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Preface

0.1. What Is This Book About?

This book is about stochastic-process limits, i.e., limits in which a se-
quence of stochastic processes converges to another stochastic process. Since
the converging stochastic processes are constructed from initial stochastic
processes by appropriately scaling time and space, the stochastic-process
limits provide a macroscopic view of uncertainty. The stochastic-process
limits are interesting and important because they generate simple approxi-
mations for complicated stochastic processes and because they help explain
the statistical regularity associated with a macroscopic view of uncertainty.

This book emphasizes the continuous-mapping approach to obtain new
stochastic-process limits from previously established stochastic-process lim-
its. The continuous-mapping approach is applied to obtain stochastic-process
limits for queues, i.e., probability models of service systems or waiting lines.
These limits for queues are called heavy-traffic limits, because they involve a
sequence of models in which the offered loads are allowed to increase towards
the critical value for stability. These heavy-traffic limits generate simple ap-
proximations for complicated queueing processes under normal loading and
reveal the impact of variability upon queueing performance. By focusing on
the application of stochastic-process limits to queues, this book also provides
an introduction to heavy-traffic stochastic-process limits for queues.

0.2. In More Detail
More generally, this is a book about probability theory — a subject which
has applications to every branch of science and engineering. Probability the-

ory can help manage a portfolio and it can help engineer a communication
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Chapter 1

Experiencing
Statistical Regularity

1.1. A Simple Game of Chance

A good way to experience statistical regularity is to repeatedly play
a game of chance. So let us consider a simple game of chance using a
spinner. To attract attention, it helps to have interesting outcomes, such as
falling into an alligator pit or winning a dash for cash (e.g., you receive the
opportunity to run into a bank vault and drag out as many money bags as
you can within thirty seconds). However, to focus on statistical regularity,
rather than fear or greed, we consider repeated plays with a simple outcome.

In our game, the payoff in each of several repeated plays is determined
by spinning the spinner. We pay a fee for each play of the game and then
receive the payoff indicated by the spinner. Let the payoff on the spinner
be uniformly distributed around the circle; i.e., if the angle after the spin is
0, then we receive 6/2m dollars. Thus our payoff on one play is U dollars,
where U is a uniform random number taking values in the interval [0, 1].

We have yet to specify the fee to play the game, but first let us simulate
the game to see what cumulative payoffs we might receive, not counting the
fees, if we play the game repeatedly. We perform the simulation using our
favorite random number generator, by generating n uniform random num-
bers Uy, ..., U,, each taking values in the interval [0, 1], and then forming
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2 CHAPTER 1. EXPERIENCING STATISTICAL REGULARITY

associated partial sums by setting
SkEU1+"'+Uk, lﬁszn,

and Sy = 0, where = denotes equality by definition. The n'" partial sum
Sy, is the total payoff after n plays of the game (not counting the fees to
play the game). The successive partial sums form a random walk, with U,
being the n'" step and S, being the position after n steps.

1.1.1. Plotting Random Walks

Now, using our favorite plotting routine, let us plot the random walk,
i.e., the n + 1 partial sums Si, 0 < k < n, for a range of n values, e.g., for
n = 107 for several values of j. This simulation experiment is very easy to
perform. For example, it can be performed almost instantaneously with the
statistical package S (or S-Plus), see Becker, Chambers and Wilks (1988) or
Venables and Ripley (1994), using the function

walk <- function(j) {

uniforms <- runif(10¥) # generate random numbers
firstsums <- cumsum(uniforms) # form the partial sums
sums <- c(0, firstsums) # include a 0" sum
index <- order(sums) -1 # adjust the index
plot(index, sums) } # do the plotting
Plots of the random walk with n = 107 for j = 1,...,4 are shown in

Figure 1.1. For small n, e.g., for n = 10, we see irregularly spaced (verti-
cally) points increasing to the right, but as n increases, the spacing between
the points becomes blurred and regularity emerges: The plots approach a
straight line with slope equal to 1/2, the mean of a single step Uy. If we
look at the pictures in successive plots, ignoring the units on the axes, we
see that the plots become independent of n as n increases. Looking at the
plot for large n produces a macroscopic view of uncertainty.

The plotter automatically plots the random walk {S; : 0 < k < n} in
the available space. Ignoring the units on the axes is equivalent to regarding
the plot as a display in the unit square. By “unit square” we do not mean
that the rectangle containing the plot is necessarily a square, but that new
units can range from 0 to 1 on both axes, independent of the original units.
The plotter automatically plots the random walk in the available space by
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Figure 1.1: Possible realizations of the first 10/ steps of the random walk
{Sk : k > 0} with steps uniformly distributed in the interval [0, 1] for j =
1,...,4.
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scaling time and space (the horizontal and vertical dimensions). Time is
scaled by placing the n + 1 points 1/n apart horizontally. Space is scaled
by subtracting the minimum and dividing by the range (assuming that the
range is not zero); i.e., we interpret the plot as

plot({Sk : 0 < k < n}) = plot({(Sx — min)/range: 0 < k <n}),

where
min = min({Sk : 0 < k <n})

and
range = maz({Sk : 0 <k <n}) —min({Sx: 0 <k <n}).

Combining these two forms of scaling, the plotter displays the ordered
pairs (k/n, (Sx, —min)/range) for 0 < k < n. With that scaling, the ordered
pairs do indeed fall in the unit square. Also note that (Sy — min)/range
must assume (approximately) the values 0 and 1 for at least one argument.
That occurs because, without the rescaling, the plotting makes the units on
the ordinate (y axis) range from the minimum value to the maximum value
(approximately).

To confirm the regularity we see in Figure 1.1, we should repeat the
experiment. When we repeat the experiment with different random number
seeds (new uniform random numbers), the outcome for small n changes
somewhat from experiment to experiment, but we always see essentially the
same picture for large n. Thus the plots show regularity associated with
both large n and repeated experiments.

1.1.2. When the Game is Fair

Now let us see what happens when the game is fair. Since the expected
payoff is 1/2 dollar each play of the game, the game is fair if the fee to
play is 1/2 dollar. To examine the consequences of making the game fair,
we consider a minor modification of the simulation experiment above: We
repeat the experiment after subtracting the mean 1/2 from each step of
the random walk; i.e., we plot the centered random walk (i.e., the centered
partial sums Sy — k/2 for 0 < k < n ) for the same values of n as before.

If we consider the case n = 10%, it is natural to expect to see a horizontal
line instead of the line with slope 1/2 in Figure 1.1. However, what we see
is very different! Instead of a horizontal line, for n = 10* we see an irregular
path, as shown in Figure 1.2.
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Figure 1.2: Possible realizations of the first 10/ steps of the centered random
walk {Sx—k/2 : k > 0} with steps uniformly distributed in the interval [0, 1]
forj=1,...,4.
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Figure 1.3: Six independent realizations of the first 10* steps of the centered
random walk {Sy —k/2 : k > 0} associated with steps uniformly distributed
in the interval [0, 1].
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Figure 1.7: Estimates of the probability density of the final position of
the random walk, obtained from 107 independent samples of the centered
partial sum S1ggg — 500 for j = 2,...,5, for the case in which the steps Uy
are uniformly distributed in the interval [0, 1], based on the nonparametric
density estimator density from S.

parameter settings). Essentially the same plots are obtained for independent
samples from normal distributions. From Figure 1.7, it is evident that the
density estimates converge to a normal pdf as n — co. For more on density
estimation, see Devroye (1987).

It is not our purpose to delve deeply into statistical issues, but it is worth
remarking that we obtain new interesting plots, like the random walk plots,
when we do. Our brief examination of the distribution of the final position
of the random walk suggests looking for a more precise statistical test to
determine whether or not the final position of the random walk is indeed
approximately normally distributed. To evaluate whether some data can be
regarded as an independent sample any specified probability distribution, it
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Figure 1.8: The difference between the empirical cdf and the actual cdf for
samples of size 10/ from the uniform distribution over the interval [0,1] for
j=1,...,4

position. That makes sense as well, because both the empirical cdf and the
actual cdf must assume the common value 1 at the right endpoint.

It turns out that there is statistical regularity in the empirical cdf’s just
like there is in the random walks. As before, the plots look the same for
all sufficiently large n. Moreover, except for having the final position be 0,
the plots look just like the random-walk plots. More generally, this example
illustrates that statistical analysis is an important source of motivation for
stochastic-process limits. We discuss this example further in Section 2.2.
There we show how to develop a statistical test applicable to any continuous
cdf, including the normal cdf that is of interest for the final position of the
random walk.



1.1. A SIMPLE GAME OF CHANCE 17

1.1.4. Making an Interesting Game

We have digressed from our original game of chance to consider the
statistical regularity observed in the plots, which of course really is our
main interest. But now let us return for a moment to the game of chance.

A gambling house cannot afford to make the game fair. The gambling
house needs to charge a fee greater than the expected payoff in order to
make a profit. What would be a good fee for the gambling house to charge?

From the perspective of the gambling house, one might think the larger
the fee the better, but the players presumably have the choice of whether or
not to play. If the gambling house charges too much, few players will want
to play. The fee should be large enough for the gambling house to make
money, but small enough so that potential players will want to play. We
take that to mean that the individual players should have a good chance of
winning.

One might think that those objectives are inconsistent, but they are
not. The key to achieving those objectives is the realization that the player
and the gambling house experience the game in different time scales. An
individual player might contemplate playing the game 100 times on a single
day, while the gambling house might offer the game to hundreds or thousands
of players on each of many consecutive days.

Thus, the player might evaluate his experience by the possible outcomes
from about 100 plays of the game, while the gambling house might evaluate
its experience by the possible outcomes from something like 10* — 10% plays
of the game. What we need, then, is a fee close enough to $0.50 that the
player has a good chance of winning in 100 plays, while the gambling house
receives a good reliable return over 10* — 10° games.

A reasonable fee might be $0.51, giving the gambling house a 1 cent or
2% advantage on each play. (Gambling houses actually tend to take more,
which shows the appeal of gambling despite the odds.) To see how the
$0.51 fee works, let us consider the possible experiences of the player and
the gambling house. In Figure 1.9 we plot six independent realizations of a
player’s position during 100 plays of the game when there is a fee of $0.51
for each play. The game looks pretty interesting for the player from Figure
1.9. The player has a reasonable chance of winning. Indeed, the player wins
in plots 3 and 5, and finishes about even in plot 2. How do things look for
the gambling house?

To see how the gambling house fares, we should look at the net payoffs
over a much larger number of games. Hence, in Figures 1.10 and 1.11 we plot
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Figure 1.9: Six possible realizations of the first 100 net payoffs, positions of
the random walk {S; — 0.51k : k > 0}, with steps Uy uniformly distributed
in the interval [0,1] and a fee of $0.51.



1.1. A SIMPLE GAME OF CHANCE 19

-20

y
60 -40
payoff
40
payoff

-100 -80
60
0

-120
-80

°

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Index Index Index

o

e
60 -40
payoff
0
v
-40 20

-100
80

-80

°

2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Index Index Index

°

Figure 1.10: Possible realizations of the first 10* net payoffs (steps of the
random walk {S; — 0.51k : k > 0} with steps Uy uniformly distributed in
the interval [0, 1].

six independent realizations of a player’s position during 10* and 10° plays
of the game. As before, we let the plotter automatically do the scaling, so
that the units on the vertical axes change from plot to plot. But that does
not alter the conclusions. In these larger time scales, we see that the player
consistently loses money, so that a profit for the gambling house becomes
essentially a sure thing. When we increase the number of plays to 10°, there
is little randomness left. That is shown in Figure 1.11. Further repetitions
of the experiment confirm these observations. We again see the regularity
associated with a macroscopic view of uncertainty.

Above we picked a candidate fee out of the air. We could instead be
more systematic. For example, we might seek the largest fee such that the
player satisfies some criteria indicating a good experience. Letting the fee
for each game be f, we might want to constrain the probability p that a
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player wins at least a certain amount w, i.e., by requiring that
P(S100 — f(l()()) > w) >p.

Given such a formulation, we can determine the optimal fee f, i.e., the
maximum fee f such that the constraint is satisfied, which is attained when
the probability just equals p.

As noted at the outset, when we consider making the game interesting,
we might well conclude that a uniform payoff distribution for each play is
boring. We might want to have the possibility of much larger positive and/or
negative payoffs on one play. It is easy to devise more interesting games with
different payoff distributions, but the statistical regularity associated with
large numbers observed above tends to be the same. Readers are invited to
make their own games and look at the net payoffs for 10/ plays for various
values of j.

An extreme case that is often attractive is to have, like a lottery, some
small chance of a very large payoff. However, with independent trials, as
determined by successive spins of the spinner, the gambling house faces the
danger of having to make too many large payoffs. Such large losses are
avoided in lotteries by not letting the game be based on independent tri-
als. In a lottery only a few prizes are awarded (and possibly shared) so
that the people running the lottery are guaranteed a positive return. How-
ever, an insurance company cannot control the outcomes so tightly, so that
careful analysis of the possible outcomes is necessary; e.g., see Embrechts,
Kliippelberg and Mikosch (1997). We too will be interested in the possibility
of exceptionally large values in random events.

1.2. Stochastic-Process Limits

The plots we have looked at indicate that there is statistical regularity
associated with large n, i.e., with large sample sizes. We now want to
understand why we see what we see, and what we will see in other related
situations. For that purpose, we turn to probability theory; see Ross (1993)
and Feller (1968) for introductions.

1.2.1. A Probability Model

We can use probability theory to explain what we have seen in the ran-
dom walk plots. The first step is to introduce an appropriate mathematical
model: Assuming that our random number generator is working properly
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(an important issue, which we will not address, e.g., see p. 123 of Venables
and Ripley (1994), L’Ecuyer(1998a,b) and references cited there), the ob-
served values Uy, 1 < k < n, should be distributed approximately as the
first n values from a sequence of independent and identically distributed (IID)
random variables uniformly distributed on [0, 1] (defined on an underlying
probability space). Indeed, the model fit is usually so good that there is a
tendency to identify the mathematical model with the physical experiment
(a mistake), but since the model fit is so good, we need not doubt that the
mathematical conclusions are applicable.

Remark 1.2.1. Mathematics and the physical world. It is important to
realize that a physical phenomenon, a mathematical model of that physical
phenomenon and a simulation of that mathematical model are three different
things. But, if the mathematical model is well chosen, the three may be
closely related. In particular, a mathematical model, whether simulated or
analyzed, may provide useful desciptions of the physical phenomenon.

We are interested in mathematical queueing models because of their
ability to explain queueing phenomena, but we should not expect a perfect
match. For example, mathematical models often succeed by exploiting the
infinite, even though the physical phenomenon is finite. Random numbers
generated on a computer are inherently finite, and yet simulations based on
random numbers can be well described by mathematical models exploiting
the infinite.

Here, we perform stochastic simulations to reveal statistical regularity,
and we introduce and analyze mathematical models to explain that statis-
tical regularity. We expect to capture key features, but we do not expect a
perfect fit. We want the the mathematics to explain key features observed
in the simulations, and we want the simulations to confirm key features
predicted by the mathematics. =

With that attitude, let us consider the probability model consisting of
a sequence of IID uniform random numbers. Within the context of that
probability model, we want to formulate stochastic-process limits suggested
by the plots. First, we see that as n increases the plotted random walk
ceases to look discrete. For all sufficiently large n, the plotted random
walk looks like a function of a continuous variable. Thus it is natural to
seek a continuous-time representation of the original discrete-time random
walk. We can do that by considering the associated continuous-time process
{S|4) : t > 0}, where | - | is the floor function, i.e., |t] denotes the greatest
integer less than or equal to ¢. If we also want to introduce centering,
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centered random walks in Figure 1.16 with n = 10%, what we see is again
approximately a plot of Brownian motion. =

We can easily construct many other examples of random walks with
dependent steps. For instance, we could consider a random walk in a random
environment. A simple example has a two-state Markov-chain environment
process with transition probabilities Pio =1 —-P;; =pand P,; =1 —
P,y =qgfor 0 < p<land 0 < g < 1l We then let the kth step X
have one distribution if the Markov chain is in state 1 at the k™ step, and
another distribution if the Markov chain is in state 2 then. We first run the
Markov chain. Then, conditional on the realized states of the Markov chain,
the random variables X; are mutually independent with the appropriate
distributions (depending upon the state of the Markov chain). If we consider
a stationary version of the Markov chain, then the sequence {Xj : k > 1}
is stationary. Regardless of the initial conditions, we again see the same
statistical regularity in the associated partial sums when n is sufficiently
large. We invite the reader to consider such examples.

1.3.3. Different Step Distributions

Now let us return to random walks with IID steps and consider different
possible step distributions. We now repeat the experiments above with
various functions of the uniform random numbers, i.e., for X, = f(Uy),
1 < k < n, for different real-valued functions f. In particular, consider the
following three cases:

(i) Xx = —-mlog(1—-Ug) for m=1,10
(i) X = UP for p=1/2,3/2
(i) X, = U " for p=1/2,3/2. (3.5)

As before, we form partial sums associated with the new summands X}, just
as in (3.4).

Before actually considering the plots, we observe that what we are doing
covers the general IID case. Given the sequence of IID random variables
{Uy : k£ > 1}, by the method above we can create an associated sequence
of IID random variables {X} : k¥ > 1} where X} has an arbitrary cdf F.
Letting the left-continuous inverse of F' be

FC{)=inf{s: F(s) >t}, 0<t<1,
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we can obtain the desired random variables X with cdf F' by letting
X, =F(Uy), k>1. (3.6)

Since
F<(s) <t ifandonlyif F(t)>s, (3.7

we obtain
P(FT(U)<t)=PU < F(t) =F(t) ,

where U is a random variable uniformly distributed on [0, 1], which implies
that F<(U) has cdf F for any cdf F when U is uniformly distributed on
[0,1]. For example, we see that X} has an exponential distribution with
mean m in case (i) of (3.5): If F(t) = e */™, then F* (t) = —mlog(l — t)
and

P(Xp >t) = P(—mlog(1—U;) > t) = Pl — U < e /M)y =7 H™ |

Incidentally, we could also work with the right-continuous inverse of F,
defined by

Flt)=inf{s: F(s) >t} = F (t+), 0<t<1,
where F< (t+) is the right limit at ¢, because
P(FT(U)=F~(U) =1,

since F< and F~! differ at, at most, countably many points.

Moreover, F*< (Uy), k > 1, are IID when U, k > 1, are IID. Of course,
there also are other ways to generate IID random variables with specified
distributions, but what we are doing is often a natural way.

So let us plot the uncentered and centered random walks with the step
sizes in (3.5). When we do so for cases (i) and (i), we see essentially the
same pictures as before. For example, plots of the first 10* steps of the
centered random walks in the four cases in (i) and (i%) of (3.5) are shown in
Figure 1.17.

Again the plots look like plots of Brownian motion, indistinguishable
from the plots for the uniform steps in Figure 1.3. Note that the units on
the y axis change from plot to plot, but the plots themselves tend to have a
common distribution.
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Figure 1.17: Possible realizations of the first 10* steps of the random walk
{Sk —mk : k > 0} with steps distributed as X}, in cases (i) and (ii) of (3.5).
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Figure 1.18: Possible realizations of the first 107 steps of the uncentered
random walk {Sj : k > 0} with steps distributed as U, Y7 in case (iii) of
(3.5) forp=3/2and j =1,...,4.

1.4. The Exception Makes the Rule

Just when boredom has begun to set in, after seeing the same thing in
cases (i) and (ii) in (3.5), we should be ready to appreciate the startlingly
different large-n pictures in case (iii). Plots of the uncentered random walks
are plotted in Figures 1.18 and 1.19.

In the case p = 3/2 in Figure 1.18, the plot of the uncentered random
walk is again approaching a line as n — oo, but not as rapidly as before.
(Again we ignore the units on the axes when we look at the plots.) However,
in the case p = 1/2 in Figure 1.19 we something radically different: For large
n, the plots have jumps!
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Figure 1.19: Possible realizations of the first 10/ steps of the uncentered
random walk {Sy : £ > 0} with steps distributed as U, Y7 in case (iii) of
(3.5) forp=1/2and j =1,...,4.
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1.4.1. Explaining the Irregularity

Fortunately, probability theory again provides an explanation for the
irreqularity that we now see: The SLLN states, under the prevailing 11D
assumptions, that scaled partial sums n 'S, will approach the mean EX;
w.p.1 as n — oo, regardless of other properties of the probability distribution
of X1, provided that a finite mean exists. Knowing the SLLN, we should
expect to see lines when n = 10* in all experiments except possibly in case
(iii).

We might initially be fooled in case (iii), but we should anticipate occa-
sional large steps because U~/? involves dividing by very small values when
U is small. Upon more careful examination, we see that U~'/? has a Pareto
distribution with parameter p, which we refer to as Pareto(p), when U is
uniformly distributed on [0, 1], i.e.,

PUYP>$)=PU<tP)=tP, t>1, (4.1)
with mean

E(U-Y/P) = / PUYP > t)dt =1 —i—/ tPdt | (4.2)
0 1

which is finite, and equal to 1 + (p — 1)1, if and only if p > 1; see Chapter
19 of Johnson and Kotz (1970) for background on the Pareto distribution
and Lemma 1 on p. 150 of Feller (1971) for the integral representation of
the mean.

Thus the SLLN tells us not to expect the same behavior observed in the
previous experiments in case (iii) when p < 1. Thus, unlike all previous
random walks considered, the conditions of the SLLN are not satisfied in
case (iii) with p = 1/2.

Now let us consider the random walk with Pareto(p) steps for p = 3/2
in (3.5) (iii). Consistent with the SLLN, Figure 1.18 shows that the plots
are approaching a straight line as n — oo in this case. But what happens
when we center?

1.4.2. The Centered Random Walk with p = 3/2

So now let us consider the centered random walk in case (iii) with p =
3/2. (Since the mean is infinite when p = 1/2, we cannot center when
p = 1/2. We will return to the case p = 1/2 later.) We center by subtracting
the mean, which in the case p = 3/2is 1+ (p—1)~! = 3. Plots of the centered
random walk with p = 3/2 for n = 10/ with j = 1,2, 3,4 are shown in Figure
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Figure 1.20: Possible realizations of the first 10’ steps of the centered random
walk {Sy — 3k : k > 0} associated with the Pareto steps U,;l/p for p = 3/2,
having mean 3 and infinite variance, for the cases j = 1,...,4.

1.20. As before, the centering causes the plotter to automatically blow up
the picture. However, now the slight departures from linearity for large n
in Figure 1.18 are magnified. Now, just as in Figure 1.19, we see jumps in
the plot!

Once again, probability theory offers an explanation. Just as the SLLN
ceases to apply when the IID summands have infinite mean, so does the
(classical) CLT cease to apply when the IID summands have finite mean
but infinite variance. Such a case occurs with the Pareto(p) summands in
case (iii) in (3.5) when 1 < p < 2. Thus, consistent with what we see
in Figure 1.18, the SLLN holds, but the CLT does not, for the Pareto(p)
random variable U~1/? in case (iii) when p = 3/2.

We have arrived at another critical point, where an important intellectual
step is needed. We need to recognize that, even though the sample paths are
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Figure 1.21: Six independent realizations of the first 10* steps of the centered
random walk {Sy — 3k : kK > 0} associated with the Pareto steps Uk_l/p for
p = 3/2, having mean 3 and infinite variance.
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Figure 1.22: Six independent realizations of the first 10° steps of the centered
random walk {S}, — 3k : k > 0} associated with the Pareto steps U, P for
p = 3/2, having mean 3 and infinite variance.
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Figure 1.26: Six independent possible realizations of the first 10% steps of
the uncentered random walk {Sy : k¥ > 0} with steps distributed as U, 1/p
in case (iii) of (3.5) for p =1/2.

Paralleling Figures 1.4 and 1.22, we confirm what we see in Figure 1.25
by plotting six independent samples of the uncentered random walk in case
(iii) with p = 1/2 for n = 10° in Figure 1.26. Even though the plots of
the uncentered random walks with Pareto(0.5) steps in Figures 1.19 — 1.26
are radically different from the previous plots of centered and uncentered
random walks, we see remarkable statistical regularity in the new plots. As
before, the plots tend to be independent of n for all n sufficiently large,
provided we ignore the units on the axes. Thus we see self-similarity, just
as in the plots of the centered random walks before. From the random-walk
plots, we see that statistical regularity can occur in many different forms.

Given what we have just done, it is natural to again look for statistical
regularity in the final positions. Thus we consider the final positions S,
(without centering) for n = 1000 and perform 10,000 independent replica-





