 16.83 16.59 16.13 16.15

Q3 21.27 19.87 17.26 17.04 16.58 16.39 15.92
Maximum 68.93 57.72 52.09 53.66 51.03

Table 1. Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE for the forecast based on the mean of the previous days,
and BU, PLS, and BLUP using data up to 10 AM and up to 12 PM for the call arrival
data set. The results for BU and PLS were taken from the original papers. No maximum
and minimum results were given for PLS.
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THE BLUP FOR CONTINUATION OF A FUNCTION 19

Note that the direct workload forecast results are slightly better than the
indirect workload forecast in most of the categories. Also note that in almost
all categories, there is an improvement in the 10 AM and 12 PM forecasts
over the forecast based solely on past days. The RMSE mean decreases by
about 11% (9%) for the 10 AM forecast, and by 15% (12%) for the 12 PM
forecast for the direct (indirect) forecast. Figure 3 presents a visual com-
parison between the direct and the indirect forecast methods on a specific
day. The two forecasts look roughly the same, which is also true for all other
days in this data set.

While in this example there is no significant difference between the direct
and indirect workload forecasts, we expect these methods to obtain different
forecasts when the arrival rate changes during an average service time. This

Fig 2. Forecasting results for the week following Labor Day (Sept. 2-5, 2003) for the
call arrival process of the first example. Labor Day itself (Monday) does not appear since
holiday data is not included in the data set. The black dots represent the true call counts
in five-minutes resolution. The forecasts based on previous days, 10 AM data, and 12 PM
data are represented by the blue, red, and green lines, respectively.
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20 GOLDBERG ET AL.

is true, for example, for arrival and service of patients in emergency rooms.
The arrival rates of patients to emergency rooms can change within an hour
while the time that a patient spends in emergency room (the “service time”)
is typically on the order of hours. As pointed out by Rozenshmidt (2008,
Section 6), in such cases, forecasting the workload by the arrival count mul-
tiplied by the average service time may not be accurate. This is because the
number of customers in the system is cumulative, while the arrival count
counts only those who arrive in the current time interval. Thus, if the ar-
rival count is lower than it was in the previous time interval and the average
service time is long, the workload is underestimated. Similarly, if the arrival
count is larger than previously, the workload is overestimated.

5.6. Third example: Arrival process for weekends data. The third exam-
ple it that of the weekends’ arrivals. The main difference between the first
two examples and this one is that the data in this example cannot be con-
sidered as data from successive days, due the six day difference between
any Sunday and it successive Saturday. Recall that the models considered
by Weinberg, Brown and Stroud (2007) and Shen and Huang (2008) have
an autoregressive structure. Since this autoregressive structure seems not to
hold for this data, the techniques by Weinberg, Brown and Stroud and Shen
and Huang are not directly applicable. But even when the autoregressive
structure does not hold, the results appearing in Table 3 reveal that fore-
casting for this data set is still beneficial. Indeed, the RMSE (APE) mean
decreases by about 5% (2%) for the 10 AM forecast, and by 10% (4%) for
the 12 PM forecast. While these results are not as good as the results in
the previous examples, note that the curves in this example begin an hour
later and while the call counts are lower during weekends, the arrival rate

Example 2 Day ahead 10 AM 12 PM
RMSE Workload Workload Workload Workload Workload Workload

(indirect) (direct) (indirect) (direct) (indirect) (direct)

Minimum 8.72 8.41 7.98 7.71 7.96 8.50
Q1 10.76 10.58 10.21 10.27 10.21 10.11

Median 12.10 12.26 11.63 11.21 11.66 11.05
Mean 15.97 15.95 14.59 14.26 14.13 13.48

Q3 15.08 15.21 14.53 14.20 13.89 12.76
Maximum 96.09 94.79 95.74 85.11 93.39 71.20

Table 2. Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE for the forecast based on the mean of the previous
days’ data, up to 10 AM data and up to 12 PM data, for the workload data set, for both
the indirect and the direct forecast methods using the BLUP.
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Fig 3. Workload forecasting for Friday, September 5, 2003, using both the direct and the
indirect methods. The black curve represents the workload process estimated after observing
the data gathered throughout the day. The blue and red curves represents the workload
forecasts for the indirect and direct forecasts, respectively, given data up to 12 PM.

variance does not change drastically (see Figure 1).

5.7. Confidence bands. Following Weinberg, Brown and Stroud (2007),
we introduce the 95% confidence band coverage (COVER) and the average
95% confidence band width (WIDTH). Specifically, for each day j, let

COV ERj =
1
K

K∑
k=1

I (FL,jk < Njk < FU,jk) ; WIDTHj =
1
K

K∑
k=1

(FU,jk − FL,jk) ,

Example 3 RMSE APE
Day ahead 10 AM 12 PM Day ahead 10 AM 12 PM

Minimum 3.66 3.62 3.92 4.47 4.33 4.60
Q1 5.37 5.63 5.05 5.57 5.41 5.64

Median 6.80 7.01 6.87 6.71 6.84 6.31
Mean 7.64 7.19 6.97 7.23 7.10 6.97

Q3 9.01 8.97 8.59 8.83 8.16 7.44
Maximum 16.12 11.84 11.13 12.17 11.80 12.46

Table 3. Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE and APE for the forecast based on the mean of the
previous days and the BLUP, using 10 AM and 12 PM cuts for the weekends data set.
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22 GOLDBERG ET AL.

where (FL,jk, FU,jk) is the confidence band of day j, evaluated at the begin-
ning of the k-th interval (see (16)). The mean coverage and mean width, for
all three examples, are presented in Table 4. First, note that for all three
examples, the width of the confidence band narrows down as more informa-
tion is revealed. In other words, the width of the confidence band for the
12 PM forecast is narrower than the width for the 10 AM forecast which,
in turn, is narrower than the width for the pervious days’ mean. We also
see that the mean coverage becomes more accurate as more information is
revealed. Figure 4 depicts the confidence bands for the arrival process on
a particular Sunday. Note that the confidence bands for the previous days’
forecast and the 10 AM forecast almost coincide. However, at 12 PM, when
enough information on this particular day becomes available, the confidence
band narrows down and does capture the underlying behavior.

Fig 4. Confidence bands for Sunday, August 10, 2003. The black dots represent the true call
counts in fifteen-minutes resolution. The confidence bands based on previous days, 10 AM
data, and 12 PM data are represented by the blue, red, and green lines, respectively.

Coverage Width
Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

Mean 93.19% 91.69% 98.15% 79.73 62.80 40.15
10 AM 94.14% 92.27% 98.64% 74.99 56.45 39.53
12 PM 94.86% 93.08% 96.49% 73.07 55.95 31.40

Table 4. The mean confidence band coverage and the mean width for the forecasts based
on the previous days’ mean, the 10 AM cut and the 12 PM cut for the arrival process on
the working days data set (Example 1), the workload process on the working days data set
(Example 2) and the arrival process on the weekends data set (Example 3).
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Summarizing, using call center data, we demonstrated that forecasting of
curve continuation can be achieved successfully by the proposed BLUP. We
also showed that confidence bands for such forecasts can be obtained using
cross-validation.

6. Concluding Remarks. We have constructed the best linear unbi-
ased predictor (BLUP) for the continuation of a curve. We now add the
following comments regarding the construction of the BLUP and its appli-
cation to call center data.

First, in our analysis we have used a spline model to describe the func-
tions. This is not required for the construction of the BLUP, and the proof
of Theorem 3.4 holds for any function space of finite dimension. However,
as discussed previously, there are two main advantages of using spline rep-
resentation. First, the computation of the covariance operators, for S1, S2

and S and between them, as well as the pseudo-inverse covariance operator
Γ+

11, are all computationally simple when working with splines. Second, the
representation of the restriction of a function to a partial segment does not
suffer from collinearity of the basis functions, which can be the case for a
more general setting. Indeed, the number of basis elements can be reduced
significantly in the spline function model, depending on the number of knots
in the partial segment, while the number of basis elements could remain the
same in a more general model.

Second, we have assumed that the random function X lies within a func-
tion space of (possibly large) finite-dimension. While this is a restrictive
assumption, there are some difficulties with the BLUP definition (and com-
putation) for a random function that lies in an infinite-dimensional space.
The main difficulty is that inverting the covariance operator (as done in
Lemma 3.3 for finite dimension) is problematic since the inverse of the co-
variance operator need not be bounded and may not exists. However, we
believe that characterization of the BLUP in the infinite-dimension case is
possible under some conditions. Further research is required to address this
question.

Finally, in this work we forecasted the continuation of the workload pro-
cess. As discussed in Feldman et al. (2008) and Reich (2010), the workload
process is a more appropriate candidate than the arrival process, as a basis
for determining staffing levels in call centers. This work, along with Aldor-
Noiman, Feigin and Mandelbaum (2009) and Reich (2010), are the first steps
in exploring direct forecasting of the workload process, but more remains to
done (see, for example Whitt, 1999; Zeltyn et al., 2009).
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APPENDIX A: PROOFS

A.1. Lemma A.1.

Lemma A.1. Let T be a n × p matrix of rank s and let L be a p × p
positive definite diagonal matrix. Then the following assertions are true

1. T ′T (T ′T )+T ′ = T ′

2. T ′LT (T ′LT )+T ′ = T ′

3. (T ′T )+ = T ′ ((TT ′)+)2 T

Proof. 1. If T ′T is invertible then (T ′T )+ = (T ′T )−1 and the result
follows. Otherwise, let UΛV ′ be the svd (singular value decomposition,
see Golub and Loan, 1983) of T where U and V are orthonormal
columns matrices of size n× s and p× s respectively, and Λ is a s× s
positive definite diagonal matrix. Then

T ′T (T ′T )+T ′ = (V ΛU ′)(UΛV ′)
(
(V ΛU ′)(UΛV ′)

)+
V ΛU ′

= V Λ2V ′(V Λ2V ′)+V ΛU ′ .

Since Λ is invertible and V has orthonormal columns (V Λ2V ′)+ =
V Λ−2V ′. Hence

T ′T (T ′T )+T ′ = V Λ2V ′V Λ−2V ′V ΛU ′ = V ΛU ′ = T ′ .

2. Denote W = L1/2T , then T ′LT (T ′LT )+T ′ = W ′W (W ′W )+W ′L−1/2.
Using 1., we obtain W ′W (W ′W )+W ′L−1/2 = W ′L−1/2 = T ′.

3. Since TT ′ is a positive semi-definite matrix, TT ′ has a spectral repre-
sentation of the form TT ′ =

∑s
i=1 λiviv

′
i where s ≤ min{n, p}, λi > 0

and {vi} is an orthonormal set of vectors. Note that TT ′vi = λivi and
hence T ′T (T ′vi) = λiT

′vi. Moreover ‖T ′vi‖2 = v′iTT
′vi = v′i(λivi) =

λi. Hence, we obtained that
{
T ′vi/

√
λi
}

is the set of orthonormal
eigenvectors of T ′T with the respective non-zero eigenvalues {λi}.
Thus,

T ′T =
s∑
i=1

λi
T ′vi√
λi

(
T ′vi√
λi

)′
= T ′

(
s∑
i=1

viv
′
i

)
T .

Using the spectral representation we also have

T ′
(
(TT ′)+

)2
T = T ′

(
s∑
i=1

λ−2
i viv

′
i

)
T .

In order to show that (T ′T )+ = T ′ ((TT ′)+)2 T we need to show the
following (see Golub and Loan, 1983):
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(a) (T ′T )
(
T ′ ((TT ′)+)2 T

)
(T ′T ) = (T ′T )

(b)
(
T ′ ((TT ′)+)2 T

)
(T ′T )(T ′ ((TT ′)+)2 T ) =

(
T ′ ((TT ′)+)2 T

)
(c)

(
(T ′T )

(
T ′ ((TT ′)+)2 T

))′
= (T ′T )(T ′ ((TT ′)+)2 T )

(d)
((
T ′ ((TT ′)+)2 T

)
(T ′T )

)′
= (T ′ ((TT ′)+)2 T )(T ′T )

In order to see (a), note that

(T ′T )
(
T ′
(
(TT ′)+

)2
T
)

(T ′T ) = T ′(TT ′)

(
s∑
i=1

λ−2
i viv

′
i

)
(TT ′)T

= T ′
(

s∑
i=1

λiviv
′
i

)(
s∑
i=1

λ−2
i viv

′
i

)(
s∑
i=1

λiviv
′
i

)
T

= T ′
(

s∑
i=1

viv
′
i

)
T = T ′T .

Similarly, for (b), we have(
T ′
(
(TT ′)+

)2
T
)
(T ′T )

(
T ′
(
(TT ′)+

)2
T
)

=

= T ′
(

s∑
i=1

λ−2
i viv

′
i

)
(TT ′)2

(
s∑
i=1

λ−2
i viv

′
i

)
T

= T ′
(

s∑
i=1

λ−2
i viv

′
i

)(
s∑
i=1

λiviv
′
i

)2( s∑
i=1

λ−2
i viv

′
i

)
T

= T ′
(

s∑
i=1

λ−2
i viv

′
i

)
T = T ′

(
(TT ′)+

)2
T .

For (c),

(
(T ′T )

(
T ′
(
(TT ′)+

)2
T
))′

=

(
T ′(TT ′)

(
s∑
i=1

λ−2
i viv

′
i

)
T

)′
=

(
T ′
(

s∑
i=1

λ−1
i viv

′
i

)
T

)′

= T ′
(

s∑
i=1

λ−1
i viv

′
i

)
T = (T ′T )

(
T ′
(
(TT ′)+

)2
T
)
.

Finally, (d) is shown similarly to (c).
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A.2. Proof of Lemma 3.3.

Proof. By (2) we may write Y1(t)− µ(t) = b1(t)′(A1h+B1ε). Hence,(
Γ11Γ+

11 (A1h+B1ε)) (t) =

= b1(t)′G11W1W
−1
1 G+

11(A1h+B1ε)
= b1(t)′G11G

+
11(A1h+B1ε)

= b1(t)′[A1, B1]

[
L 0
0 Σ

] [
A′1
B′1

](
[A1, B1]

[
L 0
0 Σ

] [
A′1
B′1

])+ [
A1h
B1ε

]

and the result follows from Lemma A.1.
Substituting h = LA′2 and ε = 0 in the last equation, we also obtain

(17) G11G
+
11g12 = Γ11G

+
11(A1LA

′
2 +B10) = g12 .
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SUPPLEMENTARY MATERIAL

Supplement A: Code and data sets
(http://pluto.huji.ac.il/ yaacov/blup.zip). Please read the file README.pdf
for details on the files in this folder.
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