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Abstract. A state-dependent queue is an exponential service system, where arrival
and service rates depend on queue length. For properly normalized queueing processes,
we derive functional strong lews of large numbers and funciionel central imit theorems.
The former support fuid approximations and the latter diffusion refinements. Our
analysis is based on strong approximetions, whick provide & unified framework for most
existing approximations of state-dependent quenes.
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1. Introduction. State—dependent exponential M, /M;/1 queues are
models in which arrival and service rates depend on the state £—~the quene
length. For properly normalized gueueing processes, we derive functional
strong law of large numbers (FSLLN, Theorem 4.1) and functional central
limit theorems (FCLT, Theorems 4.2 and 4.3). The former support fluid
approximations and the latter diffusion refinements. The current analysis
is a first step in an ongoing effort to cover queneing networks.

The strong limit in FSLLN (henceforth called the fluid limit) is the
unique solution to an autenomous first—order ordinary differential equation
with reflection. In such an equation, the derivative depends explicitly only
on state. Consequently, the fluid limit of a single queue is a monotone
continnous function, which absorbs at zero if it ever reaches it.

The weak limit given in FCLT (henceforth called the diffusion limit)
is the unique strong solution to a stochastic differential equation with a
certain type of reflection. The diffusion limits are Markov processes with
upper semi-continuous sample-paths. Weak convergence is with respect to
Skorokhod’s M -topology (see Appendix B and the discussion in Subsec-
tion 4.5).

Our technique for obtaining limit theorems is based on strong approx-
imations. It is similar to Kurtz {31], who considers density-dependent
population processes, for which limits do not involve the reflection phe-
nomenon (see also Ethier and Kurtz {14, Chapter 11 §2,3}). It differs from
Kurtz [32],[33] and [34], that relies on multiparameter time transforma-
tions.

In Section 5, derivations of many available fluid and diffusion approx-
imations for state-dependent gueues are unified. Examples covered are
models with reneging, finite population and finite or infinite number of
servers. We are not assuming boundedness of arrival rates, service rates or
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populations, at the expense of some additional technicalities in our proofs.

Pioneering works on fluid and diffesion approximations for queues
are Oliver and Samuel [39], Newell (e.g., [38]), Kingman (e.g., [24],[25]),
Borovkov {5],{6], and Iglehart and Whitt [20],{21]. For later advances,
readers are referred to the following survey papers and references therein:
Whitt [46], covering the period up to 1974, Lemoine [35], up to 1978, Coff-
man and Reiman [12], through 1984, Glynn [15], through 1990 and finally
Chen and Mandelbaum [8],[10], up to 1992, Related recent research is An-
ulova [2] and Krichagina {30}, who take a martingale approach to cover, as
far as the single quene is concerned, special cases of our models. Additional
representative examples of martingale-based fluid and diffusion approxima-
tions are Kogan et ol. [28] and Kogan and Liptser [27], where certain types
of closed exponential networks with state—dependent service are treated.
Fluid approximations for state- and time-dependent queueing networks are
described in [9]. Qur analysis resembles Mandelbaum and Massey {37], who
establish strong approximations, FSLLN and FCLT for the time-dependent
M;/M,;/1 system. The similarity is mainly a consequence of the fact that,
in both models, diffusion approximations enjoy time-dependent drifts and
variances {see {4.9}).

‘We use the model of an M¢ /M, /1 queue with the so-called autonomous
server (Borovkov [5]). This means, roughly speaking, that the server is
working permanently while actnal departures are generated only when the
system is not empty. (For an additional discussion see, e.g., Iglehart and
Whitt [20]). Our mathematical formulation (equations (2.1)—(2.4)) are asin
Prabhu [41] and Bremaud [7], but we focus on approximations rather than
exact analysis. Fluid and diffusion approximations for state-independent
systems have been commonly analyzed within the framework of “non-
autonomous” server models {see the survey papers mentioned above). Dif-
ficulties, however, arise even in the mere interpretation of state-dependent
non-antonomous queues, so this will not be pursued any further.

The M, /M;/1 queue is, in fact, a one-dimensional birth and death pro-
cess (see Subsection 2.2). As such, it has been amply covered and a broad
spectrum of (mainly elementary} tools is available and sufficient for its anal-
ysis. Here, however, we are concerned with transient evolution, and this
seems challenging enough to deserve the analysis that follows. Also pro-
vided is a framework for most existing approximations of state-dependent
queues, including stationary distributions when they exist. {Extensions to
queneing networks, namely multi-dimensional birth and death processes,
are currently being developed.)

The remainder of the paper is organized as follows. In Section 2 we
present our model of the M;/M;/1 queue and discuss different represen-
tations of its queueing process. Section 3 deals with reflection maps, that
characterize subsequent fluid and diffusion limits. In Section 4 we out-
line FSLLN and FCLT. Section 5 is devoted to applications of our results.
Proofs of the main theorems are provided in Sections 6 and 7. In sec-

240



tion 8 we outline directions for future research. Techmical background on
Skorokhod’s reflection problem and on Mj-convergence is presented in Ap-
pendices A and B, while the main notation is summarized in Appendix C.

2. The model of the M;/M;/1 queue. The subject of our study
is the state~-dependent M;/M,/1 queue. We analyze its queueing process
Q = {@;,t > 0}, whose value at time {, Q,, describes the total number
of customers, waiting or being served at that time. A formal pathwise
construction of @ is an outcome of the cbservation that there exists a
unique stochastic process @, satisfying the following relations at all £ > 0:

(2.1) @ = Qo+ Ai— Dy,
(2.2) A, = N. (f; M@Qu) du) ,
(2.3) Dy = fo t 1[Qu->0]dS,,

(2.4) S, = N ( fo t ,u,(Qu)du).

Here € is constructed in ferms of the following primitives:

Qo is a nonnegative random variable,

X, # are nonnegative locally Lipschitz functions on [0, oo},

N, , N_ are standard (rate 1) Poisson processes.
(The path construction is straightforward and of no significance to later
development, hence it is omitied). The random Qo, Ny, N_ are defined
on a common probability space and are assumed to be independent. The
entities involved in the construction have the following interpretation: Qo
is an initial quene; A = {4;,t > 0} and D = {D;,¢ > 0} are RCLL point
processes—— Ay and [ represent the cumulative number of arrivals and de-
partures during (0,t] respectively; finally, A(Q) and p{Q) are, respectively,
instantaneous arrival and service rates while at state Q. Equations (2.3)
and (2.4) indicate that there are no departures when customers are absent.
Thus, § = {S5;,t > 0} represents a potential for departures, which is fully
realized only when @ > 0.

Remark 2.1. The sample—paths of @@ are piecewise constant RCLL
functions. If @ is non-explosive, that is P{Q¢ < oo, ¥t > 0} = 1, then
D[0, o0) is a suitable space for sample—paths. Otherwise, a one—point com-
pactification of IR can be used, with X and p appropriately modified. A
simple sufficient condition, that ensures non-explosion of @, is a linear
growth constraint on A:

(2.5) ME <K(1+¢), €20,

for some constant K > 0, The limit theorems in this paper are stated
for non-explosive processes. (Generalizations are only commented on; see
Proposition 3.1 and Remark 4.1.) 0
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2.1. Representation in terms of reflection. We recast equations
(2.1)—(2.4) in a form that is convenient for analysis, namely the reflection
problem described in Appendix A:

Q=X +Y 20, 120,
(2.6) Y nondecreasing, ¥y = 0,

fml[Qg>01 d¥; = 0,
0

where

@7 X = Qo+ Ny (/:A(Qu)du) ~N. (/:;L(Qu)du) ,

(28) Y f " 1[Qu_=0)dS,..

il

The process Y represents cumulative losses of potential departures, due to
server idleness.

Substituting X and ¥ into {2.6) and comparing the result with defini-
tion (2.1) of @ reveals that only the last equation of (2.6) requires verifi-
cation. This equation is a complementarity relation between ¥ and @: Yy
increases at time t only if @, = 0. By (2.8}, it is equivalent to

(2.9) Loo 1[Q1>0} ngt__—_G} dS; = 0,

whose verification we now outline. Assume, to the contrary, that (2.9) is
not satisfied or, equivalently, that for some t > 0: Q. =0, @ > 0, and
Si_ # S, that is S, = S, + 1. In words, the following two events occur
at time £: first, a customer arrives to an empty system—A jumps; second,
a potential service is completed—S jumps. However, as long as @ =0, A
and § evolve like independent Poisson processes with intensities A(0) and
u(0) respectively (see (2.2) and (2.4)). Such processes a.s. do not jump
simultaneously, hence (2.9} a.s. prevails.

Remark 2.2. Equations (2.6) differ from the standard Skorokhod’s
reflection problem in that here, X itself depends on Q. Nevertheless, it
turns out usefal that

Q=%(X), Y =¥(X),

where & and ¥ are the Lipschitz operators in Appendix A, and X is given
by (2.7). |

2.2. Representation as a birth and death process. The distri-
bution of @ is the same as that of a birth and death process on the integers,
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starting at (g and evolving according to the following transition rates:

k41 = Ak), k=0,1,...,

grr—1= k), E=1,2,...,

g0,-1=0;
(Theorem 4.1 of Chapter 6 in Ethier and Kurtz [14}). In particular, the
effective service rate at a time ¢ > 0is pop5 (@) = 1[Qy > 0]p(Q:).

8. Reflection problems. In this section, we introduce two reflection
problems that provide the mathematical framework for our main theorems.

3.1. A differential equation with reflection. Consider the follow-
ing problem: given gp—a nonnegative number, and #—a locally Lipschitz
function on [0, oc), find a pair (g, ¥) of absolutely continuous functions such
that

¢
g = QD"*’fO 0gs}ds+y: =0, £20,

{3.1) y nondecreasing, o = 0,
/ I[qt>01 dy‘t =4,
o

Remark 3.1. Analogously to Remark 2.2, (3.1) can be rewritten as
7= %(z), y=¥(z),

where

Ty = ga-{»-f B(q,) ds,
0

and &, ¥ are the reflection operators from Appendix A. i

Existence, uniqueness and some properties of the solution to (3.1) aze
given by

ProrositioN 3.1. If @ is locally Lipschitz then there exists a unique
solution (q,y) to (3.1). For this solution, ¢ is a monotone function and it
is non—explosive if and only If at least one of the following two conditions
Is satisfied:

6(&:) <0, for somefy > go,

or
>
1
e (18 T OQ,
fqo 8(s)

Remark 3.2. If 8(£) > 0 for all £ > g0, then a linear growth of 8 over
[go, 00) (as in (2.5)) suffices for the second {integral) condition. O
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Outline of the Proof. Uniqueness follows from the Lipschitz proper-
ties of 8, %, and ¥. To prove existence, associate with (3.1} the following
ordinary differential equation:

(3.2) 2 =0{z), z0=¢a.

When 6 is locally Lipschitz, such an equation has a unique solution up
to (a possible} ezplosion time [16]. This solution must be either strictly
monotone or a constant function [16, page 40]. It gives rise to the unique
solution of (3.1) in the following manner: g coincides with z up to the
time t > 0 when z intersects zero, past which g vanishes. (If z is non-
negative on (0, co) then g = z.) The first (non-positivity) condition of the
theorem ensures that ¢ remains bounded, and the second (integral}—that
g approaches infinity only at infinite time. G

To support later analysis, we now elaborate on the explicit forms that
solutions to (3.1} can take. They are described in the following four Cases:

1. Strictly positive

1.1 Sirictly increasing.
If 8(€) > 0 for all £ > go, then

g =0(qt), >0, ¢ TToo; y=0.

1.2 Strictly increasing with horizontal asympiote.
If there exists £; > go such that

9(61) = 0 and 6(¢) > 0, £ € [g0,&1),
then
ge=0{g), t>0; q11&; y=0

1.3 Strietly decreasing with horizontal asympiote.
If go > 0, and there exists &; € [0, o), such that

B(€,) =0 and 8(§) <0, £ € (£1,40)
then
Ge=8(q:), 1>0; g llé; y=0.

1.4 Non-zero constant.
If go > 0 and 6{(go) = 0 then

g=q vy

2. Vanishing, without reflection
H go = 0 and 6{0) = 0 then

g=0, y=0.
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3. Vanishing, with reflection
If go = 0 and #{0} < 0 then

g=0, y=—8(0), t>0.

4. Strictly decreasing and absorbing at zero
I go > 0 and 6{£) < 0 for all £ & [0,¢q) then

‘it = B(Qt)a te [O,tg],
gt =0, t >

{ w=0, t € [0,%g],
w=—000)(t —t), t>t,

where tg =inf{t > 0 : g = 0}, 0 <ty < co.

Remark, Explosion can occur only in Case 1.1, otherwise g is bounded.
Furthermore, ¢ does not leave zero after reaching it. g

3.2. Derivatives of reflection operators. For a background and
references on Mi-convergence see Appendix B, Notations are summarized
in Appendix C. All functions below are defined on [0, c0). The following
lemma plays a key role in our later formulation and proof of FCLT.

LeMMA 3.2. Let b and = be continuous functions. Assume that zo > 0
and that = is either strictly monotone or constant. Suppose further that
by > 0 if p = 0. Then, the sequence of continuous functians, given by

U{nz + b} — ¥{nz) = (no + b))~ —nz=, n=1,2,...,

decreases monotonically, as n T co, to an upper semi-continuous function
b. This convergence holds in the M,-topology.

The proof is omitted as it resembles that of Lemma 4.2 in {37].
For each z satisfying the conditions of Lemma 3.2, denote by C”[0, o)
the set of continnous functions

(3.3) Co[0, 0) 2 { 35?502) zgzg’

Introduce the operators ¥® and &%, with domain C”[0, oo}, by
(3.4) B 25, &7(6) 2 b+ ¥ (h).

The notation $%(b) is justified in view of the M;-convergence
(3.5) @(nz +b) — B(nz) = b+ U(nz + b) — U(nz) — b+ T7(b),

which prevails by the continuity of b and the continuity of addition in the
M -topology {See Appendix B}.
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To justify the title of the current subsection, note that Lemma 3.2 can
be stated as follows:

Hm 1 [¥(z + eb) — ¥(z)] = ¥=(b),

)0 &
in the M;-topology. Thus, ¥*(b) can be interpreted as some form of a
directional derivative of the operator z — ¥(z), at the point z in the
direction b. Analogously, ®7(b) is a directional derivative of the operator
o - B(z).

The transformation ®% is central for our results. We now elaborate

on its explicit forms, recalling that its domain is C*[0, c0) for those « that
satisfy the conditions of Lemma 3.2. The following four Cases arise:

1. Identity operator
If = is strictly positive over (0, oo}, then

3°(b) = b.

2. Ordinary reflection operator
If = is identically zero, then

3°(b) = B(b).

3. Delayed zero operator
H « is strictly decreasing with =g = 0, then

x b1 t=10,
'I’*(b):{ o(,) t>0.

4. Restricted identity operator
If = is strictly decreasing with z¢ > 0, and if ={ty) = 0 for some
ta € (0, 00), then

bta | t<t0,
@f(b): 0, t>1ig,
OVth, tﬂt[}.

Remark 3.3. I ¥%(b) is a continuous function at some point b, then
the Mj-convergence in Lemma 3.2 reduces to U-convergence. A similar
assertion holds with respect to ®* and the convergence in (3.5). Conse-
quently, in Cases 1 and 2 the convergence in (3.5) is uniform on compact
subsets of [0, o0} In Case 3, the convergence is uniform on compact subsets
of (0,00) if by # 0, and of [0, co) otherwise. In Case 4, the convergence is in
(13[0, 00), M1), and the values of " are upper semi-continuous functions.
Furthermore, in Case 4 when by, < 0 (respectively by, > 0), the convergence
is uniform on compact subsets of [0, 1) and [t , 0o) (respectively [0,to} and
(to,00)). I by, = 0, the convergence is uniform on compact subsets of
[0, o0). a
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The following explicit expression applies to #* (by analogy to {4.5),(4.6)
in [37]):

&%(b) = sup (—E:;), t>0,
Eeﬁg

where

Em{OSssﬂw:: sup w‘}

O<ugt
- bg s Ty < 0,
bt = bt A D, Ty = 0,
0, zy > 0.

Such a representation is expected to be useful for the analysis of queues
that are both time and state dependent.

4. Main theorems. FSLLN and FCLT are presented in Subsection
4.1 and 4.2 respectively. A refinement of FCLT, useful in applications, is
formulated in Subsection 4.3. In Subsection 4.4 we analyze the rescaling
procedure that lead to our limit theorems. The subject of Section 4.5 is an
interpretation of discontinuous diffusion limits. We conclude the section
with alternative types of rescaling. This motivates a later discussion, in
Subsection 4.6, of models that are not covered in the current paper.

4.1. Fluid approximations (FSLLN)}. Consider a sequence
Mg /M1, n=1,2,..., of queueing systems, each as in (2.6)~(2.8). The
n-th system is described in terms of the following primitives: a random vari-
able Q7 representing the initial queue, and non-negative locally Lipschitz
functions A" and p™ defining, respectively, the dependence of the arrival
and service rates on the queue length Q™. The queueing process Q" can
be realized as the unigue solution to the following reflection problem (see
Remark 2.2):

Q" = ®(X™),
6} e gpams ([ @) - ( [/ @),

Introduce the rescaled processes ¢" = {g¥,1 > 0} given by

1
4.2 P = —Qr.
(4.2) q: th
Then, due to the homogeneity of & and ¥ (Appendix A),

" = &(«™),

(4.3) o = g% + %N+ (fo. A" (nQ?)ds) - %N' (j: " (an)ds) :
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The asymptotic behavior of {g"} emerges from the following theorem, the
proof of which is postponed to Section 6.

THEOREM 4.1 (FSLLN). Suppose that

1 1
(48) I —AE) and ut(nd) — u(e), woc,
asn T oo, where A and y are given locally Lipschitz functions, as well as

1 , . "

o =\ (nf) < K(1+¢&), £ >0, where K is a given positive constant;
n

. liTm gy = go a.5., where g is a given non-negative scalar, and the
nioo
sequence {Eqgl} of expectations is uniformly bounded.

Then, as n | oo, the sequence {g™} of solutions to (4.3) converges w.o.c.
over [0, 00), a.s., to a deterministic function ¢, given by

q = @(3)1
2y = g0+ [0 (Mge) — (g.)) ds.

That is, q Is the unique solution to the differential equation with reflec-
tion (3.1), with

{4.6) () = M¢&) — pulg), £€>0.

In what follows, ¢ will be referred to as the fluid limit associated with
the gqueneing sequence under consideration. An analogous result holds for
the sequence {y"}, that is associated with losses of potential departures
due to idleness. Specifically, for

(4.5)

o 1 £13

vy ;,:‘P(X )s
with X™ as in (4.1), we have " — y = ¥(z), a.s., n.o.c., where z is as
in (4.5).

Remark 4.1. The growth condition imposed on A" ensures non—explo-
sion of 4™ and g. We believe, however, that FSLLN can be generalized to
cover cases when ¢ and/or ¢ are explosive (see Remarks 2.1, 3.2). The
theorem ought then to remain valid over the domain of existence of ¢. In
particular, Theorem 4.1 ought to hold over [0, co) when the linear growth
constraint on A™ is replaced by any condition that ensures non-explosion of
g. Necessary and sufficient conditions for g to be non-explosive are given by
Proposition 3.1. An example of a imit theorem that gives rise to explosive
processes is Barbour [3]. ]

The forms of the solutions to (3.1), listed at the end of Subsection 3.1,
characterize possible fluid lmits which, in turn, identify four modes of
operation for the M;/M,/1 quene. They are depicted in Figure 4.1 and
described by the following four Cases {based on (4.6}):
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1. Permanent large queues

1.1 Overloaded: A(£) > p(€) forall € > gq.
1.2 Overloaded, with asympiotic transition fo critically loaded: there
exists &1 > go such that

Mér) = uléa); X&) > ull), € €90, 81)

1.3 Underloaded, with large initicl quene and asymplotic transition
to critically loaded: gy > B, and there exists &5 € [0, go), such
that

M) = pl6a)i MO < lé), €€yl

1.4 Critically loaded with large initial queue: qo > 0, A{go) = (g0}
2. Critically loaded: gq = 0 and A(0} = p(0}.
3. Underloaded: go = 0 and A{8) < p(0).

4. Underloaded with large initial queue: g > 0 and A(§) < p(é),
€ € [0, gq]-

4.2, Diffusion approximations (FCLT). Introduce the sequences
of stochastic processes V* = {V* ,t >0}, n=1,2,..., given by

(4.7) Vit =nlgd — ), t20.

This sequence amplifies deviations of the rescaled queueing processes ¢"
from their fluid limit g. The asymptotic behavior of {V"} is the subject of
the next theorem, the proof of which is presented in Section 7.

THEOREM 4.2 (FCLT). Let the conditions of Theorem 4.1 (FSLLN) be
satisfied. Assume further that A, u in (4.4) are continuously differentiable
with locally Lipschitz derivatives,

{ VA [0 - X&) — () vo,
(4.8) .
i [ ()] — £ul8), noc,

where fy , f, are locally Lipschitz funciions, and that V3 4, Vo, asn T oo,
where ¥, is a given random variable. _

Then the sequence {V"} converges weakly in (D{0, 00}, M;) to a Markov
process V with upper semi-continuous sample-paths. The process V is the
unigue (strong) solution to the following stochastic differential equation
with reflection:

V = &*(X),
(e | X =V [ (@)= fulade+ [ (Vi) - (@)Y ds
+ [ VA Fua) .
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Here z and g are given by (4.5), % is the operator defined by (3.4), and
W is a standard Brownian motion.

In what follows, V will be referred to as the diffusion limit assoclated
with the queueing sequence under consideration.

The possible forms of z in (4.5) (Cases 14 at the end of Subsection 4.1)
reveal that  adheres to the conditions imposed in Lemma 3.2, and thus $°
is well-defined. In correspondence with the specific forms of $* {Cases 1-4
at the end of Subsection 3.2), the relations (4.9) reduce to the following
four Cases {see Figure 4.1 for suggestive sample paths of V):

1. Permanent large guenes

(4.9) is the linear stochastic differential equation:

dVe = [falee) = fulge) + (N(a:) — #'(q:)) Vil dt

+ v/ Mas) + pl{g) dWy

In particular, if V; is a Gaussian variable then V is a Gaussian
process. With the notation

my 2 BV, by 2 B[V, — m]?,
we have [22]

e = fa(e) = fulge) + (X)) — W' @e)yme s
he = 2(N (ge) — ' (o)) e + Age) + plas)
Ty = E%:

hg = Va.I‘VQ.

2. Critically loaded

(4.9) is a stochastic differential equation with reflection (see Re-
mark 2.2 and Subsection 3.1):

V = &(X),
where
X, = Vo + (M(0) — &'(0)) /0 Vi ds + /2A(0) W, .
Eguivalently,
dV; = (M(0) — 1/ (0)}Vs dt + /2M0)dW; +dY;, Y = ¥(X).

3. Underloaded
{4.9) degenerates to

Vi=0, t>0.



4. Underloaded with large initial queue

For t < 15, {4.9) coincides with the linear stochastic differential
equation of Case 1, and for £ > 1, it reduces to

‘ft,: UVViD—, t*_“'“tOs
0, i>1q.

Further applications of (4.9) to specific A, y, go and V5, are the subject of
Section 5.

4.3. Generalizations. We now present an extension of FCLT, cov-
ering A and g with piecewise continnous derivatives. This version will be
used in Subsection 5.6, in the analysis of finite server queues.

THEOREM 4.3. Assume that all the conditions of Theorem 4.2 are
satisfied, but allow the derivatives X and u' to be piecewise continuous
functions with a finite number of discontinuities in each compact subinter-
val of (0, 0c).

If, in addition,

gt =¢a > 0,
{4.10) { X{go—) # X(go+) or p'{ao+) # #'(gq0+),

then the sequence {V™} converges weakly in {D[0, o0}, J1} to the unique
(strong) solution of the following stochastic differential equation (without
reflection):

dV; = {fa(go) — fulgo) + f(Ve)l dt + / Aao) + p(go) dWe,

where

o Nlgo+) — p'lgo+))e, v >0,
1) = { (A’(qg—) — p'(go—))v, v <0,

If (4.10) does not prevail, then Theorem 4.2 applies without any changes.

Comments on the proof of the theorem will be given in Subsection 7.7.
Note that under (4.10), the diffusion limit has continuous sample-paths.
Furthermore, {4.10) describes the only case that renders in doubt the exis-
tence of the second integral on the right-hand side of (4.9).

4.4. Time acceleration. The FSLLN rescaling (4.2) and (4.4) is
equivalent to a procedure of accelerating time and aggregating space units,
both by a factor of n. Indeed, consider the simplest, yet illuminating,
example of {\"} and {u"} that satisfy (4.4):

(4.11) w@=m(8), re=m(t),
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for some given X and pu. Equations (4.11) arise naturally for systems with
linear, or piecewise-linear, dependence of arrival and service rates on the
queue length. (See Subsections 5.4-5.8.) Alternatively to (4.11), consider
a sequence Mg‘/ﬂ?/l, n=1,2,..., of queneing systems, with rates

(4.12) we=2(2) mo=a(f),

and queueing processes Q™. Introduce the processes §° = {g}",t > 0}, given
by

=T L
(4.13) @ =0,

Then, rewriting equations (4.1) in terms of 2", ™, and changing variables
yields:

{4.14) =4 n=12,....

4.5. An interpretation of discontinuous diffusion limits. In this
subsection we attempt a qualitative explanation of some phenomena that
are amplified by our analysis.

As apparent from Subsection 4.2 and Subsection 4.1 {see Case 4), the
diffusion limit has a discontinuity in light traffic (underloaded) with large
initial queues: A€} < u(€), for all £ € [0, g0}, and

1
;Qg — gy >0, as., ntoo.

Discontinuity arises at time #g > 0, given by to =inf {t > 0 : ¢; = 0}.

For simplicity of presentation, let us assume that Q% = ngo, for some
ge € Z1, and the rates in the n-th system are given by (4.11}. We suppose
also that the V™ converges a.s. to a process V' with upper semi-continuouns
sample paths.

Consider first the case V;,_ > 0 and thus @} /v/n — V;,. To expose
the causes of discontinuity, consider @™, which is a birth and death process
on the integers with the following transitions rates:

92,k+1 =ni(k/n), k=0,1,...,

{4.15) Tt = np(k/n), k=1,2,...,
451 =05

One distingnishes three phases in the evolution of @™:

1. First relaxation phase of duration #p: at the beginning of this
phase, the queune length is ngg, reducing to ~ 4/nV;, at the end.
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2. Second relaxation phase of duration ~ 1/4/n, starting at ¢;. This
phase arises from the fact that the gqueue length at the outset is
~ +/nV;,, while the rates in (4.15) are ~ nA(0) and ~ nu(0) over
this phase (A{0) < p(0)). This phase shrinks, as n T co ultimately
resulting in a discontinuity of V at tg5. At the end of the phase,
the queue is o(+/n).

3. Light traffic phase. Fluid and diffusion limits vanish, as for the
underloaded state-independent queunes with constant rates A(0) <
u#(0) and with small, o(4/n), initial queues. (See Subsection 5.1
for the explicit expressions of fluid and diffusion limits in state-
independent systems.)

When Vz, < 0, similar conclusions apply. The cunly difference is that the
first phase ends ~ 1/4/n prior to 4g, the second phase terminates and the
third phase starts at time #;.

When V has a discontinuity at time zero (Case 3, Subsection 4.2 and
Subsection 4.1}, the first phase is skipped in the evelution of Q.

Note that the fluid and diffusion limits both vanish beyond tg. These
are simple examples of state-space collapse, when the limiting process is of a
lower dimension than the process it approximates {see Reiman [42], Man-
delbaum and Chen [8]). State-space collapse occurs here, when systems
operate under light-traffic conditions. To obtain nonzero, more informa-
tive limits, one must formulate other limit theorems. Light traffic limit
theorems usually involve various cumulative processes such as sums and
integrals of the original process (see the survey by Glynn [15]). An alterna-
tive limit theorem for the distribution of Q™ in light traffic (in a particular
closed network) is presented by Kogan and Liptser {27]. It is possible to
obtain a non-degenerate diffusion limit for the second phase via a slower
rescaling, namely, considering locally a process Q" (¢o £ 7/+/n), for some
7> 0.

Remark. An explanation for a discontinuity of V' can be given also in
terms of the transient hehavior of Q7, introduced in the preceding subsec-
tion. Again, three successive phases arise in the evolution of Q™: relaxation
of duration ~ nty, relaxation of duration ~ /n and, finally, light traffic
phase. The rescaling used (acceleration of time by a factor n} shrinks the
duration of the second phase, resulting in a discontinuity of V. 0

4.6. Alternative rescaling. We now describe rescaling procedures
other than (4.4),(4.8), which lead to different approximations of state-
dependent queues. Specifically, assume that

(416) Ix(%) — X, VA min(%aél_,\(g)“ N
and

@1n) S —u@, VA LT ug] — ), voe,
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as n | oo, for some specific o > 0. Evidently, our limits correspond to the
case o = 1 (see (4.4) and (4.8)). Alternative rescaling procedures were
considered by Yamada in [49] and [50]: the case a = 0 is treated in [49},
where the diffusion limit is of a Bessel type with a negative drift; the case
a = 1/2 is considered in [50}, where the diffusion limit is a solution to a
stochastic differential equations with stete-dependent coefficients (while in
our case the coefficients are time-dependent). The fluid limits vanish in
both [49] and [50].

A comparison of the different approaches is summarized in Table 4.1
(with preference to clarity of presentation over precision). The expressions
for the rates on the first upper part of Table 4.1 are based on (4.16).
Combining these expressions with the fluid and diffusions limits from the
third and forth parts of the table yields the last part.

Remark. The reflection Y in the expression for V, when « = 0, is
characterized by the condition:

£
/Ifsd}};:'T't: 20,
0

for some v > 0. Such reflection gives rise to a Bessel-type distribution
for V. 0

To recapitulate, our approach leads to a second order approximations
for queueing processes: fluid limits provide approximations for actual val-
ues of queues, while diffusions limits—for their fluctuations. When fluid
limits vanish, the three approaches provide approximations for systems in
which arrival and service rates are sensitive to small {& = 1, O {n~1/2V)),
medium (@ = 1/2, O (V)) and lazge (o = 0, O (/nV)) fluctuations of que-
ues.

Tn Subsection 5.9, we compare the three types of rescaling, o = 0,1/2,1,
by applying them to a single queneing system.

5. Examples and applications. This section is devoted to some ap-
plications of the limit theorems presented in Section 4. In Subsections 5.1
and 5.3 we characterize the conditions under which diffusion Hmits are
Brownian or Ornstein-Uhlenbeck processes. In Subsection 5.2 we consider
asymptotically small initial queues.

A unified approach is offered to obtain fluid and diffusion limits for
state dependent gueuneing systems. We demonstrate this through applica-
tion and simplification of some completely or partially known results {see
Subsections 5.4-5.8). Different types of rescaling are applied in Subsec-
tion 5.9 to a single model, thus highlighting their differences. In Subsec-
tion 5.10 we outline gumidelines for implementing some of our approxima-
tions.
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5.1. State-independent models: linear fluid and Brownian
diffusion limits. Consider a sequence of state-independent gueunes
M™/M™/1 with constant rates \* = nX and " = nu (fa = fu =0
has been chosen in (4.8) for simplicity).

Theorems 4.1 and 4.2 yield the following expressions for the fluid and
diffusion limits:

ze=g+(A—pl, g=z+y V:@’(Vo+ A+#W.).

Three modes of evolution arise

1. Owverloaded: X > p. Here g4 = go + (A — p)t and
Vi = Vo + W((A 4 p)e) & BMy, (0, )+ p).

2. Critically loaded: A = pi. Here g = gg;
If go > 0, then Vi = Vo W((A+ p)e) < BMy, (0, )+ u);
If go = 0, then V = & [Vo + W((A+ p)e)] & RBMy, (0, A + p).

3. Underloaded: X < p.
If go > 0 (large initial queues):

0
A—p)t, t<tp= ,
g = {QG+( #)t, St PRy
0, t >
Vo + W{(X + u)t), t <tg,
Vi = 0, t >,
max [Vo + W((A + p)t),0], t=to.

If g = 0, Vo # 0 {moderate initial queues): ¢ = 0and ¥, =0, ¢t > 0.
If gy = ¥y = 0 (small initial queues): ¢ = U and V =06.

5.2. Small Initial Queunes. In this subsection, our hmit theorems
are applied with asymptotically small initial queues, that is go = Vo = 0.
This case is highlighted for its siruplicity: diffusion limits are continuous
ot [0, o0) and the behavior of the fluid {positive, vanishing) and diffusion
limits {with/without reflection, vanishing) depends solely on A{0}, u(0).
Specifically:

1. Overloaded: A(0) > p{0). Here ¢ is strictly positive over (0, co)
(Cases 1.1 or 1.2 of Subsection 4.1) and V is a diffusion as in
Case 1 at the end of Subsection 4.2.

2. Critically loaded: A(0) = u{0). Here ¢ = 0, and V is a reflected
diffusion (Cases 2 in Subsections 4.1 and 4.2).

3. Underloaded: A{0)} < p{0). Here g = 0 and V = 0 (Cases 3 in
Subsections 4.1 and 4.2},
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5.8. Constant fluid and Ornstein-Uhlenbeck diffusion limits.
‘We continue with gqueunes whose diffusion limits are Ornstein-Uhlenbeck or
reflected Oxnstein-Uhlenbeck processes. As previously, fi = f, = 0in (4.8)
is chesen for simplicity.

Let X, 1 and &; > 0 satisfy:

(5.1) M) = wlés) and V(&) < W(E)-

Ornstein- Uhlenbeck diffusion limit. Add to (5.1) the assumption £; > 0.
Two cases arise:

L go=%&
Theorems 4.1 and 4.2 yield ¢ = £; and
4Vs = (V{€1) — 1 (E0)Vi dt + /IN(ER) VP
Thus V is an Ornstein-Uhlenbeck process with
2at

A -
my = BV, = mpe .

2 2
ht é Va.]:Ifa = E-... + (hf) _ U_) e—Zr:d |
2ex

& o 2o(tAs) —a(t+s)
ha & Cov(Ve Vi) = |ha+ 2=(e*¢") —1)e ,

where o = 4/2A(£1), and @ = g/ (£;)—A(£1). Taking V; LN ( . -g-a—),
V is the stationary Ornstein-Uhlenbeck process with

0,2
hs,t = €
2o

wex|t—s|

2. go# &

Assume, in addition, that

A(‘S) > ”(6)1 5 < 51;
ME) < ule)y €> &

Then, it follows from Subsection 4.1 (see Cases 1.2, 1.3) that,
g}l €10t g TT & as £ 1 oo, For V we have

dVi = ()"(qt) - ﬂ’(gt))vi dt 4+ +/ A(Q.‘.) + H(Qt) dWs.

The random variable V; converges weakly, as t T oo, to

V{oc) LY (0, %), where ¢ and « are as defined above.

Reflected Ornstein-Uhlenbeck diffusion limil. Assume £ = 0in (5.1).
The diffusion limit V is then
dV; = (N(0) — g/ {O)) Ve dt + /20(0) dW, + dY3
which is a reflected Ornstein-Uhlenbeck process. This example was de-
scribed by Liptser and Shiryayev [36, pages 753,754].
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5.4. Finite population and general service (Liptser, Shiryayev
[36]). Consider a sequence of M /M /1/oc/n systems, as in [36, pages 638
636]. The parameters of the n-th system are given by

QTL
@)= -, @) =m (L),
for some A > 0 and a function . Weidentify the parameters of the fluid and
diffusion limits via (4.4),(4.8): Mé) =X -(1-§), u(é), and fu = fu. = 0.

Let Q7 and u satisfy the conditions of the FSLLN and FCLT (Theorems 4.1
and 4.2). Then the fluid limit is given by

gr = M1 — qe) — pslge),

and if, for example, g; > 0 for all ¢ > 0, the diffusion is

Vi = Vo—fo. (A—i-u'(qs))Vsds+f0. VAL — g.) + plgs) AW, -

Assume, in addition, that A {1 — £1) = u(£1) and p'{£1) > —A, for some
&1 € (0,1], and consider separately two cases:

1. gop = &1 . The expressions above for ¢ and V yield g; = &1, and

dVy = —(A + g/ (E)Va dt + V/2X(1 — &1) AW

With Vo & A (0,0%), @ = [A(1 — &2)}/[A + p'(€1)], V becomes a
stationary Ornstein-Uhlenbeck process.
2. go # £;. Stipulating,

MEY > u(é), E<&; AE) < pull), &>,

we obtain that V; —1 V(oo), where V{oo) b N (0,0%), with o2
as in case 1. The random variable V{co) can be used to approxi-
mate the long-run behavior of Q%, for sufficiently large n (see [36,
pages 653—-656] and Remark 5.1).

5.5. Infinite number of servers (Whitt [48]). Consider a sequence
of M™/M /oo systems, namely

AHQM) = nA, p (@) = pQT,

for some A, p > 0. This corresponds o an infinite—server queue under
heavy traffic. By (4.4), M&) = A, u(f) = pé.

Assume that g4 = p 2 Afp. Since p(go) = A, we have g; = p, and

dVi = — Vi dt + V2X dW;
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(see Case 1.4 in Subsection 4.1 and Case 1 in Subsection 4.2). That is, if

Vo LN (0, p), then V is a stationary Ornstein-Uhlenbeck process.
For the general case qg # p, we obtain

(5.2) g =p+ (g0 —p)e ™,
and
(5.3) dV; = —uVi dt + +/2X + (ugo — A) e~#t dW,

{Cases 1.2,1.3 in Subsection 4.1 and Case 1 in Subsection 4.2). The process
V has a steady-state distribution N (0, p), which can be used to approxi-
mate the distribution of Q(co0). (See [15], [23] and [36, pages 653-656].)

5.6. Finite number of servers (Iglehart [18], Halfin and Whitt
[17]).
The limit procedure of Borovkov [6] and Iglehart [18]. Consider a se-
quence of M™ /M /n systems such that
QM) = nd, p(Q7) = 4 (QF An),

for some X, g > 0. By (4.4), M&)= A, p(é) =p-((A1). The traffic
intensity for the n-th system is given by

ni

Aa
pn I — = e = p
np H
Three cases arise: p<1,p>1,p=1.

1. p<1
Assume first that gg € [0, 1]. Then ¢ and V are the same as in the
case of an infinite number of servers (see (5.2} and (5.3)). In this
sense, the sequence of M™ /M /n systems with p < 1 is asymptoti-
cally {n 1 oo) indistinguishable from the sequence
M"/M/oo,n=1,2,.... In other words, due to (5.2),

1
—@" —s ¢, w.o.c, a8, and g <1, forallf > 0,
n

and thus the probability P [@} > n}, that all servers are busy, con-
verges to zero, as n T co.

If go € (1,00), then for ¢t < (go—1)/(p — A} 2 t; the limits co-
incide with those of the state-independent system (Subsection 5.1,
underloaded regime with Iarge initial queues). For ¢ > ¢; the lim-
its are the same as for an infinite number of servers, given go = 1
(see (5.2) and (5.3)).
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2. p>1
For the fluid Emit,

_ [ ptlgo—ple™, t<ty,
= (A=, t2ty; ta=inf{t: g > 1}

If go > 1, then t» = 0 and only the second equation in the above
expression is relevant. Therefore ¢ is a combination of two limits:
a model with an infinite number of servers, ¢ < {3 {Subsection 5.5)
and a state-independent system, ¢ > 3 {Subsection 5.1, overloaded
regime). The diffusion limit enjoys a similar structure.

J.p=1 .
For g¢ € {0, 1), the limits are analogous to those of case p < 1. For
go € (1,00), the limits are the same as for the state-independent
critically loaded case (Subsection 5.1).
For gp = 1, the fluid limit is trivial: g; = go. While u is non-
differentiable at gy = 1, the generalized FCLT (Theorem 4.3) is
applicable:

dVi = fF{(Va)dt + 4/ 20.dW,
where

] 0 v >0,
(o) _{ —py, v <0.
Thus, V is a combination of a Brownian motion and an Ornstein-
Uhlenbeck process. Such limits were proposed by Halfin and Whitt
[17] and are described in what now follows.

The limit procedure of Halfin and Whilt [17]. Reconsider the limit
procedure of Borovkov and Iglehart described above. For that case, if
p < 1, the probability that all servers are busy converges to zero, as n T oc.
Halfin and Whitt [17] proposed another limit procedure for a sequence
M™/M/oo (with traffic intensity in the n-th system p" < 1), such that
the probability of delay converges to a non-degenerate limit. Tt was shown
in [17] that

liTm P{Q" ) > n}=a, D<a<l,

if and only i

lim (1-6")vn =8, 0<B < o0,

nloo

in which case o = [1+ /27 3&(0) exp(ﬁz/z)]d. Here & is the standard
normal distribution function. Note that @™{oc) exists since g™ < 1.
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The limits described in [17] can also be deduced from our theorems.
Indeed, let

RN = p - (n—Bvn), pMQ")=p-(Q"An), 4> 0.

The parameters of the fluid and diffusion limits are identified via (4.4) and
(4.8): M&) = py u(&) = - (E A1), and fr =0, fu = —Bp. Moreover,

peln=pya) _ B
pim ]
that is p® 111, and (1 - p")/n — 3, as n 1 oo.

Assuming go = 1 and noting that p is non-differentiable at this point,
we obtain that ¢ = 1, and by the generalized FCLT (Theorem 4.3},

(5.4) pr =

AV, = F(V;) dt + /2u dW;,

where

_ —Bu, v 20,
o) = { —pB+v), v<O0

Here the diffusion limit is a combination of an Ornstein-Uhlenbeck process
and a Brownian Motion, both with negative drifts.

Note that the drift (—Zu} appears in V' due to the specific rates of
convergence in {5.4), while the special choice of go = 1 (at this point u
is non-differentiable) gives rise to the compound structure of the diffusion
Hmit. The stationary distribution of V can be used in approximating the
distribution of Q"(cc), as shown in [17] (see also Remark 5.1).

5.7. The repairman problems (Iglehart and Lemoine [19}], Igle-
hart [18]). Consider a sequence of M/M/k™/oc/n systems. The n-th sys-
tem is interpreted as follows [19]. There ate n operating units subject to
breakdowns and k™ repair facilities. The rates of breakdown and repair are
X and p respectively. Thus Q7 here is the number of operating units which
are being repaired or are awaiting repair at time f. Introduce a process
Y™ = n — @™, which describes the number of units operating at time {.
The fluid and diffuston limits for {¥™} can be obtained immediately from
those for {Q"}, therefore we focus on the latter only.

The arrival and service rates in the n-th system are given by

(@M =X (n—Q"), p(Q")=p (@ AEM).

Assume that



as n 1 co. Then, by (4.4) and (4.8), A(€) =X (1 —£€), p(€) = u-(EAE),
and f = fu = 0. There are three combinations of the parameters A, 1 and
%, each corresponding to an essentially different fluid and diffusion limits.
For simplicity, we pursue the cases where the fluid lmit ¢ = g, which are
sufficient to demonstrate the main modes of behavior.

A
1. ~A—<k, qozT Here dV; = —(A+p)Vidt + 22 AW, .

A p A #‘ Atp
A

2. —— >k, gg=1- ,u_k“ Here dV; = <AV df + /2puk dW;.
At p A

3 =k -

BT YT
Note that p is not differentiable at go. Hence we have (by Theo-
rem 4.3)
dv, = £ (V) dt+ 4| 2—F— aw,
t — t A + o £

where

— Ay, v >0,
) = { —(p+ Ay, v<O.

Remark. The FSLLN reveals that, for all £, the probability P [QT > k"]
of all repair facilities being busy, converges to zero in Case 1 and to unity in
Case 2. Case 1 is therefore preferable over Case 2 for real repair systems. O

Another repairman model is proposed in [18], which generalizes the
one described above (see, also, Kurtz {33]). In this model, the n-th system
has m™ spares, in addition to the elements described previously. These
spares can immediately replace those operating units that have failed. In
our terms, one can write

A" (Q“):)\n—A-(Q"mm“)+, “n (Qn) ﬂ,u.-(Qn/\kn).
Following [18], assume that m™ = nm and k™ = nk. In this case,
MO =2-(1-(6—m)*), wl&)=n-(ENEK)
and fy = f, = 0. If, for example,

pk <A, k<m, and qoml—l-m-g;\ﬁ,

then ¢ = gp, and dV; = — AV di + 2ukdW; .
Note that our theorems apply to the more general case
kﬂ.’ ™

\/E(——k)—ﬁ‘;, \/ﬁ(m——m)wwr'ﬁ, asnloo; go>0.
n n

in which fi and f, need not vanish.
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5.8. Queues with reneging (Coffman et ol. [11]). Following {11},
consider a sequence of quenes with processor-shared service and reneging.
Reneging means that a customer is lost when its sojourn time reaches an
individual random deadline. Namely, we assume that, in the n-th system,
the arrival and service rates are given by:

(55) X (QY)=n) & (Q") = 51; (mX+ aVAd) - Q" + v Q"

for arbitrary positive A, « and ». The quantity nA -+ av/An is the service
rate, shared among all customers in the system. The parameter v is in-
terpreted as the reneging rate. Assume that go = 0. Then the fluid limit
vanishes and the diffusion Hmit is the reflected Ornstein-Uhlenbeck process

dV; = —av/Adt — vVidt + /20 dW, + dYs,

which are limits for the critically loaded mode {Cases 2 in Subsections 4.1
and 4.2). With appropriate parameters in (5.5}, one obtains limit theorems
for other regimes, beyond [11].

5.9. A comparison of different rescaling procedures.The
three types of rescaling, described in Section 4.6, are now applied to a
single queneing system, operating in different modes.

Consider a sequence Mg‘ /Mg"/l, n=12,..., with arrival and service
rates given by

(56) Xn(Qn) =b" 4 ot (Qn A 5"’), FLR(Q‘JD) — ﬁn 'E"Yn . (Qn /\5“),

where b*, c™, 6™, 8", 4™ are positive constants, ¢® < 4™. Reviewing the ex-
amples from the previous subsections, one can offer various interpretations
for the n-th system:

1. Service is provided simultaneously by 6" servers {each at a rate y")
and by a processor-shared server {at a rate §°). The arrival pro-
cess consists of exogenous arrivals {rate b™) and served customers
that leave for a while, then return for rework with probability
¢™ /4™ < 1. {The time till their return is assurmed short enough
that the queue does not change much, and long enough that they
are independent of exogenous arrivals.) This is a possible model
to some human-service systems.

2. Service is provided by a single server, at a rate that increases with
queue length, but only up tc an exhaustion level §* 4+ 4™ . &™.
Arrival rates, which increase with queune length, describe a possible
scenario where a long queue attracts customers being a source of
information on service value.

Assume that Q% = 0. The three examples, presented below, exhibit
different diffusion limits V', according the choice of parameters in (5.6).
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These diffusion limits aze obtained through the three types of rescaling
discussed in Section 4.6.

1. a = 1. Let b* = ™ = nb, ¢™ = 4™ = ¢ and §" = né; then
V = V2bW + ¥;

2. a = 1/2. Let " = nb, B* =nb+./n, ™ = y/ne, ¥" = y/nec+1
and 6" = /nd; then

dVy = —{1+(VA8)] dt+/b+c(Vinbs)dW}
+ /b c(Ve A 8)dW?E +dYy;
3. a = 0. Let 4" = B* = nb, ™ = ne, ¥* = nc+ /n and §" = §; then
V, = —6 -t ++/2¢8 + 2bW, + Y;.

Here b, ¢, >0, W, W' W? are standard Brownian Motions (W' and W?
are independent} and Y is a normal reflection term. For all three examples,

the fluid limit ¢ = 0 and Q"//n 34 V. The examples mainly differ by the
number of servers relative to the queue size, which are n : /n, /1 : v/n,
1:/n in examples 1,2,3 respectively.

5.10. Approximating queueing systems.Our approximations
typically apply when some natural parameters of the systems are taken
to an extreme. For example, large number of servers, population size, ini-
tial queue or traffic intensity. The sequence M /Mg" /1, n=1,2,...is used
to formalize the approximation, which always takes the form

d
(5.7) Q™ ~ ng + /nV,

where g and V are the fluid and diffusion limits respectively.

Remark 5.1. A relation analogous te {5.7) can be written, at least
formally, for the stationary distributions @(oc) and V{o0), when they ex-
ist. Examples of theorems that support such approximations are Halfin
and Whitt [17], Kaspi and Mandelbaum {23], Ethier and Kurtz [14, Chap-
ter 4,§9], Lipiser and Shiryayev [36]. i

6. Proof of FSLLN. This section is devoted to the proof of Theo-
rem 4.1. To simplify the presentation, we consider {4.11) only. The general
case requires minor notational changes.

The linear growth constraint on the function A implies that both
g*,n=1,2,... and g are non-explosive (see Remarks 2.1 and 3.2).

Let T be an arbitrary positive constant. Subtracting the equation for ¢
in (4.5) from the equation for ¢™ in (4.3) and using the Lipschitz property
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of & and ¥ (see Appendix A), we obtain
llg"—qlls £ Clag—4qol

+C EN“* (n/o')\(g':)ds) —[).A(qf)ds
(6.1) +C ’%N., (nfo'u(q:)ds) _fo‘ wlq™) ds
o [[0@) -2 ds

[

t

£

1

+0) [ wlar) - utaas t

for all ¢ < T, where C is the Lipschitz constant for @ and ¥. Note that
the first term on the right-hand side of (6.1) converges to zero, by the
conditions of the theorem.

It will be proved in Lemma 6.1 below that

(6‘2) YT'>04d4r < o0 3 TIT‘[Ian iET$ Ar a.s.

(A7 is a non-random scalar.) Consequently, the second and the third terms
on the right-hand side of (6.1} converge to zero, by the continuity of A and g,
combined with the FSLLN for any Poisson process N:

lim
nfeoo

%N(nt} —t|i =0, VI'> 0, as.

T

From (6.2) and the Lipschitz property of X and p, the last two terms in (6.1)
satisfy a.s. the following inequality:

[ o - + | " (alg) - ulg) ds

for all but finitely many values (in general, random) of n. Here

+
£

'3
<Cn [l -l ds,
f 0

CT:C%+C;1

where C} and C} denote the Lipschitz constants for A and y respectively
in [0, (47 V |igl|p) + 1). Now combining all of the above, we obtain

i
(6.3) Hq"-—qHaSe”'(THB[ g™ ~qll.ds, 0<t<T,
0

where ¢ (1"}, which is the sum of the first three terms on the right-hand

side of (6.1) (with ¢ = T'), converges to zero; and B = C - Cr. Finally,

applying Gronwall’s inequality (e.g. [14, page 428]) to (6.3) completes the

proof of the theorem. 0
It remains to show that

Lemma 6.1. Assertion (6.2) holds under the conditions of Theo-
rem 4.1.
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Proof. We prove the lemma by bounding {¢"} from above, with a se-
quence of processes {g"}, for which the assertion holds. To this end, con-
sider the sequence of processes G™ = {G},t > 0}, n = 1,2,..., which are

solutions to:
% Gn
G;‘:Qg-&-N_t,(nK/ (1—1— ")ds),
0 s

where K is the constant from the linear growth condition of the theorem.
The process G™ is pure birth with parameters

k
ngan Q;:,k+13nK (14‘;:;) s JcEZ"*',

as apparent from the interpretation discussed in Subsection 2.2. A pathwise
analysis can now be used to deduce that

(6.4) Qr<Gr, t>0, n=1,2,..., as.

In order to prove the lemma, it is sufficient to show that (6.2) holds
with ¢ replaced by

no G "—;iN (n[t(:u- v)ds
g = " = g 7 + o g, 4

However, by Theorem 2.2 of Kartz [31}, ¢™ ~- g, n.0.c,, 8.5, as n T 00,
where g is the unique solution to

L
g.mq@+Kf {(1+g,)ds, t>0.
Q

Hence, assertion (6.2) for g™ is established. The proof is now complete. [

Remark. The domination argument was required, since the general the-
orems of [31] do not treat the reflection phenomenon. Note that reflection
does not arise for g™. G

7. Proof of FCLT. This section is devoted to the proof of Theo-
rem 4.2. As previously, we restrict the proof to the case (4.11) only (con-

sequently, fi = f, = 0). Commentary on the general case is provided in
Remark 7.1 at the end of Subsection 7.3.

7.1. Existence and uniqueness. First we confirm that (4.9) is well-
defined and enjoys a unique strong solution.

The right-hand side of {4.9} is well-defined. To see that, accord-
ing to the definition of & in (3.4) we must show, first, that = given
by (4.5) satisfies the conditions of Lemma 3.2 and second, that the ar-
gument of &% in (4.9) is always in C®[0, co) {see (3.3)). Fist, as explained
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in Subsection 3.1, z given by (4.5) is continuous with 2o =gp > 0 and
strictly monotone or constant, which is precisely what was imposed on z
in Lemma 3.2. Second, it follows from (4.5} and (4.7) that if 25 = gp = 0,
then V', n=1,2,..., are non-negative, as well as V5. Observing that the
argument of ®° is a continuous function therefore establishes that (4.9) is
well-defined.

We now appeal to known results that support existence and uniqueness
of the solution to {4.9). Review the four explicit forms of (4.9) listed at
the end of Subsection 4.2. In Cases 1,3 and 4, a strong unique solution
exists by the arguments, given in Section 5.6 of the book by Karatzas and
Shreve [22]. In Case 2, ¢ = 0 and existence and uniqueness of {4.9) follows
from Theorem 4.1 of Tanaka [44].

7.2. The set-up of strong approximations. We prove FCLT
within the framework of stzong approximations. For this, recall the strong
approximation result presented in Ethier and Kurtz [14, Chapter 7, Corol-
lary 5.5]. Adapted to our context, it guarantees the existence of a proba-
bility space on which a Poison process N and a Brownian motion B can
jointly be realized so that

cup LN () —t - B(t) |
Q% 103(2 Vt)

< &0, a.8.

Thus, we may start with two independeni Brownian motions Wi and W.
such that, for all ¢ > 0, the following inequalities hold a.s.:

(7.1) Ny (”[Ot A(Qf)dS) —n/: Mg®) ds ~ W, (nf; A(qg)ds)

K. log (2 vn / M) ds)

(7_2)1N_ (n./ot'u(q?)ds) ””Lt#(QT)dS— w- ( f (g )ds)

K. log (2Vn /\(q )

<

for some random variables K and K. . Assume further that

(7.3) Bm V' =V, as,
nloo

and V; is independent of W, and W.. . (See the assumptions on the prim-
itives in Section 2.)

7.3. The main steps. As explained in Subsection 3.2, the limit pro-
cess V is sometimes continuous over [0,00} or (0,0}, in which case we
have U-convergence. (Note that this depends only on z.) To prove the
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theorem for U-convergence, we construct a sequence {V"} of continuous
path stochastic processes such that, for all 7' > 0,

P — lim “V“ - 17“” =0,
(7.4) { oo T

7riv.
The assertion of the theorem now follows from Theorem 4.1 of Billings-
ley [4], preparing the ground for Mj-convergence. We now outline the
main steps. Technical details are given subsequently.

Start by rewriting the expression for V" {defined by (4.7)) in a form

that is amenable to further calculations. To this end, introduce the se-
quence of processes X™ = {XJ' ¢ > 0}, by

Xy = ng +nf0 (A7) — ulgr)) ds
w0, (n[ M@ o) ~w ([ wiaryas)
Then, according to (4.3) and (4.5),
Vo= VR (3 (2") - 3(=)]
(7.6) = [@ (Vaz") -2 (%)’E“)] + {q» (%Xﬂ) -% (\/Hm)] :
Equations (7.5) and (7.6) imply that

(r.n V* = A"+ [8(vVnz + H™ + ") — &(v/nz)l.
Here the processes H® = {H*,t > 0}, n=1,2,..., are given by

(7.5)

. S)Hz‘ = P+ ; (X(gs) — 0/ (g:)) VS ds
' + %WJF (n/[; )\(qs)ds) _ %W_ (n fa. #(qs)d5> ,

and the processes A™ and €", by
n 1 ~'ﬂ
(7.10) " = @4l -,

(T11) @6) = VA /()‘(A(q;z)_m))ds_ﬁ fu'(u(q:)—u(qs))ds
B /o (N'(ge) — #(ge}) V" ds,

@12) 40 = =W (o Maas) - S (n [ a@yas),
719) () = 5= (v [ ui@)ae) - 2w (n [ uta)as).
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We claim that there exist processes V™= {V? ¢>0} and
H"* = {H]",t > 0}, such that

Ve = ‘I"”(ﬁ“),

®

(7.14) H?=V0+f0'(x(4s) SLACONA ds+-—%w+ (nfo
- %W_ (n[o. u(qs)ds) .

Note that the arguments, used to establish that (4.9) is well-defined and
possesses a unique strong solution, apply equally to (7.14). For convenience,
rewrite equation (4.9) in a form similar to (7.14):

Algs) ds)

V.= @(H),
(7.15) 72 = V0+f0 (Mg} — (g )} Vi ds
+[) A(qa)+N(Qs)dWa-

In view of the scale invariance property of any Brownian motion B, B(s) 4
B{ns)/+/n, and because

wi ([ a@yas) - ([ tayas) & [ VAT +ayam,

the relations (7.14) and (7.15) yield that for all n:

&
Vvt =V,
{(7.16) { Fo gﬁ’r

Comparing now (7.16) with (7.4) reveals that only the first assertion of (7.4}
remains to be proved. For this, rewrite (7.7) in the form

vro= AN+ [B(VRe 4 B+ ) - 8(vae + B
+ [o(/ma+ ) - a(viz)]

that emables us to sketch the general idea behind the rest of the conver-
gence proof. It will be shown that the first {A™) and second terms in (7.17)
{the expression within the first pair of brackets on the right-hand side) con-
verge in probability to zero, as n | oo, with respect to the U-topology. The
last term in (7.17) is then shown to converge weakly in the M;-topology
to ®*(H) = V. The proof of the theorem is thus complete, by the con-
tinuity property of addition (see Appendix B) and because the Hmits of
‘the first and second terms in (7.17) are continuous and non-random. (See
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Theorem 4.4 by Billingsley [4] and the paper by Whitt {47] for more de-
tails.) However, the convergence proof for the second term in (7.17) is
not straightforward, since this term itself depends on V" (see (7.8)). As a
standard tool in such sitnations, Gronwall’s inequality will be used.

The proof will be carried out in two steps—first, U-convergence, fol-
lowed by M;-convergence.

Remark 7.1. ‘To prove the general case, given by (4.8) with nonzere
fr s fu, one can replicate all the considerations, but with

B o= ngsn [ O - @) ds+ v [ () — fule)) ds
swy ([ aayas) - (n [ ) ds)
mo= v [ O - wle)vrdes [ "(alas) - Fula)) ds

n \—;_T—LW,% (n fe A(qs)ds) _ %W_ (n/o ,u,(q_,)ds) ,
instead of (7.5) and (7.8).

7.4. U-convergence. In this subsection we prove the theorem for
those cases where, as n T oo,

(7.18) &(v/nx+b) ~ &(/nz) — &*{b), woc,

for all b € C*[0, 0c). (See Cases 1,2 and 3 in Subsection 3.2.)

We fix T > 0, restrict attention to the interval [0, 7] and verify the
first assertion in (7.4). Subtracting the expression for V™, given by (7.14),
from (7.17) and using the Lipschitz property of & (C being the Lipschitz
constant), one can write for t < T

an_f}n "™ _ F™

< A"l +Cllellp + €|

t

(7.19) + H‘I'(\/Ew+f1”)—§‘(‘/§m)”@w(ﬁn)”ﬁ" ‘

For the third term on the right-hand side of (7.19) we have (t < T):

(7.20) | Ve

t
H“—ﬁnﬂts:vg*—mwﬁ;[

ds,
L

where Cr = [|X{g.,) — #'(g,)}}]r is finite by the continuity of A’, u/ and g.
Combining (7.19) with (7.20) and applying Gronwall’s inequality yields

!

< (Vg = Vol + [|a™ly + C el + el )em-°7,
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where the process e is given by

= &(y/nz + H") - &(v/nz) - &"(H").

In view of (7.3), U-convergence will be established once it is shown that
the second, third and fourth terms in the parentheses on the right-hand
side of (7.21) converge in probability to zero. Each of these terms will now
be analyzed separately.

Review the definition {7.9) of A™. Denote the quantities between the
absolute value signs on the left-hand side in (7.1) and in (7.2} by A%(?})
and A7(t) respectively. It follows, by the Lipschitz property of ¢ (C being
the Lipschitz constant), that

(r.22) A"z £¢C

- 1
\/ﬁm“—iX"’ <cC
T

R oy

Due to the FSLLN (or by Lemma 6.1) and by the locally Lipschitz property
of X and g, relations (7.1), (7.2) and (7.22) imply the convergence, asn 1 oo:

Atz + [[ah]iz)-

AT AR
—L A" — 0 u.o.c., a.s.

‘\/"' \/"’
Review now the definition (7.10) of €*. We show that each term in the
sum on the right-hand side of (7.10) converges in probability to zero with

respect to the U-topology, and, hence, €* does so too.
Tt will be shown in Lemma 7.1 (see Subsection 7.6) that

(7.23)

(7.24) lim ||e*]]; = 0, as.
nioo
We now apply Lemma 7.2 presented in Subsection 7.6, with

* L]
o = ] Ag) ds, ga = f Mgs) ds,
4]

0

to get

{7.25) P — lim {|e} ]|, = 0.

nToo

(The conditions of Lemma 7.2 are satisfied by the FSLLN and because of
the auxiliary assertion {7.30) obtained in Lemma 7.1.) Similarly, we obtain

(7.26) P~ lim lle® ||z = 0.
Finally, (7.16) and (7.18) imply

(7.27) P lim [4llp = 0.

This completes the proof of I/-convergence.
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7.5. Mi-convergence. We now consider the case
$(vnz+b)— &(y/nz) — E%(b), asn T oo,

in the M;-topology, but not in the U-topology (see Cases 4 in Subsec-
tion 3.2). Then, combining {7.17) with (7.16) reveals that the third term
in (7.17), namely the expression within the last pair of brackets, converges
weakly in the M;-topology to @*(H) = V. It will be shown further that the
second term in (7.17) converges in probability to zero with respect to the
U-topology. In view of {(7.23), the proofis then complete. (See Theorem 4.4
by Billingsley [4] and the paper by Whitt [47] and recall the arguments at
the end of Subsection 7.3.)

In order to show that the second term in (7.17) converges to zerc in
the U-topology, we apply the Lipschitz property of ®° to this ferm and
obtain (¢ < T):

||<1>(ﬁm+ H* +em) — 8(frz+ I’Em)”t
(7.28)
< Cllelp +0|

|
T

It will be shown further that the last term on the right-hand side of (7.28)
converges to zero in probability. Then, combining (7.28) with definition
(7.10) of €™ and using (7.24)(7.26) proves the desired assertion.

In order to deduce that the last term in (7.28) converges in probability
to zero, review inequality (7.20}. Since the first term on the right-hand side
of (7.20) converges to zero a.s. (by (7.3}), it is sufficient to check that the
second texm in (7.20), for t = T', converges in probability to zero. Bui this
follows from Remark 3.3 and (7.30), and the fact that theorem is already
proved for the case of U-convergence.

7.6. Lemmata,
LeMMA 7.1. The sequence {€"} given by (7.11) satisfies (7.24).

Proof. Our calculations resemble those in Chapter 8,§3 of the book by
Liptser and Shiryayev [36, pages 635,636], where they are presented in the
context of martingale theory.

From the definition {7.11) of £® and by the locally Lipschitz continuity
of ) and p' we obtain, in view of the definition (4.7) of V™

) < / (IX(gs + 0}(a® — G )Vale® — 4:) — X(a)V?]
(7.29) + W {gs + 0 a? — g ))Vnla? — g.) — 1 (g)V]) ds
< CrllVU, i —allt, t<T,

where !, 9% € [0,1}, and Cr is a constant. By the FSLLN (Theorem 4.1),
it follows from the last equation that to prove the lemma it is sufficient to
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show that the following holds a.s.:
(7.30) Em|[V*||, < 00, t<T.
n

In order to prove (7.30) we continue as follows. From the definition of
V™ (see (4.7)) one obtains

el < ovale -l
Vi (28 (o[ aayas) - [Maanas)
e \/H(%N_ (nfo ,u(qy)ds) —fa' u(q?)ds)

+o||va [ ot - Nan)

1A

cp+e

t

i

4

t
sl [ (ular) - a) ds

t
Using the FSLLN and the local Lipschitz continuity of A and p, we obtain

the existence of a (possibly) random M, and positive non-random scalars
Fp, Ly , such that for all n > M the following inequality holds a.s. (¢ < T):

v (20, (ns) =)

, t<T.

v, < Cigl+¢

(7.31) Fr

+c|

NG (-:;N_ (ns) — s)
Note that, as n T oo,
vn (%N+ {ne) — o) — Wy, as.

and analogously for N_. This fact, the convergence (7.3) of {V;'} and

Gronwall’s inequality applied to (7.31) complete the proof of the lemma.

Condition (7.30) implies the so-called compact containment condition
(see Ethier and Kurtz [14, page 129]):

t
~+~LTf V™, ds.
P 0

limEm P{||V*|l, > £} =0, t <T.

£Toc n
This condition is often involved in proving weak limit theorems and is used
in the following

LEMMA 7.2. Let {g"} be a sequtence of stochastic processes with mono-
tone increasing sample paths. Let g be a monotone increasing determinis-
tic function, and let B denote a Brownian motion. Further, for all n, let
g% = go = 0. Assume, in addition, that for all T > 0,

{7.32) lim lig" —gllp =96, as,
neo
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and

(7.33) Em P (VA lle" — gllp > £} = 0.
Then

. 1 o
(7.34) P - lim 2 1B(s™) ~ Blns)ll =0
forall T > 0.

Proof. Introduce the random variables T" and T by

" =nllg" —glir ;

™ = n(g™(T) v g(T)).

BEvidently, 0 < T™ < ™. Without loss of generality, consider the case
0 <I™ < T
Fix £ > 0. By (7.33),

. e T

In view of (7.32), we can choose £, > 0, a natural number N, and a set B,
such that for all n > N,

(7.35) P{— >e€} < e

and

Denoting

A= % [1B(ng") — B(ng)llz ,

Sle,fyv) = {wmv:0<uv< e, f<fu—vi<a},
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we obtain for n > N,:

P{a">c} < P{(a">e)(B.}+P {5}

1A

F™,0,T™)

P {3( sup |B(u)— B(v)| » 5\/7;} +¢

< P { sup  |B{u}— B(v)| > s\/ﬁ}

S(F™,0,L./%)

+P { sup |B(u) — B(v)| > E\/‘r_l} +e.

S(F™ L7, T™)

By (7.35), the second term on the right-hand side of the last inequality is
less than £, and therefore we restrict our attention to the first term only.

Recall Lemma 1.2.1 in the book by Csorgd and Révész [13], which
asserts the following. For any positive §, there exists a constant C' = C(6)
such that the inequality

Lt

F 2
P { sup |B{u) — B{z}| > p\/@} <C(1+ =)e™3F
S(F,0,2) £

holds for every positive p and 0 < £ < F. {This form of Lemma 1.2.1in [13]
is taken from {10].) Using this assertion and continuing our calculation, we
obtain

P{A" > ¢}

< 2+P {SHPS{F“,U,L,\/E) |B{u) — B{v}| > ﬁ/—%;(ﬂsﬁ)llz}
<2%+C (1 n MM) o

which implies the assertion of the lemma.

7.7. Proof of Theorem 4.3. The proof of Theorem 4.3 is omitted,
being similar to that of Theorem 4.2, except for the following comments.
Recall that fluid Hmits ¢ are strictly monotone or constant and recon-
sider (7.29) (the step in the proof where the Lipschitz properties of ), u
are used). By a simple modification of the arguments, one concludes that
Theorem 4.2 holds without any changes, with the exception of the special
situation (4.10). In that case, one must separate the analysis of (7.29) to
the right and the left neighborhood of gq.
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8, Directions for future research. Of interest are extensions to
the current model that cover time- and state-dependent rates, other per-
formance measures such as waiting time and work-loads, and random oz
discontinuous A and u. The latter would enable, among other things, anal-
ysis of models with finite buffers, breakdowns and batch service.

Other possible extensions are to non-exponential models. The ap-
proach taken here should carry over, but the details would naturally de-
pend on the particular model at hand. (See, for example, a steady-state
analysis of state-dependent M;/G¢/1 quenes in Knessl et al. [26]; diffusion
approximations of phase-type models in Whitt [48] and Krichagina [29];
fluid and diffusion approximations of various semi-Markovian models in
Anisimov [1]).

Work is currently ongoing on approximating state—dependent networks,
that includes state-dependent routing. Fluid lLimits for such networks
are solutions to autonomous ordinary differential equations with siate-
dependent oblique reflection. Diffusion limits are solutions to stochastic
differential equations with time-dependent oblique reflection. The diffu-
sion limits are Markov processes with possibly discontinuous sample-paths.
Weak convergence is with respect io Skorokhod’s A -topalogy.

Fluid limits of networks (as solutions to a multi-dimensional differen-
tial equation) need not be monotone functions and can leave a boundary,
after having reached it. As a consequence, the diffusion limits could have
multiple points of discontinuity. Furthermore, the characterization of fluid
and diffusion limits involves reflection problems with non-comstant direc-
tions of reflections, varying with time and state. Such mappings are less
well-behaved than the usual multi-dimensional Skorokhod maps {in partic-
ular, they need not be Lipschitz). AlIl this suggests that new tools must
be developed in order to establish convergence, existence and mniqueness
of the lmits.

A. Skorokhod’s Reflection Problem. We use the following version
of the one-dimensional Skorokhod’s reflection problem (taken from [9]):

TEEOREM. For any 2 € Dg[0,00), there emist a unique puir (¢,y) &
Dy[0, o) x Dpi0, 00) satisfying

gg=2¢+% >0, 1>0,

y nondecreasing, with yo = 0,

o
f 1{q;>0] dy; = 0.
0
The operators ® and ¥ with domain Dg[0, o), given by

g=2(z), y=¥=)
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are both Lipschitz continuous with respect to the uniform norm. Namely,
there exists a constant C' > 0, such that

ll2G") - 2"y
lle(=") - (=)l

for all 2!,2% € Dy[0,00} and T > 0. Furthermore, & and ¥ are both
homogeneous of degree 1:

IA

Cll=* ==l

Clla* =2l

I A

&(y=) & (),
Y(yz) = y¥(z),

for all z € Dyi0,00) and v > 0.

Note that both the theorem cited above and all properties of @ and
T hold when we nse, instead of Dg[0, o0), the space of the R%valued
RCLL functions with non-negative values at zero. However, only in the
one-dimensional case do @ and ¥ have the explicit forms:

P(z) = sup (z}, t>0,
B<s <t
B(z) = 24+ ¥(z}== + 3.

B. Weak convergence. We use in this paper the set DIo, oo) of all
real-valued functions on [0, c0) with right and left limits at each point.
Values of functions are assumed to be equal to either the left or the right
limit. Note that discontinuities at zero are admissible. _

Our weak convergence results are proved for the space {D[0, cc), M),
that is D[0, oo} endowed with Skotokhod’s M;-topology, see [43]. The ap-
propriate definitions of the M;-topology and, respectively Mj-convergence,
for D[0,00) (which slightly differs from the space used in [43]) can be
given within the unified graph approach of Pomarede [40]. For the exten-
sion of Pomarede’s definitions to the non-compact interval [0, 00), see, e.g.,
Whitt [45] and [47].

We use the following properties of the Mi-topeology:

1. Let {z"} converge to = in the M;-topology. I # is an element of
C0, oo}, then the M;-topology reduces to the topology of uniform conver-
gence on compact sets (U-topology). Uniform convergence is referred to as
U-convergence.

2. Theorem 3.1 by Pomarede [40], on M;-convergence: Let 2 ~— =z,
y* — vy, as n ] oo, Then, z" + y* — z + v, if # and y have no common
points of discontinuity.

In Theorem 4.3 we use the ordinary Skorokhod space (D8, oo}, J1).
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C. Notation.

RCLL
1[5]
filla

filla
Vv and A
a” =—(anD)
f(t)ﬂ sup f,

0<s<t

171z =0§:1<)Tlf!

2+ and R
Cl0, 00)
CU[0,00)
D[0, oc)
DQ[0,00)
-QE[O1OO)
DI, co)
(5[0: 0o}, J1)
(EIU) Oo)! Ml)
2

LN

P —lm
N((S, 0'2)
BM(§,0?)
BM,(6,c%)
RBM(6,0%)

RBM,(6,0%)

right-continuous with left limits
uniformly on compact

indicator function of a set §

f is strictly increasing and thTI;lo fi=a

f is strictly decreasing and tliTm fiza
o0

maximum and minimum
the negative part of a
the upper envelope of f

the uniform norm of f on the interval [0, T

the sets of non-negative integer and real
numbers

the set of continuous real-valued functions on
[0, o0}

{f € C[0,00)| fo > 0}

the set of RCLL real-valued functions

{f € D[0, )| fo > 0}

the set of RCLL E-valued functions

see Appendix B

the space 5{0, oo} endowed with Skorokhod’s
Ji-topology

the space D[0, co) endowed with Skorokhod’s
M;-topology

is distributed as

convergence in distribution

limit in probability

the normal distribution with mean & and
variance o?

Brownian motion with drift § and variance 2,
starting at 0

Brownian motion with drift § and variance o2,
-starting at =

Reflected Brownian motion with drift § and
variance o2, starting at 0

Reflected Brownian motion with drift é and
variance o2, starting at =
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