Service Engineering

Class 7

Service Times (Durations, Processes)

Why Significant? eg. +1 second of 1000 agents costs $500K yearly.

Why Interesting” Must accurately
Model, Estimate, Predict, Analyze, Design:

e Resolution: Sec’s (phone)? min’s (email)? hr’s (hospital)
e Parameter, Distribution (Static) or Process (Dynamic)?
e Does it include after-call work?

e Does it include interruptions?
— Whisper time, hold time, phones during face-to-face,...

e Does is account for return services?

How affected by covariates? How affects performance?

e Fxperience and Skill of agents (Learning Curve)

e Type of Customer: Service Type, VIP Status

e Time-of-Day: Congestion-Level

e Human Factor: Incentives, pending workload, fatigue

e Heavy-Traffic: The ED and QED Operational Regimes (later)

How to calculate Offered-Load? (towards Staffing)
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Contents: Service Times; Phase-Type Durations.
e Empirical Introduction, mainly via DataMOCCA.

e Motivating Examples.

— Designing an IVR/VRU.
— Pooling a Service Network.

— Long-term Care of the Elderly.
e Sample size.

e What is Service Time (Duration)?

A complex answer to a “simple” question:

— Single vs. multiple visits.

— After-Call Work (ACW); Utilization Profiles.
— Time- vs. State-dependency.

— Incentives (Call Center, Hospital)

— Averages do not tell the whole story: the need for Distri-
butions.

e Service duration = Statistical Distribution:

— Empirical: Histogram, CDF, Hazard Rates (Later);

— Parametric: LogNormal, Exponential, Others.

e Stochastic Ordering (of distributions).

e Service = Stochastic Process: Phase-type MJP.

e “Sufficient Statistics” in Heavy Traffic: ED, QED (later)
o Offered-Load (Work)
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Service Times: Trends and Stability

USBank Average Customer Service Time, Weekdays

325

300 -

275 -

R .

250

Means

225

200 -

175 A

150

/M\’_/;? D~ —<

Mar-01 Jun-01 Sep-01 Dec-01 Mar-02 Jun-02 Sep-02 Dec-02 Mar-03 Jun-03 Sep-03

months

—Retail —Premier —Business Platinum

USBank Average Customer Service Time, Telesales

US Bank: Dynamics of average customer service time for Retail calls

(Sample Size)
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Service Times: The Human Factor, or
Why Longest During Peak Loads?

Mean-Service-Time (Regular) vs. Time-of-Day (95% CI)
(n=42613)
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Service Times: 5 Sec’s Resolution

USBank. Service-Time Histograms for Telesales (MOCCA)
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Service Times in Israeli Telecom

IL Telecom: Dynamics of the distribution of agent service time for Private calls

Agent service time Private

Week days
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e Overall pattern seems close to LogNormal
(except for the very short service times);

e Histograms of different months are very similar;

e Reason for short service durations unknown here.



user
Highlight


Figure 20: Phase-Type Model of a Telephone Call (# within phases: Mean/STD)
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At the first stages of the ServEng course, we taught PH models only as a conceptual

framework for the structure of service processes. This role comes out convincingly in the case
study that motivated [57]: a service network in a local municipality transformed into a single-
stop service station; to this end, the servers were trained to perform all services (flexible, or
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Service Time # Contact-Time

Common (Often Too Common):

e Customers routed for additional services
(vs. “First-Time-Resolution” );

e Servers interrupt face-to-face service with a phone-call
(vs. the increasingly prevalent “Central Call Center”);

e Agents place customers on hold,
eg. technical consultation with veterans;

e Agents can be engaged in non-phone activities,

eg. ACW Time (After-Call Work).

Reasons for Redials in a Cable Company

1200 +

1000 +

Total: 2,400 calls -
20% of all calls.

800 —+

600 —+

# Calls

400 +

200 +

Call Type
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Service Performance

Service Time — Average:
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What is “Service Time” ?
Utilization Profile in 3 Call Centers Doing the Same Thing
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Calculating (Mean) Service Time

First approach:
Sum up components of the "service time”,
then add related activities of servers.

Second approach (Avoids Ambiguities):
Fix a time interval (eg. a shift).

Available Time - Idle Time
Number of Calls ’

Mean Service Time =

where

Available Time = # Agents x Interval Duration,
and

Idle Time is summed over all agents.
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LogNormal Distribution

Empirically prevalent in call centers (overall, service types, indi-
vidual agents), but yet no theoretical explanation.

Israeli Bank. Nov-Dec.

7 Mean = 200
SD = 249
B —
54 %
Mon-Exponential
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Good in statistical models
(eg. regression of log(service-time)).

Not so good for queueing models
(which typically “prefer” Exponential durations).
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Proportion

Validating LogNormality
of Service Times
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QQ Plots will be reviewed at the Recitation
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Service Engineering December 14, 2005
Lognormal Model for Call-Center Service-Times

Basics of Lognormal Distribution

Definition: X is a lognormal random variable if In(X) is normally distributed with mean u

and variance o2.

(Inx—pu)?
Snxear

Density: f(x)= g 20

1
\ 27w oX
Mean: e“+’ /2.

} 2 2
Variance: e**7 (e’ -1).

2

CV: ve? -1,
Note that CV does not depend on .
Forsmall o (0<0.5),onecanuseCV ~o .

Median: e*.

2
Mode: e“™? (compare the mean, median and mode).

Hazard Rate: (standard lognormal random variable):

1 (0?12

f(x) «x In x
h = = ~—_— —> 00).
9 S(x) J‘we’tzlzdt X (x )

Inx

Data Description

We consider November and December service times for the four major service types: IN,
NE, NW and PS. (The data was cleaned according to the guidelines used, for example, in the
“Empirical Models” homework.) Overall, 64704 service transactions were analyzed.

The distribution according to service types is:

IN — 5592, NE — 7622, NW — 5774, PS — 45716.

For every service type we check if the lognormal distribution provides a good fit for its
service-time duration.

Results of standard goodness-of-fit tests (chi-square, Kolmogorov-Smirnov) are mostly
negative: the lognormal hypothesis is rejected. However, those tests are rarely applicable for
large samples of real data such as ours: if the sample is large enough, the test recognizes very
small differences between real-data and theoretical distributions, and hence rejects the
hypothesis in question. However, the fit can be good enough for applications.

Therefore, we shall use two graphical tests, namely histograms and Q-Q plots, in order to

compare the sample service-time and lognormal distributions, and check if the differences are
really significant for our purposes.

13


user
Highlight


Beyond Data Averages
Short Service Times
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Percent Calls w/Service < 10sec

June July Aug

May

Feb Mar

Jan
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Mandelbaum, Sakov and Zeltyn

Table 52: Number of calls handled by an agent

52

Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
AVI 0 0 0 | 1117 | 2208 | 2019 | 2789 | 2710 | 1417 | 2026 | 2523 | 2395
AVNI 1493 | 1736 | 642 | 539 | 1786 | 2219 | 2092 | 2392 | 1156 | 1888 | 1988 | 2136
BASCH 009 | 1164 | 1708 | 1155 | 982 | 906 | 858 | 2185 | 1973 | 1055 | 1326 | 1242
BENSION 1283 | 1135 0 | 1053 | 1108 | 1016 | 1682 | 1298 | 1076 | 1303 | 1546 | 1176
DARMON 309 | 515 | 633 | 519 | 577 | 436 | 309 | 370 | 297 | 194 | 425 | 128
DORIT 696 | 1047 0| 811 | 546 | 862 | 750 | 2228 | 1319 | 1384 | 1640 | 1605
ELI 387 | 508 | 777 | 447 | 560 | 436 | 395 | 458 | 416 | 363 | 502 | 352
GELBER 333 | 143 510 | 427 | 859 | 281 | 386 | 332 67 1 179 | 165 | 269
GILI 668 | 614 | 1155 | 803 | 1108 | 974 | 418 0| 355 | 456 | 412 | 298
KAZAV 1005 | 1693 | 1240 | 1451 | 1731 | 2251 | 1737 | 1168 | 729 | 1570 | 1047 | 2038
MEIR 0 0 0 0 0 0] 127 344 | 318 | 280 | 406 | 454
MORIAH 1360 | 1223 | 1591 | 1351 | 1866 | 1980 | 2416 | 2152 | 1526 | 1940 | 1793 | 515
PINHAS 79 40 | 359 | 244 31 311 422 | 241 | 143 | 105 51 63
ROTH 0 0| 397 | 1202 | 1928 | 1967 | 1831 | 1749 | 1625 | 1914 | 1458 | 1038
SHARON 1985 | 1674 | 2780 | 1938 | 2563 | 2657 | 2537 | 2875 | 1803 | 1935 | 2532 | 2140
STEREN 0 | 1043 | 2294 | 1516 | 2163 | 2231 | 1423 | 2455 | 1672 | 709 | 2375 | 2568
TOVA 1923 | 1679 | 1562 | 1059 | 1464 | 1389 | 1890 | 1811 | 1361 | 1971 | 941 0
VICKY 895 0 0 0 | 1006 | 1378 | 1415 | 1674 | 1472 | 1582 | 1641 | 1990
YIFAT 1312 | 1901 | 1745 | 1305 | 1464 | 1076 | 780 90 | 1137 | 1315 0 0
YITZ 1771 | 1791 | 1402 | 1203 | 1355 | 1367 | 1009 69 [ 705 | 1743 | 2420 | 2353
ZOHARI 801 | 1144 | 1398 | 1148 | 1479 | 1450 | 980 | 1494 | 1423 | 1359 | 1504 | 1094
Z2ARIE 0 0 0 0 0 0 0 56 | 225 | 315 | 432 | 534
Z2ELINOR 0 0 0 0 0 0 0 45 | 352 288 | 222 | 310
Z2EYAL 0 0 0 0 0 0 0 95 | 331 | 428 | 579 | 618
Z2IFAT 0 0 0 0 0 0 0 94 | 260 | 314 | 215 0
Z2LIOR 0 0 0 0 0 0 0 84 | 250 | 136 | 126 | 138
Z2NIRIT 0 0 0 0 0 0 0| 116 | 327 | 474 | 387 | 545
Z20FERZ 0 0 0 0 0 0 0 71| 311 | 260 | 242 | 334
Z2SPIEGEL 0 0 0 0 0 0 0 71| 311 | 260 | 153 | 322
Table 53: Number of calls with short service time
[ ]

Jan | Feb | Mar | Apr | May [ Jun | Jul | Aug | Sep | Oct | Nov | Dec

MORIAH || 233 | 230 | 356 | 290 | 614 | 695 | 865 | 597 | 490 | 455 4 1

AVI 0 0 O 47 111 144|295 | 221 | 121 | 76 35| 26

AVNI 11| 13 4 5 6| 25| 16 18 4 8 8| 11

DARMON 2| 11 8 9 10 7 1 0 1 1 0 0

ELI 9 7 10 12 22| 18| 15 4 8 3 6 5

KAZAV 57 | 40 48 | 44 48 | 63| 40 27 | 15| 18 4 6

MEIR 0 0 0 0 0 0 1 8 3 1 2 1

PINHAS 3 0 58 25 4] 14| 11 6 8 1 0 0

ROTH 0 0 10 10 36 | 21| 43 25| 32| 31 3 6

SHARON 58 | 49 86 52 67| 78| 66 63| 38| 23 43 | 49

TOVA 52 | 163 | 269 | 132 | 231 | 193 | 100 | 109 | 207 | 190 6 0

ZOHARI 4 8 12 22 17| 20 9 14 5 7 10 7
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gives rise to an exponential distribution (while there could possibly be a LogNormal
“hiding” underneath, at the seconds-scale).

o “Averages do not tell the whole story”: For exposing operational phenomena of signifi-
cance, service management must often rely on the full (empirical) distribution function,
and at the right granularity. This is important to emphasize since, often, practitioners
archive only summary averages, not even standard-deviations, let along empirical dis-

tributions. (This relates to issues addressed in our Measurement lecture; see Section
4.2)

Figure 17: Length-of-Stay (LOS) at the Internal Wards of a Hospital: LogNor-
mality, in Days

Patient length of stay in Ward (days), Department of Internal Medicine
HomeHospital, January 2004, All days

I B \ 1 day resolution

Relative frequencies
~
o
8

0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17

Time(days)( resolution 1)

We conclude our discussion of service durations with some comments on exponentially
distributed durations - this is a prevalent model due to the memoryless property of the
Exponential distribution (the only such continuous distribution), which renders it central in
Markovian models of service systems.

An immediate (only necessary) test for exponentiality is CV = 1 (mean = std). Hav-
ing passed this test, one could visually confirm exponentially, based on the fact that the
operation of rounding retains the memoryless property. It follows that any rounding of the
exponential (e.g. the lower integer part) yields a Geometric distribution (the only discrete
memoryless distribution); thus, an equal-bin histogram of exponential corresponds to a prob-
ability function of geometric, which is easy to recognize visually: specifically, there must be a
constant height-ratio between any two adjacent bars of the histogram. See Figure 19, which
shows suspects of two exponential examples. The left, with C'V = 1, describes durations of
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phone-calls; the right, with CV ~ 7.89/7.69, arises from durations of a face-to-face service

in a local municipality. Both are plotted in resolutions of minutes (as opposed to seconds in

Figure 16).

Figure 18: Length-of-Stay (LOS) at the Internal Wards of a Hospital: Mixture

(of Skewed-Normals), in Hours

Length of Stay (LOS), Internal Ward A

Hospital Data, 2004-8/2008

Relative frequencies %
2 5 =
8 8 a
] JE
4
7
e
s
s

2 hour resolution

Time[{Hours} {Resolution 2 hour)

Figure 19: Recognizing the Exponential Distribution when Seeing One: A Call
Center and a Local Municipality, in minutes
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Service Structure: Duration, or its (empirical) distribution function, is a static attribute

of the service process. (Though we shall later introduce the hazard-rate as a means for

capturing dynamic attributes of a distribution). Structure is the attribute that captures

the operational dynamics of the service process, which we model by a Phase-Type (PH)

distribution: the phases correspond to evolving phases of the service process. See Figure 20,

created within an undergraduate project, which presents a (data-based) model of a telephone

conversation between customers and telephone agents. Note that resolution is in seconds:

for example, the duration of the “I.D.” phase has an average of 24 seconds, with std=23;

total duration is 202 seconds on average, with std=190.
49



Service Times: The Human Factor, or
Even “Doctors” Can Manage

Operations Time Histogram:
20% -
18% -
16%
14%
12%
10%
8%
6%
4%
2%
0%

AVG: 2.08 Hours
STD: 4.12 Hours
Sample Size: 4347

Cv>>1

Frequency

0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10 105 11 115 12 125 13 135 14

Hours

Operations Time - Morning vs. Afternoon:

6 AM
B Queues Reduction

B Regular

Hours

EEG rthopedics Surgery Blood Surgery Plastic Surgery ~ Heart/Chest ~ Neuro-Surgery Eyes E.l. Surgery
Surgery
Department
Afternoon, Morning,
by Case by Hour
Ethical?

Even Doctors Can Manage!
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Local Municipalities

Station Total Avg. Arrival Avg. Service STD Maxir.nal Utilization Avg
Department No. [Customers Rate Time Sel"v1ce Wa.ltlng
Time Time
(1/Hr) (Mins) (Mins) (Mins) (Mins)
Water N/A 187 1.8+02 8.87 + 1.0 8.15 54.68 13.3% 4.76
Tellers N/A 1328 12.6 £ 0.5 8.82 + 0.4 8.55 49.37 30.8% 7.73
Cashier N/A 757 724+ 04 6.64 + 0.4 6.94 29.95 79.7% 3.89
Manager | N/A 190 1.8+02 7.99 + 1.0 8.44 38.97 24.1% 9.16
Discounts | N/A 317 30+03 459 + 0.4 4.54 36.72 23.1% 3.65
Water 1 57 N/A 7.80 + 1.70 7.61 31.28 6.5% N/A
2 130 N/A 9.34 + 1.20 8.37 54.68 19.3% N/A
3 336 N/A 9.04 + 0.80 8.93 49.05 48.2% N/A
4 208 N/A 9.93 + 1.00 8.82 49.12 33.0% N/A
Tellers 5 417 N/A 8.97 + 0.70 8.55 4937 59.4% N/A
6 144 N/A 9.53 + 1.20 8.75 41.70 21.8% N/A
7 156 N/A 8.03 + 1.10 7.96 35.27 19.8% N/A
8 67 N/A 3.74 £ 0.70 3.58 21.03 4.0% N/A
Cashier 9 757 N/A 6.64 + 0.40 6.94 29.95 79.7% N/A
Manager 10 190 N/A 1.99 + 1.00 8.44 38.97 24.1% N/A
Discounts 11 317 N/A 4.59 + 0.40 4.54 36.72 23.1% N/A

Service Time Histogram — Overall:

Frequency

Range | Frequency
0-5 513
5-10 21.1
10-15 12.6
15-20 6.7
20-25 3.8
25-30 2.3
30-35 1.1
35-40 0.6
40-45 0.3
45- 0.2

60%

50%

30%

0%

0%

0%

0%
0-5

5-10
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*Service time ranges given with 90% confidence.
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AVG: 7.69 Mins
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Service Times: Exponential (Phone Calls)

Call-Duration Frequency - North:
50%

Average Call Duration:

40% 1.95 Mins.
o M Practice
2 30% — Theory
S
8 20%
LL
10%
0%
01 12 23 34 45 56 6-7 78 89 910 10-
Minutes
Call-Duration Frequency — Central:
50%
Average Call Duration:
40% 2.01 Mins.
H Practice
0,
30% — Theory

20%

Frequency

10%

0%
01 12 23 34 45 56 67 7-8 89 910 10-

Minutes

Q. How to recognize “Exponential” when you "see' one?

A. Geometric Approximation.
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Service Times: Phase-Type Model

Late Connections

&

-, -
a
(Secs.) Beginning
Customer’s Query

220

A

Customer
24.8 Identification

Customer
Identified?

IO

A 4

Date of Purchase of
Cable
A 4

Date of Connection
According to

Periodical Updates

To Marketing

(Sales) ?

B =0

A 4
Information Service

End

? Where does human-service start / end (recall 144)?
“Average” picture.
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Service Times:
from Exponential to Phase-Type

Static Model: Exponential Duration

Face-to-Face Services in a Government Office

Service Times Histogram:
40%
AVG: 2.6 Mins

STD: 2.6 Mins
0,
30% N: 2261 (~450 per day)

20%

Frequency

10%

0%
0-1 1-2 23 34 45 56 67 78 89 910 1011 11+

Minutes

Dynamic Model: Phase-Type Duration

General Hyperexponential Coxian
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EM: Phase-Type Service Times

/

Reference: “Length of Stay of Elderly People in Institu-
tional Long-Term Care”, Xie, Chaussalet & Millard, 2005.

Operational significance:

e “Most common causes of delay in discharge from hospi-
tal are patients awaiting placement in a nursing or residential
home and awaiting assessment of their needs.”

e Significant costs associated with maintaining elderly people in
care homes, hence relevant to “government agencies (funding,
planers), insurance companies, and purchasers and providers
of care.”

Elderly people go through three states, after being admitted to
long-term care:

e Residential home care (R);
e Nursing home care (N);

e Discharge state (D).
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Goal: Estimate the sojourn time in long-term care, both
duration and structure.

Data: “Paths” of 839 patients, some censored:
e 392 patients: R — D (219 censored);
e 451 patient: N — D (156 censored);
e 46 patients: R — N — D.

The states R and N are aggregated: Service time in each is
modeled by a Coxian (Phase-Type) distribution.

Summary: The above approach is potentially useful in other ser-
vice contexts. For example, estimating duration and structure

of

e Telephone or face-to-face services, in which case data cen-
soring is not important since observations are complete; aggre-
gation is significant, balancing complexity against goodness-of-

fit.

o Clustomers’ Impatience, in which case censoring is very im-
portant to account for (as will be explained in due time).
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A continuous time Markov model for the length of
stay of elderly people in institutional long-term care

H. Xie, T. J. Chaussalet and P. H. Millard

University of Westminster, London, UK
[Received January 2003. Final revision January 2004]

Summary. The paper develops a Markov model in continuous time for the length of stay of
elderly people moving within and between residential home care and nursing home care. A
procedure to determine the structure of the model and to estimate parameters by maximum
likelihood is presented. The modelling approach was applied to 4 years’ placement data from
the social services department of a London borough. The results in this London borough suggest
that, for residential home care, a single-exponential distribution with mean 923 days is adequate
to provide a good description of the pattern of the length of stay, whereas, for nursing home
care, a mixed exponential distribution with means 59 days (short stay) and 784 days (long stay)
is required, and that 64% of admissions to nursing home care will become long-stay residents.
The implications of these findings and the advantages of the proposed modelling approach in
the general context of long-term care are discussed.

Keywords: Length-of-stay modelling; Long-term care; Markov model; Survival

1. Introduction

In the UK, the National Audit Office has recently reported that the most common causes of
delay in discharges from hospital are patients awaiting placement in a nursing or residential
home and awaiting assessment of their needs (National Audit Office, 2003). Under the 1990
National Health Service and Community Care Act and the Care Standard Act 2000, local
authorities in Great Britain are responsible for the placement and finance of adults in publicly
funded residential and nursing home care that conforms to national standards. Discharge to
long-term care is a central component of plans for acute hospital care and the demand for
long-term care is expected to increase substantially as the population ages (Wittenberg et al.,
2001). In England, already 1 in 5 people aged 85 years or over live in a long-term care institution
(Laiho, 2001). In addition, the UK Government is planning to fine local authorities for failing
to provide vacancies in residential and nursing home care for hospital discharges. Therefore, it
is important for both health authorities and local authorities to have a sound understanding of
the patterns of the length of stay (LOS) and movements of residents in long-term care.

A recent survey showed that nearly 70% of the residents in residential and nursing homes were
publicly funded and were there permanently (Netten et al., 2001). In earlier research, we found
that older people who are placed in nursing homes are more likely to have complex problems.
Factors such as being male, immobile, dependent in feeding, urine incontinent, having open
wounds and taking multiple drugs are associated with nursing home care placements, whereas
older people who are admitted to residential home care are likely to be more independent (Xie

Address for correspondence: T. J. Chaussalet, Department of Mathematics, Cavendish School of Computer
Science, University of Westminster, 9-18 Euston Centre, London, NW1 3ET, UK.
E-mail: chausst@wmin.ac.uk
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et al., 2002). Therefore, we would expect differences in the pattern of LOS in residential and
nursing home care.

Research in the UK shows that the mortality rate for residents in nursing home care is par-
ticularly high in the first few months and then gradually levels out (Smith and Lowther, 1976;
Bebbington et al., 2001; Rothera et al., 2002). This observation supports the notion of phases
in residents’ stay in care homes. In the context of hospital geriatric departments, Harrison and
Millard (1991) and Taylor et al. (1998, 2000) have shown that, despite the great heterogeneity
between individuals (Millard, 1988), compartmental and Markov models, which divide patients’
LOSs into short-stay and long-stay phases, capture successfully the behaviour of patients’ LOSs.
Similar results for residential and nursing home care can be expected.

We model the flow of elderly residents within and between residential and nursing home care
by using a continuous time Markov model, in which residents’ stay in care homes is modelled as
a two-phase process: short stay and long stay. First, we describe the model that we propose
and present a procedure for determining the model structure and estimating parameters by the
method of maximum likelihood. We also show and discuss results that are obtained from fitting
the model to a real data set.

2. A model for movement of elderly people in residential and nursing home care

The proposed conceptual model for the movement of elderly people in residential and nursing
care facilities is depicted in Fig. 1. In this model, elderly people can be admitted into residential
home care or nursing home care directly, either from the community or following discharge from
hospital. In each type of care, residents start their stay in the short-stay phase and either leave
care after a short period of time or continue their stay to become long-stay residents. People in
residential home care can move to nursing home care if their conditions deteriorate to such an
extent that residential home care is no longer adequate. In this paper, we consider only those
residents who require local authority funding, and we exclude residents whose admissions are
meant to provide short respites for their carers. This restriction is imposed because most local
authorities have means of determining suitable care placements for applicants requiring public
funds; therefore, these admissions will better reflect residents’ physical conditions and needs.
Movements from nursing home care to residential home care rarely occur among residents
who are supported by local authority funds (Bebbington et al., 2001) and are not modelled.

Residential home care Nursing home care

(short)

Discharge
Fig. 1. Markov model for movements of elderly people in residential and nursing home care
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Discharges from institutional long-term care are considered permanent. They occur predom-
inately by death and, although a small number of residents are discharged to the community
or hospital, they are not expected to return to institutional long-term care. Discharges to the
community are rare for local-authority-funded residents, and those to hospital usually mean
terminal care (Bebbington et al., 2001).

We construct a continuous time Markov model of the flow of elderly people within and
between residential and nursing home care. The phases in each type of care and the discharge
state form the system states. Given the Markov model that is described in Fig. 1, the generator
matrix Q is written as

g q2 ' qz 0 ' qis
0 g2 g3 0 ' g5

Q=0 0 g3 g g3 | M
0 0 0 qas ' qus

where g, ; is the instantaneous transition rate between state i and state j (i # j), and the elements
in the main diagonal are defined such that row sums are 0, i.e. g;; = —Xj+; qi;.

3. Maximum likelihood estimation of model parameters

The actual states of the Markov model are not observable. We can only observe which type of
care a person is in. For example, at any time, we observe that a person is in residential home
care but we do not know whether she or he is in a short-stay (S;) or long-stay (S;) state. This
is an aggregated Markov process, i.c. a Markov process in which system states are aggregated
into a number of classes (Fredkin and Rice, 1986). There are three classes in the model that
is outlined in Fig. 1, namely residential home care, nursing home care and discharge (denoted
by R, N and D respectively). We partition the matrix Q according to the class structure of the
model, i.e.

Q= 0 Qnxn Qap 2

0 0 0

where the submatrices correspond to those delimited by broken lines in equation (1) and the
subscripts represent system classes. For instance, Qg Ar is the submatrix of transition rates from
states in R to states in A/, and Qg that of transition rates between states within R.

The theory of aggregated Markov processes has been motivated by and applied to the mod-
elling of ion channels in neurophysiological applications (Colquhoun and Hawkes, 1981, 1982;
Fredkin et al., 1985). Generalization and parameter estimation have been investigated by various
researchers, including Ball and Sansom (1989), Fredkin and Rice (1986) and Qin et al. (1997).
We adapt and modify the approach that was taken by these researchers to suit our modelling
needs and to deal with the existence of an absorbing state and censored observations.

(QRR Qrn QRD)

3.1. Distribution of sojourn time in a class
Calculating the first-passage time (Cox and Miller, 1965) leads to the probability density func-
tion (PDF) of the sojourn time in a class, say class R (Colquhoun and Hawkes, 1981)

fr()=—¢% exp(QrrQRRIR, 3
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Table 2. Determination of the number of states in R and A/

Number  Results for residential home care Results for nursing home care
of states
AIC BIC AIC BIC
1 3430.651 3434.733 4879.295 4883.504
2 3433.142 3445.388 4774.788 4787.414
3 3437.142 3457.553 4778.792 4799.835
Residential home care Nursing home care

Discharge

Fig. 2. Structure of the Markov model for the Merton data set

(Fig. 2). The second-stage Markov model fitting procedure converged quickly with the start-
ing-point proposed in Section 3.3. One-dimensional views of the log-likelihood surface along
all parameter axes suggested that the maximum was well defined and that the log-likelihood
surface was relatively quadratic near the maximum. For each type of care, the close agreement
between the survivor curve that was derived from the estimated matrix Q (see equation (5)) and
the survivor curve that was estimated by the Kaplan—Meier estimator (Kaplan and Meier, 1958)
indicates that the Markov model provides a good fit to the data (Fig. 3). This is confirmed by
the probability plots (Fig. 4).

4.3. Results

The estimated parameters for the Markov model are summarized in Table 3. These results give
interesting insights into the survival patterns of elderly people in institutional long-term care
in the London Borough of Merton. A single state provides a good fit to the LOS pattern in
residential home care (R), thus indicating a constant rate of departure from R. The average
LOS for R is estimated by 1/(g13 4+ ¢15), 1.e. 923 days (about 2.5 years). On leaving R, about
79% of the residents will be discharged (permanently) and 21% of them will transfer to nursing
home care (NV). Two distinctive states are observed in AV: a short-stay state with an average LOS
of 59 days and a long-stay state with an average LOS of 784 days (about 2.1 years). The rate of
discharge from the short-stay state is about five times that from the long-stay state. This agrees
with empirical observations that initial mortality is higher for the first few months following
admission to nursing care (Smith and Lowther, 1976; Bebbington et al., 2001; Rothera et al.,
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Fig. 4. Probability (P—P-) plot of the Markov model fitted survivor curves for (a) residential home care and
(b) nursing home care for the Merton data set

Table 3. Estimated parameters for the Merton data set

Parameter  Estimate  Standard 95% confidence
error interval

q13 0.000228  0.000034  (0.000162, 0.000293)

q15 0.000855  0.000065  (0.000728, 0.000983)

q34 0.010874  0.002961  (0.005071, 0.016677)

q35 0.006138  0.000793  (0.004584, 0.007692)

q45 0.001275  0.000135  (0.001010, 0.001540)

older people who have been placed in R by the local authority, 50% will stay more than 21
months, 25% will live longer than 3.5 years and 10% will be there after 5.7 years. Of those who
have been placed in AV, 50% will stay for more than 8 months, 25% will live longer than 2.1 years
and 10% will still be there 4.1 years after they have been admitted.

5. Discussion

We have built a continuous time Markov model which captures the flow of elderly people within
and between residential and nursing home care. Using the framework of aggregated Markov
processes, we derived a procedure for fitting the model to observed data. By modelling the sys-
tem of long-term care as a whole, we captured the movements between facilities and estimated
parameters by using the overall joint likelihood function. Using a real data set we showed that
the LOS in residential home care can be approximated by a single-exponential distribution with
mean 923 days, whereas in nursing home care a mixed exponential distribution with short-stay
mean 59 days and long-stay mean 784 days is needed to provide a good fit. About 21% of
residential home care vacancies were created by transfers to nursing home care and 64% of all
admissions to nursing home care will become long-stay residents. In nursing home care, the
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mortality rate in the short-stay state is about five times that in the long-stay state. Thus, the
model quantifies the large heterogeneity in mortality rates that is widely observed in nursing
home care.

Extensive research in the UK has been conducted to identify the characteristics that are asso-
ciated with differences in survival patterns in long-term care. This research has mainly focused
on identifying risk factors that are associated with mortality, e.g. Bebbington et al. (2001), Dale
et al. (2001) and Rothera ez al. (2002). From the point of view of individual elderly people,
their doctors and social workers, the identification of risk factors that are associated with trans-
fer, early death and long-term survival is of considerable importance. But, for planning, care
managers and budget holders need to know the overall pattern of LOS in long-term care. Our
model complements other research in providing a full picture of the overall behaviour of LOS
in residential and nursing home care.

Methods that explicitly model the survival time (or the LOS in care) of elderly people have
consistently shown that a mixture of exponentials gives a good fit to observed LOS data (Harri-
son and Millard, 1991; McClean and Millard, 1993; Taylor et al., 1998, 2000). Struthers (1963)
first reported that LOS in a hospital geriatric department in Southampton followed a combina-
tion of two exponential curves: one had a ‘half-life’ of 2 months and the other had a half-life of
2 years. A mixed exponential distribution implies that a proportion of elderly people in residen-
tial and nursing home care will live substantially longer than the mean and the longer their stay
the longer their expected further stay will be. A large proportion of older people who have been
placed by the Merton Social Service Department in residential and nursing home care will stay
substantially longer than their expected LOS, 2.5 years and 1.5 years respectively. In residential
home care, 25% will live longer than 3.5 years and 10% will live longer than 5.7 years; in nursing
home care, 25% will live longer than 2.1 years and 10% will live longer than 4.1 years. This
means that short-term decisions to increase the number of permanent admissions to residential
and nursing home care will have serious long-term financial and organizational consequences.
Such action will result in, as time passes, a reduction in the places that are available for new
admissions since the number of beds occupied by residents admitted in earlier years increases.

The model that we have developed in this paper could help planning authorities to under-
stand the overall pattern of usage of resources for elderly people in their catchment area. Our
model can be extended to cope with possible differences in survival pattern between nursing
care residents who are admitted directly and those who are transferred from residential care,
although we did not find significant evidence to suggest that such differences existed in the data
set that we used. Further work is needed to confirm our findings and to extend the model to
take into account the attributes of elderly people, e.g. their age, gender and physical and mental
conditions.

Given the importance of having vacancies in long-term care to run acute hospitals efficiently
and the significant costs that are associated with maintaining elderly people in care homes,
the findings of this paper should be of great interest to Government departments, insurance
companies, health and social services planners, and purchasers and providers of residential and
nursing home care.
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Service Times per Service Position

Server | Service Time Std. Utilization | Service Time Total
Dept. ID | Avg. (Min) Deviation % Max. (Min) | Services
1 7.55+0.68 7.96 37 79.32 370
Collection - 2 5.42 +0.33 6.27 68 105.20 951
Front Office 3 6.51 £ 0.50 6.94 44 63.33 510
4 8.41+0.75 «+—» 8.90 42 58.15 377
Collection - 5 11.59 + 0.80* > 10.88 76 74.60 493
Immigrants 6 10.32 £ 0.52 8.98 78 50.87 569
7 10.80 +1.98 12.82 16 93.73 114
Collection - 8 9.07 £ 3.56 11.50 3 52.07 28
Back Office 9 18.32 +4.90 20.34 10 113.57 47
10 23.39 £5.52 17.75 9 63.77 28
11 11.99 + 3.16 14.75 9 70.30 59
12 16.73 +2.34 16.08 28 88.68 128
Cashier 13 251+0.21 4.92 48 52.18 1460
14 3.86 +0.18 4.16 72 46.92 1416
15 13.74 +1.07 12.02 62 69.68 340
Assessment - 16 10.88 £0.92 10.60 52 87.92 363
Front Office 17 6.66 + 0.50 6.68 42 49.93 473
18 11.22 +1.30 13.81 45 100.60 302
Assessment - 19 19.29 + 5.64 19.99 8 78.27 34
Back Office 20 12.2 + 3.86 8.47 3 29.28 13
Total 7.24+0.10 9.10 8075

e 90% confidence intervals
e 7364 distinct customers

Recall: Exponential = E=0 (i.e. CV=1)



user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight


© 0 N o o1 B W DN P

e e L i < e
N~ o o0~ W N Rk O

=

Rank Service-Types by “Effort”

Activity Pareto

v

Service Type Avg. | Transactions Time Cumulative
Time | (% of Total) Allocated (% of
(Min) (% of Total) Effort)
Tax Query 7.25 29.6 34 34
Cashier Payment 4.4 42.8 26.3 60.3
Title Transfer 12.1 55 10.6 70.9
Water Query 5.6 8.3 7.35 78.25
Owner Change 17.3 15 4.2 82.45
Title Deed Verification 7.2 3.4 3.9 86.35
Waivers & Discounts 12.4 1.4 2.8 89.15
Water Disconnection 15.6 11 2.6 91.75
Discount Application 13.7 0.8 1.8 93.55
Update 104 1.1 1.8 95.35
Information 8.1 1.3 1.7 97.05
Measuring Device 59 1 0.9 97.95
Measurement Req. 12.5 0.4 0.8 98.75
Payment Schedule 6.3 0.7 0.7 99.45
Account Change 3.8 0.7 0.4 99.85
Cash Transfer — Rebate 2.3 0.26 0.1 99.95
Water Account Change 1.8 0.14 0.05 100

4 service-types require 80% of effort

+ space constraints + poor service level

Redesign network as a single-station

Specialized vs. Flexible; Pooling
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Later (Jackson Networks)

On Pooling in Queueing Networks

Avishai Mandelbaum
Faculty of Industrial Engineering and Management
Technion
Haifa, Israel

Martin I. Reiman
Bell Labs, Lucent Technologies
Murray Hill, New Jersey 07974

February 18, 1996
Revised: October 24, 1996; May 12, 1997; May 4, 1998

Abstract

We view each station in a Jackson network as a queue of tasks, of a particular type,
which are to be processed by the associated specialized server. A complete pooling of queues,
into a single queue, and servers, into a single server, gives rise to an M/PH/1 queue, where
the server is flexible in the sense that it processes all tasks. We assess the value of complete
pooling by comparing the steady-state mean sojourn times of these two systems. The main
insight from our analysis is that care must be used in pooling. Sometimes pooling helps,
sometimes it hurts, and its effect (good or bad) can be unbounded. Also discussed briefly
are alternative pooling scenarios, for example complete pooling of only queues which results
in an M/PH/S system, or partial pooling which can be devastating enough to turn a stable
Jackson network into an unstable Bramson network. We conclude with some possible future

research directions.

1. Introduction

A fundamental problem in the design and management of stochastic service systems is that

of pooling, namely the replacement of several ingredients by a functionally equivalent single

1
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Customer arrivals are assumed Poisson and task durations exponential. (We comment
on these distributional assumptions in the Addendum.) As articulated in Section 2, we
allow a service to consist of a random sequence of tasks in a way that the service duration
has a phase-type distribution (a phase corresponds to a task). The specialized (unpooled)
model turns out to be a Jackson network [19], as in Figure 3, and the flexible (pooled)

architecture is modeled by an M/PH/1 system [26], as in Figure 4.

P3
c1 C2
= I o) 1=
o
= Py3

[ - 1P

Figure 3: A specialized model with task repetition and feedback.

c1+c2tcs

\@+

(mr)
o« — |[[l[[=—= =
- | Lo

Figure 4: The flexible model, under complete pooling, that corresponds to Figure 3.

In addition to the above two main models, we also consider briefly alternative designs of
pooling. For example, Figure 5 depicts the network from Figure 1, with its queues pooled
into a single queue and the servers made flexible while still maintaining their individual

identities (see Section 5.3). Figure 6 depicts partial pooling of only queues and servers 1

20



Phase-Type Service Times (Durations).

Service-Time = a sequence/collection of tasks, of an ezponential duration.
There are K types of tasks, indexed by £k =1,..., K.

my, = expected duration of task k; m = (mg)
qr = % of services in which £ is first; q=(q)
Pji, = % of incidences in which task j is immediately followed by k. P = [Pj]

1 — 2K | Py, = probability to end service at k.

Rk

qj \ ’ N\
m,
Fact: service = finite number of tasks < 3[I — P|™!
Indeed, [I — PJ;;! = expected number of “visits to k”, given j was first.

(q[I — P]7')x = expected number of “visits to k7).

As will be articulated below, service-time duration is Phase-type (PH).
(Assuming independence among task-durations.)

Definition. Phase-type distribution = absorption time of a finite-space continuous-time
Markov chain, with a single absorbing state.

Formally: X = {X},t > 0} Markov on states {1,2,..., K, A}, with infinitesimal generator

1

] R e A absorbing (since gan = 0)
Q=" " o r=-—RIl (since Q1 = 0)

K e 1,...K transient < JR™! (fact)

A LO ...0 O

and initial distribution (of Xj) is given by (q1,...,qx,0) = (g,0).

Recall:
P{X; =k} = > gjlexp(tR)]j = qlexp(tR)]

Define: T =inf{t > 0:X; = A} has phase-type distribution, say Fr(-).
Claim: Fp(t) =1-g¢e'fl, t>0.

Proof. P(T > t) = P{X; # A} = 3, q(e'F), = qef1.

4
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Parameters:

density fr(t) = qgefr
Laplace transform  [5° e " Fr(dt) = gz — R|™'r
nth moment Joot"Fr(dt) = (=1)"nl¢R™"1

(mean = —gR™'1)

Special Cases:

Exponential (u) : R = [—p] and ¢ = 1.

Erlang: —|1]|—|2| — iid tasks / phases (C’Z(T) = %)

Generalized Erlang: exponential phases in series (tandem) (C? < 1).

Hyperexponential: K tasks in parallel (mixture) (C? > 1).

e Coxian: K phases; end at phase k with probability p.

P
Py 1P,

e Minimum of exponential random variables is exponential.

e Max of exponential random variables is phase-type: e.g., X; ~ exp(1) iid.
This easily implies that F(max X;) =Y, %, Var (max X;) =, Z% bounded!

e Erlang mixtures:

O—=0O=O~

73


user
Highlight

user
Highlight

user
Highlight

user
Highlight

user
Highlight


Importance of Phase-type distributions.

e Empirical + wishful thinking: homogeneous human tasks are exponential.

e Richness: the family of phase-type distributions is dense among all distributions on
[0,00). For every non-negative distribution G, there exists a sequence of phase-type
distributions F,, > F,, = G.

(In particular, we can guarantee convergence of any finite number of moments.)

Dense subfamilies: Coxian, Erlang mixtures.

For Erlang mixtures, this can be explained by the following two facts:
1. The family of discrete distributions is dense.

2. Constants can be approximated by Erlang distributions. Therefore, discrete distri-
butions can be approximated by Erlang mixtures.

e Modelling, via the method of phases. For example, consider M/PH/1 queue (see HW).

M/PH/1: state-space is (i, k) (i = number in queue; k = phase of service) or 0;
Ag
e.g., 0 — (1,k).

Representation directly in terms of (q, P, m).

Denote here R = [I — P]™'  (as in Mandelbaum & Reiman).
Average work content  E(T) = gRm (=X ¢ Rjpmi).

mq 0
Moments: E(T") = nlqg(RM)"q, where M =
0 mg
E(T?)  14+C¥T) q(RM)*1
2(B(T))* 2 (¢RM1)?
6
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Service Durations:
Time and/or State-Dependence

Mean Service Time vs. Time-of-Day

Regular Service (PS)

200 220 240
| | |

Mean Service Time
180
|

120
|

100
L

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time of Day

Internet Consulting (IN)

500
|

450
|

Mean Service Time
400
|

350
|

300
L

T T T T T T T T T T T T T T T T T T
7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time of Day
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Service Times vs. Arrival Rates

Regular Service (PS): Arrival Rate

120
100
80+

60

Calls/Hr (Reg)

40+

20+

4

O e L L B B B S S B B L L
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

At 10:00 & 15:00: longest services and peak arrival rates?

Possible Reasons:

1. Services are longer during congestion since customers start

with complaints.)
2. Agents are slower at times of peak loads.

3. Customers that arrive during peak hours require, for some

reason, longer seruvice.

4. An additional (human) reason will be provided after we study

customers’ impatience.
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Comparing Service Durations

First: Means, Standard Deviations, Medians

Overall | Regular New |Internet| Stock
service |customers
Mean 188 181 111 381 269
SD 240 207 154 485 320
Med 114 117 64 196 169

Then: Distributions (Stochastic Order?)

10

08

06

Survival

0.4

02

00
1

Survival curve, by Types

42
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Workload (Offered-Load)

Workload (Offered Load): R = A x E[S]
“minutes” of work (=service) that arrive per “minute”.
Example: \ = 3000 calls/hour; E[S] = 3 min.
Consistent time-units, eg. A = 3000/60 = 50 calls/min.

Workload R = 50 - 3 = 150 min of work per min.
(If time-units hours? hence Workload in Erlangs.)

Prediction of Workload: Small Israeli Bank

167
147
124

107
e

g
5]
4-
2
0

8 10 12 14 18 18 20 22 24
time (et b
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Root Cause Analysis of Emergency Department Crowding and Ambulance
Diversion in Massachusetts

A report submitted by the Boston University
Program for the Management of Variability in Health Care Delivery
under a grant from the
Massachusetts Department of Public Health

October, 2002

Emergency Room Diversion Study: Analysis and Findings

Phase |

Phase | of these investigations involved formulation of a conceptual model that would
permit data collection and analysis germane to the problem of ambulance diversion. As
preparation for this study, a wide range of relevant medical publications, policy
statements and commissioned studies were reviewed. This was followed by personal
interviews with representatives in government, hospital administration, public health and
the Emergency Medicine community. Information was gathered from throughout
Massachusetts and from other key states. Particular attention was given to experience
in areas where crowding is particularly severe including metropolitan Boston, San
Francisco, Los Angeles and the states of Arizona and Florida. Overall, numerous
potential root causes of diversion had been articulated both in the medical literature and
lay press, but empirical data to support them were lacking. Available research tended to
be descriptive, documenting the extent of crowding without clear delineation of its
sources. Various solutions had been proposed and implemented, all without consistent
benefit. A partial summary of this analysis has been previously released by the
Massachusetts Health Policy Forum of Brandeis University.

An operations management perspective suggested straightforward input-throughput-
output analysis. Hospital utilization data provided by the Division of Health Care Finance
and Policy was therefore reviewed alongside diversion data provided by regional EMS
providers. Analysis of this information revealed the likely operation of mechanisms both
internal and external to emergency departments. In addition to simple supply/demand
imbalances for emergency care, diversion and utilization patterns suggested

bottlenecks and backlogs related to the competition of emergency and non-emergency
patients for similar resources. The interrelationships of hospital services then became
the focus of attention and patient care pathways were explored with administrators from
the two study hospitals.

Two paradigms for the quantitative study of interrelationships among hospital

departments were considered. The first involved an analytical approach wherein each
relationship was identified, its stochastic character estimated, and appropriate
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mathematical models applied. The second involved a simulation approach, wherein
stochastic relationships were embedded into computer software that translated real
patient flow inputs into utilization and capacity information. Computer simulation was
ultimately selected as the route of choice because of its scalability and adaptability.

Phase Il
Data Collection/Analysis Effort:

The study was performed at two hospitals in Massachusetts: Hospital A, a large tertiary
academic hospital, and Hospital B, a medium-sized acute care community hospital. The
following data were collected:

- 42 days of information covering:

- 6000+ admissions

- 8000+ ED visits

- 2000+ staffing/capacity data points

- 300,000+ patient movement/status data points

In order to analyze the relationship between diversion status and other factors within the
hospital environment all measures were split into observations at one hour increments.
The study period of 42 days, with 24 hours per day, yielded a total of 1008 full sets of
observations. The analysis required collection of patient flow data well beyond the usual
capabilities of contemporary hospital information systems.

Point-biserial coefficients of correlation, with diversion status as the binary variable,
were examined against a variety of factors. Comparisons when using full hours of
diversion versus partial hours as the “true” condition did not reveal significant
differences, so partial diversion hours were evaluated as the “true” binary throughout
the analysis for the sake of consistency.

It is important to note that in the real world the decisions to commence or cease
diversion status are, but their nature, highly subjective. Because the purpose of the
study was to examine the root causes of diversion, we did not approach the task from
the standpoint of critiquing or attempting to influence this inherent operational
subjectivity. As a result, any such analysis is itself subjective to a certain degree.

Because both hospitals straddled EMS regional borders and diversion rules vary by
region, each hospital’'s data was used for the sake of determining diversion status rather
than using centralized EMS data. Also, all diversions were considered equally rather
than separately analyzing the factors related to each individual diversion type.

Patterns of diversion were also examined as averages across the hours of the day and

the days of the week in order to ascertain relevant hour of the day and day of the week
patterns. This data analysis was performed separately for each of the hospitals.
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Hospital A:

Diversion Pattern “Hospital A - Diversion Minutes by Hour”

- There were a total of 22 episodes of diversion which started and ended within the
study, with an average length of 814 minutes. There was one episode that began prior
to the study and ended after the study began and so is not included in this calculation,
nor in any calculations which involve the beginning of diversion episodes.

- The hourly diversion pattern shows diversion is highest in the evening hours, settles
back down during the early morning hours, and then stays steady until the mid to late
afternoon (see Fig. 1).

- The goal of the project was to determine the drivers which create this pattern.

Hospital A - Avg Diversion Minutes by Hour
30

”s A\

| 7
T

10

—&— Divert Minutes |

Fig. 1

The following 3 hypotheses were tested to determine the drivers of diversions:

1. ED arrival rate is too high, leading to diversion when the ED becomes full.

2. ED processing of patients is too slow, causing backups that lead to diversion

3. ED arrival and processing rates are fine, but there are not enough beds in the
hospital to accommodate the admissions.

Page 3 of 29
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There are seven sets of data (see Fig. 2), each representing a different view of
arrivals into the ED. The "Arrivals_0" category only includes new arrivals from the
hour in question. Each subsequent category, from "Arrivals_1" to "Arrivals_6"
includes one more hour’s worth added to the total. In other words, "Arrivals_1"
includes arrivals from the current hour added to the arrivals from the previous
hour, "Arrivals_2" includes all of "Arrivals_1" plus the arrivals from two hours ago,
and so on. This is what accounts for the stacked shape as each additional hour is
layered on top. Because average length of stay was 340 minutes, 6 hours is
used as the maximum lag. Correlation coefficients from each of these

cumulatives to Avg Diversion Minutes by hour are as follows:

Arrivals_0 = -0.073
Arrivals_1 = 0.001
Arrivals_2 =0.078
Arrivals_3 =0.165
Arrivals_4 = 0.259
Arrivals_5 = 0.359
Arrivals_6 = 0.460

Hospital A - ED Diversion vs. Arrivals to ER by Hour

O L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) L) 0
== Arrivals_0 == Arrivals_1 == Arrivals_2 =l—Arrivals_3
=& Arrivals_4 Arrivals_5 == Arrivals_6 =—=Divert Minutes
Fig. 2

There is also a possible corollary to hypothesis #1, that overall ED census is a
driver of diversion. When counting the non-boarding census and comparing it to
diversion status, however, the resulting point-biserial coefficient (r = -0.051)
makes clear that this potential explanation should be rejected as well.
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again points towards examining hospital capacity as the primary determinate of
diversion.

Census/Admissions/Discharges: Hospital B

The overall relationship between inpatient census and ED boarders in Hospital B
was similar to that of Hospital A. However, detailed analysis of admission
sources in Hospital B is not presented because scheduled demand played a far
smaller role than that observed in Hospital A.

During the study period, there were 1,158 weekday unscheduled admissions
(average: 38.6/day) and 208 weekday scheduled admissions (average: 6.9/day).
This suggests very little operational flexibility in controlling the variability or timing
of scheduled arrivals. This likely reflects a fundamental difference between most
community hospitals and larger academic centers.

Hospital B Conclusions:

The findings at Hospital B are consistent with and reinforce those at Hospital A.
Specifically, there was no evidence that ED process times were temporally or
mechanistically related to ED diversion while the relationship between ED arrival
rate and diversion was weak. Instead, the data suggest that factors outside of the
ED that combine to increase boarders and limit ED capacity are more important.

Phase Il Summary:

Detailed flow analysis in two very different types of hospitals yielded similar
findings with respect to the root cause of emergency department crowding and
ambulance diversion. Neither increased patient inflow nor increased process time
could be strongly related to diversion status. Instead, diversion was seen as an
outflow problem, with busy emergency departments crowding as patients await
transfer to crowded inpatient services. This problem is exacerbated in hospitals
with large volumes of scheduled admissions, since these necessarily compete for
the same resources. The “collision” of scheduled and unscheduled patient flows
results in diversion patterns that are specific and reproducible. Because
scheduled patient flows are theoretically controllable, better understanding of this
phenomenon may suggest means of decreasing diversion. If the experience here
may be generalized, we conclude that institutions with small (or uncontrollable)
scheduled patient flows will require addition of resources on the inpatient side if
diversion is to be substantially reduced.
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