A FLUID FLOW MODEL OF NETWORKS OF QUEUES
JAMES SVANDERGRAFT

Management Science (pre-1986); Oct 1983; 29, 10; ABI/INFORM Global
pg. 1198

MANAGEMENT SCIENCE
Vol, 29, No. 10, October 1983
Printed in U.S.A.

A FLUID FLOW MODEL OF NETWORKS OF QUEUES*

JAMES S. VANDERGRAFTY}

This paper describes a new technique for modeling flow through a network of queues. The
advantages of this method over many discrete event simulations or q ing theory techniqg
include simplicity, low cost and portability. The paper describes the kinds of processes to
which the technique can be applied, and the characteristics of the process that can be
determined by the resulting model. An example of claims processing in a Social Security
Administration’s District Office is given. The basis for the technique is to model the
information flow by a fluid flow, and then use standard engineering ideas to describe the fluid
flow by a system of ordinary differential equations. The system of equations is solved by
well-known numerical methods.

(NETWORKS; QUEUEING THEORY; SIMULATION)

1. Introduction

In this paper, a novel technique for modeling flow through a network of queues is
described. The basis for the technique is to think of the flow as a fluid flow and then
use a standard engineering idea to describe the fluid flow by a set of differential
equations. The differential equations are solved by well-known numerical methods.
The advantages of this approach include simplicity, low cost and portability. The
programs needed to implement the technique are fairly simple and can be written in
any high level language, such as FORTRAN. The running time for the resulting
program is very short. Because of the simplicity of the programs, it is easy to tailor
them to particular situations or to “fine tune” them to obtain a more accurate
simulation. It is important to stress, however, that unlike standard queueing theory
techniques, the method described here is deterministic. Thus, the effects of random
arrivals, or of variations in service times, cannot be studied directly.

In §2, the kind of problem to which this technique can be applied is illustrated. An
example of claims processing in a Social Security Administration District Office is
given in §3.

The mathematical basis of the technique is developed in §4, and some remarks on
implementation details are explained in §5. Finally, in §6, this new technique is
compared to more standard methods for modeling this kind of flow problem.

2. An Overview of Applicable Problems

This modeling technique can be applied to any processing situation that can be
described by a set of flow diagrams which show the order in which the processing is
done. Figure 1 gives an example of a typical flow diagram.

The boxes in Figure 1 can represent:

+ work stations,

+ computer system components,

- other processing units.

(A diagram such as in Figure 1 is often referred to as a “network of queues”. However,
it is easier to describe the modeling technique by using flow theory terminology.)

*Accepted by George S. Fishman; received February 10, 1981. This paper has been with the author 4
months for | revision.
* Automated Sciences Group, Inc., Silver Spring, Maryland.

1198

0025-1909/83/2910/1198801.25
Copyright 4> 1983, The Institute of M i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FLUID FLOW MODEL OF NETWORKS OF QUEUES 1199

FiGUure 1. A Typical Flow Diagram.

The links between the boxes show how information flows from one box to another.
To allow for slight variations in the processing, it is possible to attach percentages to
some of the links to show how much of the flow goes along any of several different
paths.

The only information that must be known about cach box is its processing rate; that
is, the average number of items that can be processed at this box in a fixed time
interval. This rate need not be constant, but may depend, for example, on
time of day,
workload,
availability of resources
— number of employees,

— computer memory,

— processing units.

The inputs noted in Figure 1 may be either incremental or bulk. Incremental arrivals
refer to small quantities of items that arrive throughout the time period being modeled.
Examples of this type of arrival are:

« clients arriving for service,

- computer demand jobs,

+ phone calls.

Bulk arrivals, on the other hand, refer to large quantities of items that arrive only a few
times each day. Examples here include:

- mail deliveries,

« batch job submittals.

Whenever the process to be analyzed can be described in the above manner, the
technique explained in §4 can be used to simulate it. Characteristics of the process that
can be determined by the technique include:

+ Productivity: The number of items that pass through each box, or the number of
items that reach the output points.

« Backlogs: The number of items waiting at each box.

- Utilization of Resources: The percentage of available resources (people or equip-
ment) being used.

» Processing Time: How long it takes for a single item to be completely processed,
including waiting time.

« Delay Times: How long items wait for processing.

All of these quantities can be computed at selected times during the analysis period,
every hour, for example.

Because the programs are inexpensive to run, the analysis can be repeated many
times to show the effects of changing parts of the processing procedure.

If the boxes in the flow diagrams represent work stations that are staffed by several
workers, then the modeling technique can also be used for staffing analysis. That is,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1200 JAMES S. VANDERGRAFT

the minimum number of workers needed to keep work flowing smoothly through the
office can be computed directly from the modeling equations. Also, it is possible to
compute the number of workers that must be assigned to particular workstations so
that the waiting times meet specified standards. For details of these staffing analyses,
see [8] and [9].

3. An Example—S.S.A. Claims Processing

The Social Security Administration has a network of District Offices located
throughout the country. Each office is set up to process claims that are filed by local
citizens. There are over 30 basically different types of claims, and each type is handled
differently from the others. There are slight variations among claims of the same type,
but generally those variations are few and can be accurately predicted. Thus, the
claims processing activities within a particular District Office can be described by a set
of flow diagrams; one for each type of claim handled by that office. All of these
diagrams are of the type illustrated by Figure 1. The inputs to Box 1 are, typically,
claimants who come to the office to be interviewed by a Claims Representative (CR)
or a Service Representative (SR). A folder is prepared and passed on to another
worker type such as a Claims Development Clerk (CDC), or a Data Review Techni-
cian (DRT). Additional information may come by mail (at Box 6 for example) for
some of the claims, while other claims proceed directly through a sequence of
processing steps to the output stage. The output here represents the complete process-
ing of a claim. Usually, at this stage, the claimant is notified and the folder is stored in
a file cabinet.

Thus, each box in the flow diagrams for this application can be thought of as a
workstation that is staffed by one or more workers of a particular type: CR, SR, DRT,
CDC, TT (teletypist), or ANC (account number clerk). The processing rate associated
with each box will depend on how many workers are assigned to the workstation that
the box represents. That is, the more workers there are, the more claims that can be
processed in, say, one hour. For each workstation, estimates are available for how
many items can be processed by one worker per hour. If this is multiplied by the
number of workers assigned to the workstation, the result is the processing rate for the
station.

The number of workers assigned to each station depends on the amount of work, as
well as on the number of workers available. As claims begin to flow through the
workstations, workers are assigned to process them. As long as there are only a few
claims in the office, each claim will receive immediate attention from an available
worker. As claims begin to accumulate, however, workers will have to be assigned to
workstations depending on the number of claims to be processed at each station. The
worker assignment algorithm is discussed in more detail in §4. For now, it suffices to
note that the worker assignments change throughout the day; hence, the processing
rates also change. Furthermore, this reflects what actually happens in practice.

Programs have been written in standard FORTRAN to simulate the activities in the
Patchogue, New York District Office. The simulation begins by assuming there is no
work in the office. At 8:00 a.m., claimants begin to arrive for interviews. As they are
interviewed, folders are prepared which are later passed on to other workstations for
processing. Workers are assigned as needed, or reassigned as work begins to accumu-
late. At 11:00 a.m., the mail is distributed. Between 12:00 p.m. and 1:00 p.m., half of
the workers go to lunch, each for one-half hour, and at 5:00 p.m., all work stops. This
is considered to be day zero of the analysis. Day one is exactly the same, except that it
begins with work left over from the previous day. The analysis can continue for as
many days as desired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FLUID FLOW MODEL OF NETWORKS OF QUEUES 1201

The input to the program consists of four tables. A node table is used to give
information about each workstation; this information includes a workstation identifi-
cation, worker type, task description, process rate per worker, and external arrival
information. The connections between the workstations are described by a link table
that gives the identifications of the workstations at each end of the link, and the flow
percentage through the link. The client arrivals are defined by an arrival table that
gives, in tabular form, the number of claimants that have come to the office by any
time of day. The fourth table is a worker table that tells how many of each type of
worker is in the office.

Figure 2 shows an example of the output from the model of the Patchogue, N.Y.
District Office. Careful validation of these results is difficult because of a lack of
accurate data with which to compare the computed values. However, the qualitative
characteristics predicted by these results agree with observed activities and conditions
in the office.

The programs that produced these results consist of approximately 2,000 FOR-
TRAN statements, not counting comments. Of these, nearly 500 statements constitute
the subroutine RKF45 which was copied from [5]. This subroutine solves the system of
differential equations that describes the flow through the diagrams. Of the remaining
statements, over half are used to accumulate the results in several different ways, and
format them for printing. The running time on a DEC 2020 system was approximately
ten seconds. This included reading the input tables from disks, setting up the
equations, solving the equations for two eight-hour days, and accumulating the resuits
for printing. The flow diagrams used here contained 151 nodes.

The programs allow the user to interactively change some of the input, such as
staffing levels, number of arrivals, and processing times, More extensive changes to the
office can be simulated by simply editing the node and link tables.

4. Mathematical i)etails

In this section, the equations that are used to describe the flow of work are derived.
The estimates of waiting time and the staffing analysis formulas are also discussed.

4.1. Continuity Assumptions

The flow of work through a flow graph such as that given in Figure 1 can be
described, approximately, by a system of ordinary differential equations. With the
nodes numbered 1,2,3, ..., asin Figure 1, let w,(¢) denote the number of work items
at node k at time ¢. The value of w, () is determined by the flow of work into and out
of node k. Initially, the values of all w, are zero, unless there is a backlog of work
when the analysis begins. Additional work items enter the system as incremental and
bulk arrivals. Let A, (¢) denote the number of incremental arrivals to node k by time .
For most nodes, A;(7)=0, but for nodes such as node 1 in Figure 1, A,(#) is an
increasing function of 7. (Remember that A, (z) is the foral number of arrivals from
t =0 until the present time.) In fact, if A, (7) is not zero, then it must be a step
function, as shown in Figure 3.

The steps (discontinuities) occur whenever a work item arrives. An assumption that
must be made in order to analyze the flow by using differential equations is that A ()
is a continuous function. In fact, it is even necessary to assume that A, is a
differentiable function. One such differentiable approximation is shown by the dotted
curve in Figure 3.

Next, consider the flow out of a typical node. This will depend on the rate at which
work is processed at the node. In many situations of interest, this rate is time
dependent, hence the notation p,(7) will be used to denote the average number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JAMES S. VANDERGRAFT

1202

‘[apo uonenby [enuasayi oY1 woip nding jo sdwexy g 4MNOLS

0T /0 ‘001/vs ge /s /e ‘001/¥'T 001/S' 1y 00§
‘w /o 001/vs e /s 9¢ /¢ °001/6'S 001/9%S 00t
‘001/€1 (o01/0's 'sg /9 6 /v ‘001/¥'6 WI/EL 00

‘001/€T "001/9v ‘001/SY 0s /v 001/1T1 "001/S'69 00T
05 /oc 0s /oy 05 /TTL S /¢ ‘19 /syl v8 /OLS 001
‘001/8T 001/¥'€ 00l/0'Sl €S /€ 001/Ls1 oot/o6y 00Tl
‘001/8c -o01/0c oot/ 19 /¢ 001/€81 001/09C 0011

001/¢ 001/5€ Iy /9 ' Wia L /S ‘001/S°1T 00:0!

se /1 001/0v € /9 0T /T /¢ ‘86 /¥yl 006

‘07 /0 001/Tr st /S1 001/81 98 /0T ‘09 /€¥T 00°8
ONV Ll oao Lya us U ANWIL

NOLLVZITLLA LNIDYHd/O0THOVE YNOHNYOM

AYVINNNS AIOM

88 ‘8L ‘€9 NVINW
05 0s v'9 ‘oL ‘L9 08 00:¢
05 (U SL IL e ‘L9 00:¢
0¢’ 0s* sol ‘L L8t 8 00:€
0s 0s 9Tl S6 pEE ‘€6 00:¢
0s 0¢ ol ‘99 oL ‘16 00:1
0s 0s £ol ‘96 9ve 98 00:¢l
0¢’ £y 6 96 sLl L 00:11
00 8T 9t 9L 8t A 00:01
00 00 8t v9 69 ‘61 006
00 00 (a4 ‘I 0 e 008
Us oA UD YO (SYNO) AWIL (SYANYOM 40 %) (SIWILI 40 YITWNN) (SYINOHANYOM) FWIL
ANLL ONLLIVA LNA1D TVLIOL AALVIILSE NOILLVZITLLN ALIALLONAOYd DOTHOVH

AYVIINS 301440 LONILSIAa
Avd ISt JHL 404 SLTNSTY FHL 40 AMVYIWANS

9E1 231350 19M81Q Ut Fuissanosg swiey) Jo siskjpuy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FLUID FLOW MODEL OF NETWORKS OF QUEUES 1203

- N W & 0T O N ©

TIME
FiGURE 3. A Typical Arrival Function A;(7) and a Continuous Approximation to it.

hours to process one item at node k at time r. It must be assumed that g, (r) is
continuous, except perhaps at a few times. In practice, this assumption does not seem
too unrealistic.

With these two continuity assumptions, it is not difficult to show that the number of
items, w,(z), is also a continuous, and differentiable, function. The idea of using a
continuous function to represent quantities that take only integer values is standard
practice in mathematical modeling. See, for example, [1] and [2].

4.2. The Differential Equations

By using the notation defined in the previous section, the flow through the graph
can be described approximately by the set of differential equations

We(f) = A‘(t)+2 ali () -, k=12, . 4.1

Here, the summation is over all nodes that feed into node &, b, is the fraction of the
flow out of node i that goes to node k as indicated in the flow graph, and the dot
represents the time derivative.

Since () represents the time needed to process one item at node i, it is reasonable
to assume that p,(#) > 0. Hence, p;” '(¢) is defined and in fact is the rate at which items
are processed. Thus, (4.1) expresses the fact that the change in the number of items at
node k equals the rate of incremental arrivals, plus the rate at which items are fed from
other nodes, minus the rate at which items are processed and passed out of node k.
The initial conditions for this system are values for w, (0). If there are no work items at
the beginning of the analysis period, then w;.(0) = 0. However, if there is a bulk arrival
at time O, or if there is work left over from an earlier time (the previous day, for
example), then w;(0) may be nonzero.

For a bulk arnval to node &, at time 7, say, the equations are solved from time 0 to
time #y. Then the value of w, (%) is increased by the amount of the bulk arrival, and
the solution process is continued, with this new value of w;(#;) as an initial condition.

A simpler way to treat incremental arrivals is to let Z, (1) = w(#) — A.(¢). Then
(4.1) can be written also as

Zy(1) = 2 ki = 4.2)

This avoids the problem of finding an approximation to A, ; however, clearly A(n)is
still needed so that w;(7) can be computed from Z; (7).

As in the situation described in §4.4, the processing times are often nonlinear
functions of the backlog w,; that is

= w(Hwwa, ..) 43)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1204 JAMES S. VANDERGRAFT

Thus, (4.1) represents a nonlinear system of differential equations. There will be one
equation for each workstation. This system can be solved numerically by any of
several efficient and reliable codes. Especially recommended are the subroutine
RKF45, as given in [5], or the Adams method described in [7].

4.3. Productivity

There are two types of productivity that may be of interest: the number of items
handled at a particular workstation, and the number of items that are completed
during some period of time.

The number of items processed at workstation k, between time t =0 and timet = T
is:

P(T)= J; a0y dr. (44

This follows from the fact that g '(¢) is the rate at which items are processed at node
k, that is, the number of items processed per hour. Thus, the integral of p”!(r) is the
number of items processed during the time interval of integration. Note that if the
workstation is idle, then y, is infinite, since an idle station takes infinitely long to do
anything. In this case y,” ' is interpreted as zero, so Py, as defined by (4.4), is zero.
Values of P,(z), for selected ’s, can be approximated by using the trapezoidal rule
to evaluate the integral in (4.4). A more accurate method is to integrate (4.2) to obtain

Z(T) = Zu(0) = X buP(T) — P(T), k=12.... (4.5)

This is a system of linear (algebraic) equations for the productivities at each station,
which can be easily solved by Gaussian Elimination.

The number of completed work items can be determined by the use of special nodes
in the flow diagrams. These nodes, which may be called END nodes, should mark the
end-of-processing. Thus, in Figure 1 there should be END nodes following nodes 5
and 9. Associated with END nodes are zero processing rates; that is, p'(1) =0, so
that any items that enter these nodes stay there. The backlogs at the END nodes will
show how many items have entered these nodes since the analysis began.

4.4. Resource Allocation

In many applications, the processing times p, depend on the availability of resources
such as people, computers, memory blocks, etc. To consider this case more carefully,
we will assume, for definiteness, that the resource is people.

If the workstations are staffed by workers, then it is natural to define a “per-person”
processing time as:

P = average time for one worker to process one item at station k.

Then, if there are n, pcople assigned to the workstations at time r, the processing time
will be

we(8) = o/ m(2). (4.6)

The numbers n, must be determined with some care in order for the model to be
realistic. An obvious constraint is that n, cannot exceed the number of available
workers. A slightly more subtle restriction is imposed by the fact that n, should not
exceed some multiple of the number of items w,(r) at the workstation, where this
multiple depends on the level of detail of the work flow descriptions. If, for example,
each workstation represents a very simple task to be performed on a work item, then it
makes no sense to allow two or more people to share this task on a single item. In this
case, it is probably realistic to restrict n, to be always less than or equal to w,. We will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FLUID FLOW MODEL OF NETWORKS OF QUEUES 1205

impose this restriction throughout the remainder of the discussion. Also, for simplicity,
we will assume that any worker can perform any of the tasks represented in the flow
diagrams. This is not an essential restriction, as shown by the example in §3.

Thus, we suppose that there are a total of N workers available. Initially, workers can
be assigned to workstations on a one-to-one basis with the work items. That is, if
w, () =3, then three workers can be assigned to workstation k. However, this simple
way of assigning workers must be modified when all available workers have been
assigned. Additional work arriving should cause a reassignment of workers, depending
upon the distribution of work among the stations. In practice, a manager usually
watches for work piling up at certain desks and occasionally reassigns workers or
redistributes work to control this buildup of backlogs. This reallocation of workers can
be included in the model as follows. Whenever

Sw <N (X))
%

where the summation is over all workstations, then the number of workers #, assigned
to workstation k is just

m (1) = wi(4). (4.8)
However, if (4.7) is violated, then (4.8) would assign more workers than are available.
In this case, a reasonable replacement for (4.8) is
Wi ()
m(t)= —— -N. 4.9
= oD)
Thus, the number of workers assigned to station k is a certain fraction of all available
workers. This fraction is determined by the number of work items at station &
compared to all the work in the office. Equations (4.8) and (4.9) can be combined into
the single equation
wi ()N
nk(t) = W . (4.]0)
This shows more clearly that if all w,(7) are continuous functions of ¢ then so is n, (7).
This continuizy is necessary so that ., as given by (4.6), is continuous, and hence the
differential equation system (4.1) is uniquely solvable.

4.5. Waiting Time

Without some information about the manner in which work is processed at the
workstations, it is not possible to estimate how long an item must wait for processing.
The waiting time will depend, for example, on the queueing discipline and perhaps on
the way in which resources are reallocated among the workstations. The differential
equations (4.1) describe the change in the number of items at each station, but say
nothing about the arrival or departure of a particular work item.

In order to illustrate how additional information can be used to estimate waiting
time, suppose that the workstations are staffed by workers according to the allocation
method described in §4.4. Furthermore, assume that work is processed on a first come
first served basis. Then, if (4.7) holds, a new item arriving at any workstation can be
processed immediately by an unassigned worker. However, if (4.7) does not hold then
all workers are busy and a new item arriving at a station must wait.

Now, with 1, workers at station &, and per-person processing times of p, hours per
item, it follows that n; /p, items are processed in one hour. Hence, in & hours, h - m, /p,
items are processed. Thus, a backlog of w;, items will be reduced 1o w, — h - m/p, in h

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1206 JAMES S. VANDERGRAFT

hours, and the total backlog at all workstations will be
S(v — b/ p)- @.11)
k

A worker will be available for a newly arrived item as soon as (4.11) is less than the
total number of available workers, i.e., as soon as

S —hn/p)<N. (4.12)
k
By solving this for 4 we find
2w — N
h>—FF——. 4.13
e/ pr 1)

More precisely, if at time ¢, there are backlogs of w; (), with worker assignments s,
then the waiting time for a new item is

0 if Dw () <N,
k

Sm-N (4.14)
—_— otnerwise.
S/ e

This, of course, assumes that the values of 1, do not change during the time peried 7 to
t + WT. Note that in the case where there are no workers of the type needed for
workstation &, that is if N =0, then (4.14) gives WT equal to infinity, which is
reasonable.

WT =

5. Implementation Details

The model is implemented by a program that:

- Reads the data files that describe the work flow, processing times, resources, and
external inputs.

- Sets up the starting conditions.

+ Solves the differential equations over specified time intervals, reallocating re-
sources as desired.

+ Prints out tables of results.

The most time-consuming part of this is the solving of the differential equations. The
numerical solution of this system proceeds in a step-by-step fashion from the initial
time. For good accuracy, these steps must often be very small; on the order of 0.0001
hours for example. Thus, to solve the equations over, say, an eight-hour time period
takes many thousands of steps. Each of these steps requires one or more evaluations of
the right-hand side of the system (4.1). Hence, this evaluation should be programmed
as efficiently as possible.

Another point to be kept in mind is that, under certain conditions, the system of
differential equations (4.1) is stiff, as defined, for example in [6]. To illustrate the
phenomenon of stiffness, and how it applies to (4.1), consider a very simple flow graph
consisting of only one workstation. With constant arrival of A = A(z) items per hour, a
processing time of p hours per item per person, and n workers assigned to the station,
the differential equation is

w(ty=A—n/p, 0<1t<T, 5-H
w(0)=0.

Now, if there are a lot of workers available for assignment to the workstation. then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FLUID FLOW MODEL OF NETWORKS OF QUEUES 1207

n(t) = w(t), as in (4.8). Hence, the equation (5.1) is
w(t)=A~w/p (5.2)

whose solution is
w(t)y=Ap —Ape™/P, 0<t<T (53)

If p is very small, then the exponential part of (5.3) dies out very quickly, and the
solution is essentially the constant Ap. Unfortunately, this is a difficult kind of solution
to compute numerically. The problem is that the differential equation solver thinks
that the solution is constant: w(f) = Ap, so it takes very large time steps to integrate the
equation. However, the numerical methods become unstable when applied to (5.2)
with large time steps, so the computed solution will become very inaccurate. The
outcome is that the differential equation solver will first take large time-steps, then
repeat the integration with smaller and smaller steps, until the computed solution
stabilizes. Overall, a great many steps will be used to compute this nearly constant
solution.

This same situation holds more generally. That is, in the system of equations (4.1), if
some of the y; are very small, then certain solutions w;(7) decay rapidly to steady state.
This rapid decay causes instabilities in the numerical process. There are special
differential equation solvers, based on so-called “stiffly stable” methods, that are
designed for such systems. Unfortunately, they are expensive to use and require a large
amount of computer memory. A better remedy is simply to omit workstations that
have very short processing times.

6. Comparison with Other Methods

The flow problems to which this method can be applied can also be analyzed by
more standard queueing theory techniques, and by discrete event or continuous
simulations.

Simulation languages, such as GPSS, SIMSCRIPT, Q-GERT, GASP, DYNAMO,
etc., have special constructs for describing information flow such as is shown in Figure
1. Arrival rates, processing times, and interfaces have to be carefully and completely
defined, just as for the technique described here. The arrivals and processing times
may, however, be stochastic, so that the effects of random arrivals and/or processing
times can be studied. In addition, discrete simulations retain, as the name implies, the
discrete nature of item arrivals and worker assignments. However, the use of simula-
tion languages require special software packages that are usually very large and often
costly. The differential equations model, on the other hand, can be easily programmed
in any scientific programming language, such as FORTRAN. There are a variety of
easily obtainable, well-documented, and thoroughly tested routines for solving the
differential equations.

Much of the queueing theory literature is directed toward analyzing a few servers
working independently or in rather simple combinations. Networks of queues have
been analyzed by setting up a system of differential equations where the dependent
variables represent the probability of queue length equal to n at the ith server at time .
See, for example, W. Fan [4]. This method, however, requires several differential
equations for each workstation, so that for large networks the size of the differential
equation system is too large to be practical. A queueing theory approach that leads to
a set of differential equations similar to (4.1) is given by Chang [3].

For simplicity, we describe the method in [3] only as applied to a single server. In
this case, Chang’s analysis assumes that arrivals occur at random by a Poisson process,
with time varying rate A(#), and the service time is exponentially distributed with mean

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1208 JAMES S. VANDERGRAFT

rate pu. The average queue length L is shown to satisfy the differential equation
L=X—pu (6.1)

where u is the probability that the queue is not empty.

Now, a workstation with per-person processing time p >0 and n workers can be
thought of as a single server with service rate n/p. With this interpretation, (5.1)
describes the same quantity as does (6.1); namely, the queue length at a single server.
Keep in mind, however, that in (5.1), n/p is a fixed service rate, whereas in (6.1), p is
the mean value of an exponentially distributed service rate. The interesting point here
is that if the service rate n/p in (5.1) is denoted by p, then when u =1 in (6.1) these
two equations are identical. That is, when applied to a single server, the fluid flow
technique with yu representing a constant service rate gives the same results as Chang’s
method when p is the mean service rate, provided that the queue length is long (i.e.,
not empty with probability 1).

The purpose of this comparison is to illustrate a (simple) situation where the results
produced by the fluid flow method are directly related to results given by more
standard queueing theory methods. This discussion is not meant to suggest that either
method should be used to analyze single server queues. There are, however, more
complex queueing network problems that can be fruitfully analyzed by both the fluid
flow technique and Chang’s queueing theory based approach. As is often the case,
however, when two methods can be used to analyze the same problem, there are
tradeoffs to be considered. The fluid flow method can incorporate complicated worker
allocation schemes, but cannot take into account random arrivals or variations in
processing times. On the other hand, queueing theory based methods, such as Chang’s,
may require additional information, such as the value of u in (6.1), and are not suitable
for examining the effect of reallocating resources such as workers. The choice of which
method to use in a particular situation may not be clear-cut. The important point is
that the fluid flow technique is an additional tool that can be useful in analyzing
networks of queues.'

! Development of this modeling technique was supported by the Social Security Administration’s Office of
Assessment and Office of Advanced Systems. The cooperation and encouragement of these offices is
sincerely appreciated.

References

I. Baiey, N. T. J.,, The Elements of Stochastic Processes with Applications to the Natural Sciences, Wiley,
New York, 1964.

2. BENDER, E. A., An Introduction to Math ical Modeling, Wiley-Intersciences, New York, 1978.

3. Cuaxng, S. S. L., “Simulation of Transient and Time Varying Conditions in Queueing Networks,” Proc.
7th Annual Pitisburgh Conference, Modeling and Simulation, Vol. V111, Part 11, Instrument Society of
America, Pittsburgh, 1977,

4. Fan, W, “Simulation of Queueing Networks with Time Varying Arrival Rates,” Trans. International

Association for Math ics and Computers in Simulation, Vol. XVIIL, No. 3, North-Holland,
Amsterdam, 1976.
5. Forsytie G., Maicoym, M. anp MoLer, C., Computer Methods for Math ical Comp

Prentice-Hall, Englewood Cliffs, N.J., 1977.

6. Gear. C. W.. Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, N.J., 1971.

7. SuaMPINE, L. F. aND GorpoN, M. K., Computer Solution of Ordinary Differential Equations, W. H.
Freeman, San Francisco, 1975.

8. VANDERGRAFT. J. S., “An Analytic Model of SSA Service Delivery Units: Mathematical and Algorithm
Details,” ASG-TR-80-09, 1980.

9. » MIDDLETON, P. AND PaNGaLos, S., “Staffing Analysis of SSA Service Delivery Units,”
ASG-TR-80-29, 1980.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

