

Class 5

Modelling a Service Station (I): Empirical/Deterministic Models; Fluid/Flow Models/Approximations of Predictable Queues

- Introduction:
 - Legitimate models: Simple, General, Useful
 - Approximations (strong)
 - Tools
- Scenario analysis
 - vs. Simulation, Averaging, Steady-State
 - Typical scenario, or very atypical (eg. "catastrophe")
- Predictable Variability
 - Averaging scenarios, with small "CV"
 - A puzzle (the human factor \Rightarrow state dependent parameters)
 - Sample size required increases with CV
 - Predictable variability could also turn unpredictable
- Hall: Chapter 2 (discrete events);
- 4 Pictures:
 - Cummulants
 - Rates (\Rightarrow Peak Load)
 - Queues (\Rightarrow Congestion)
 - Outflows (\Rightarrow end of rush-hour)
- Phases of Congestion: under-, over- and critical-loading
- Scales (Transportation, Telephone (1976, 1993, 1999))
- Simple Important Models: EOQ, Aggregate Planning
- Queues with Abandonment and Retrials (=Call Centers; Time- and State-dependent Q's).
- Bottleneck analysis in a (feed-forward) Fluid Network, via National Cranberry
- Addendum
- (Skorohod's Deterministic Fluid Model (of a service station): teaching note)

Recitation 5: Fluid models, with application to staffing.

HW 5: "Fluid Models".