

Service Engineering

Class 7

Service Times (Durations, Processes)

Why Significant? eg. +1 second of 1000 agents costs \$500K yearly.

Why Interesting? Must accurately

Model, Estimate, Predict, Analyze, Design:

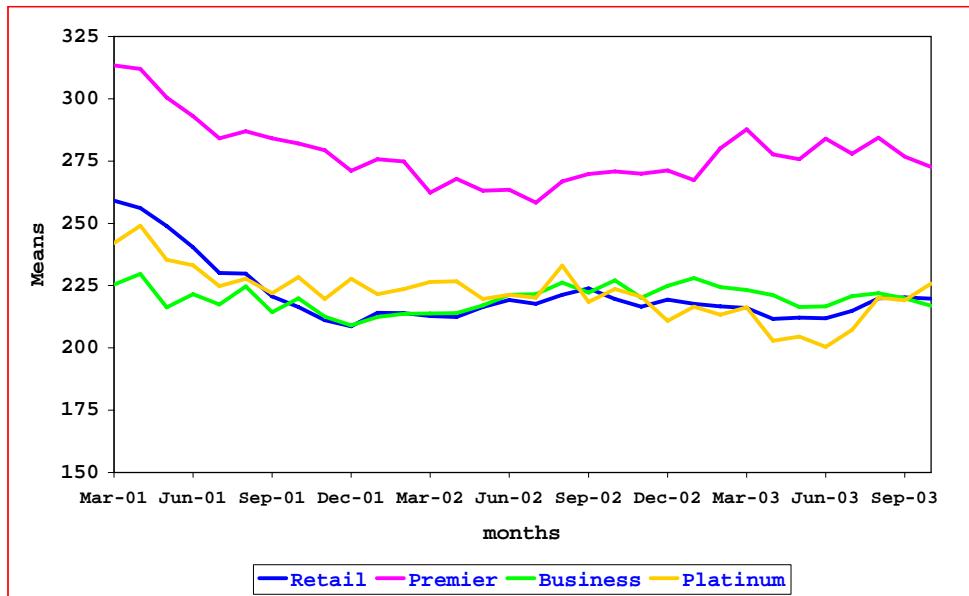
- Resolution: Sec's (phone)? min's (email)? hr's (hospital)
- Parameter, Distribution (Static) or Process (Dynamic)?
- Does it include after-call work?
- Does it include interruptions?
 - Whisper time, hold time, phones during face-to-face,...
- Does it account for return services?

How affected by covariates? How affects performance?

- Experience and Skill of agents (Learning Curve)
- Type of Customer: Service Type, VIP Status
- Time-of-Day: Congestion-Level
- Human Factor: Incentives, pending workload, fatigue
- Heavy-Traffic: The ED and QED Operational Regimes (later)

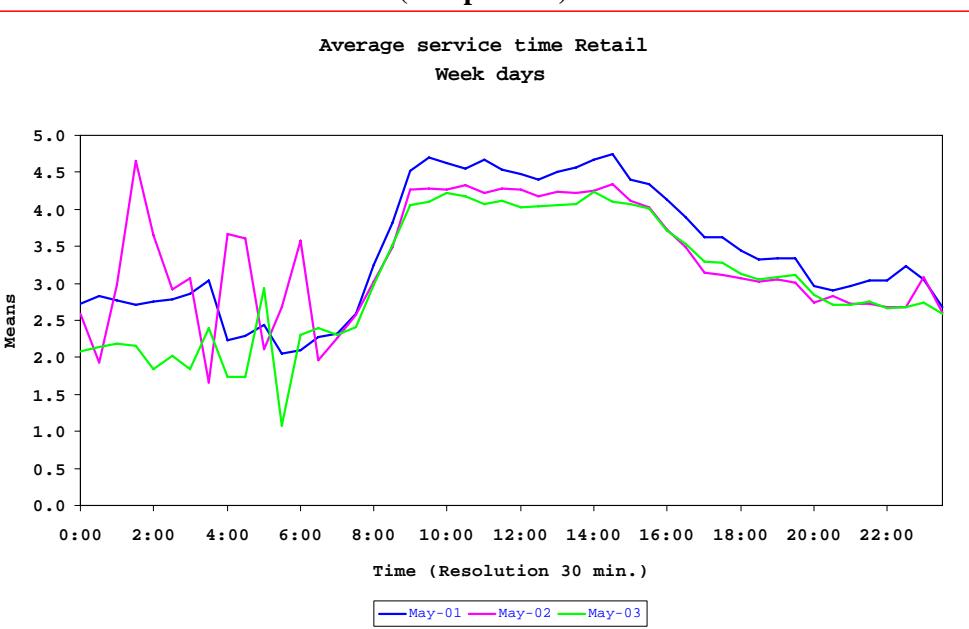
How to calculate Offered-Load? (towards Staffing)

Contents: **Service Times; Phase-Type Durations.**


- Empirical Introduction, mainly via DataMOCCA.
- Motivating Examples.
 - Designing an IVR/VRU.
 - Pooling a Service Network.
 - Long-term Care of the Elderly.
- **Sample size.**
- **What is Service Time (Duration)?**

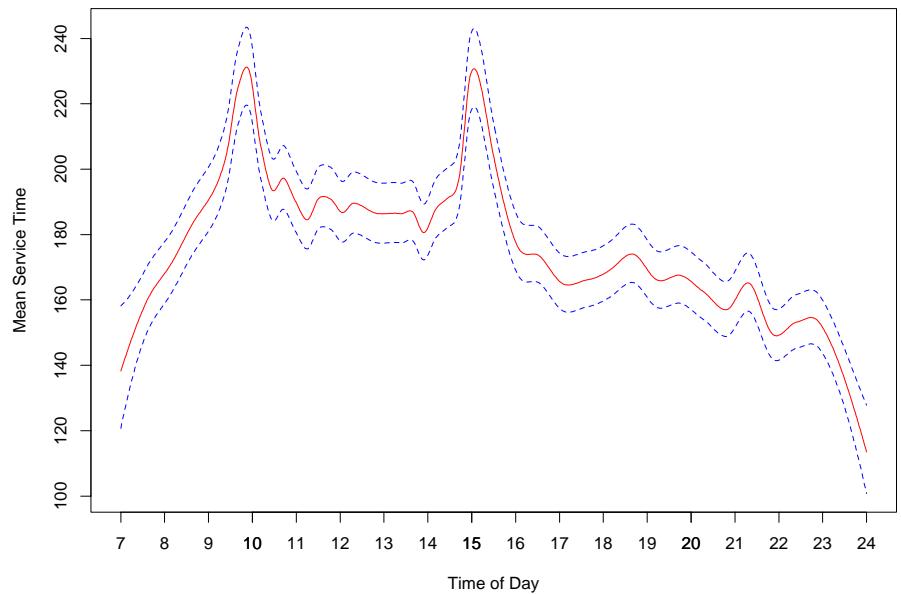
A complex answer to a “simple” question:

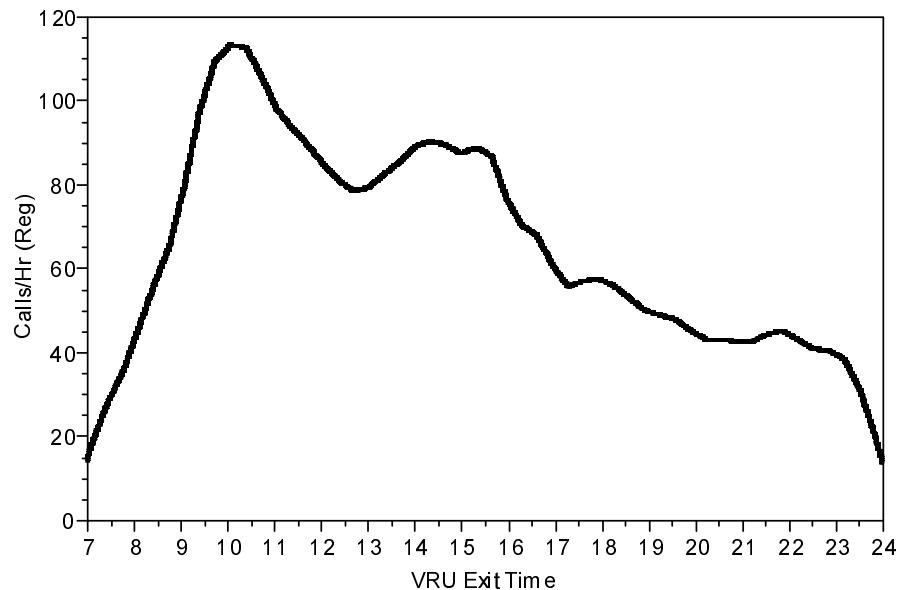
 - Single vs. multiple visits.
 - After-Call Work (ACW); Utilization Profiles.
 - Time- vs. State-dependency.
 - Incentives (Call Center, Hospital)
 - Averages do not tell the whole story: the need for **Distributions.**
- Service duration = **Statistical Distribution:**
 - **Empirical:** Histogram, CDF, Hazard Rates (Later);
 - **Parametric:** **LogNormal, Exponential**, Others.
- Stochastic Ordering (of distributions).
- Service = **Stochastic Process: Phase-type** MJP.
- “Sufficient Statistics” in Heavy Traffic: ED, QED (later)
- Offered-Load (Work)


Service Times: Trends and Stability

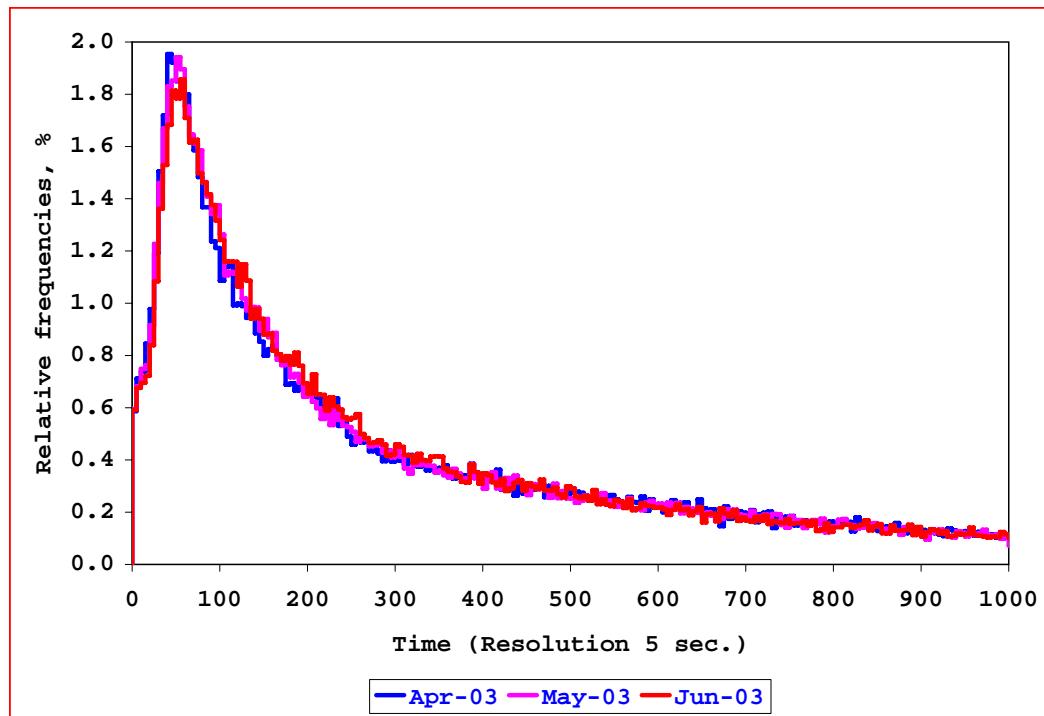
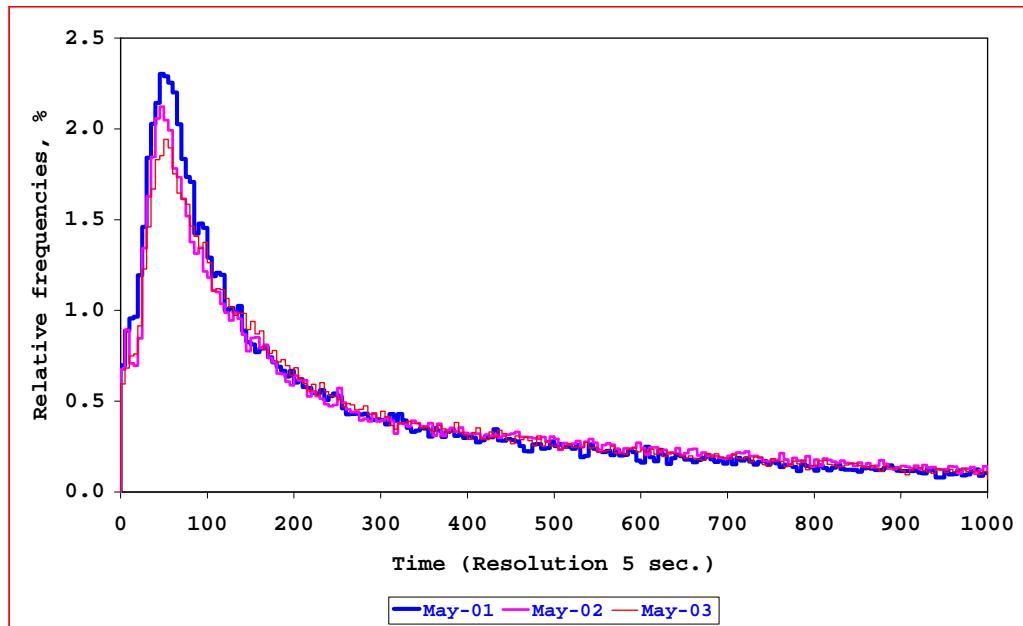
USBank Average Customer Service Time, Weekdays

USBank Average Customer Service Time, Telesales

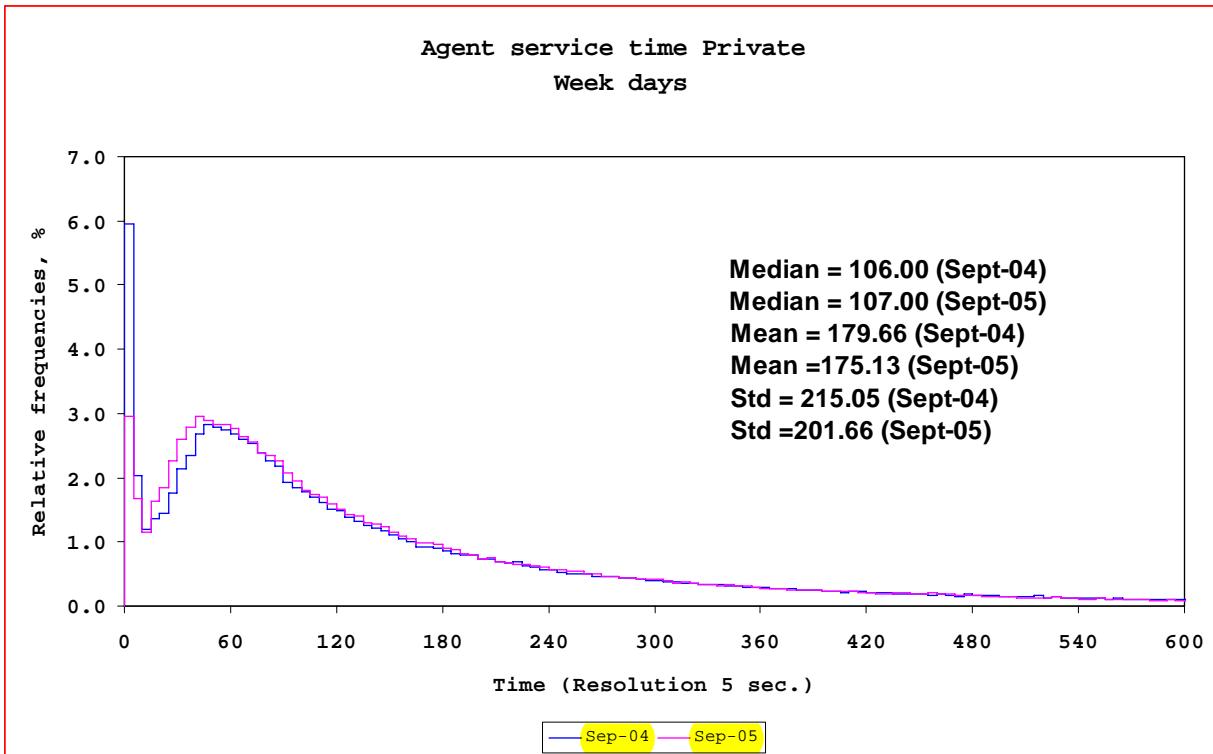

US Bank: Dynamics of average customer service time for Retail calls
(Sample Size)


Service Times: The **Human Factor**, or Why Longest During Peak Loads?

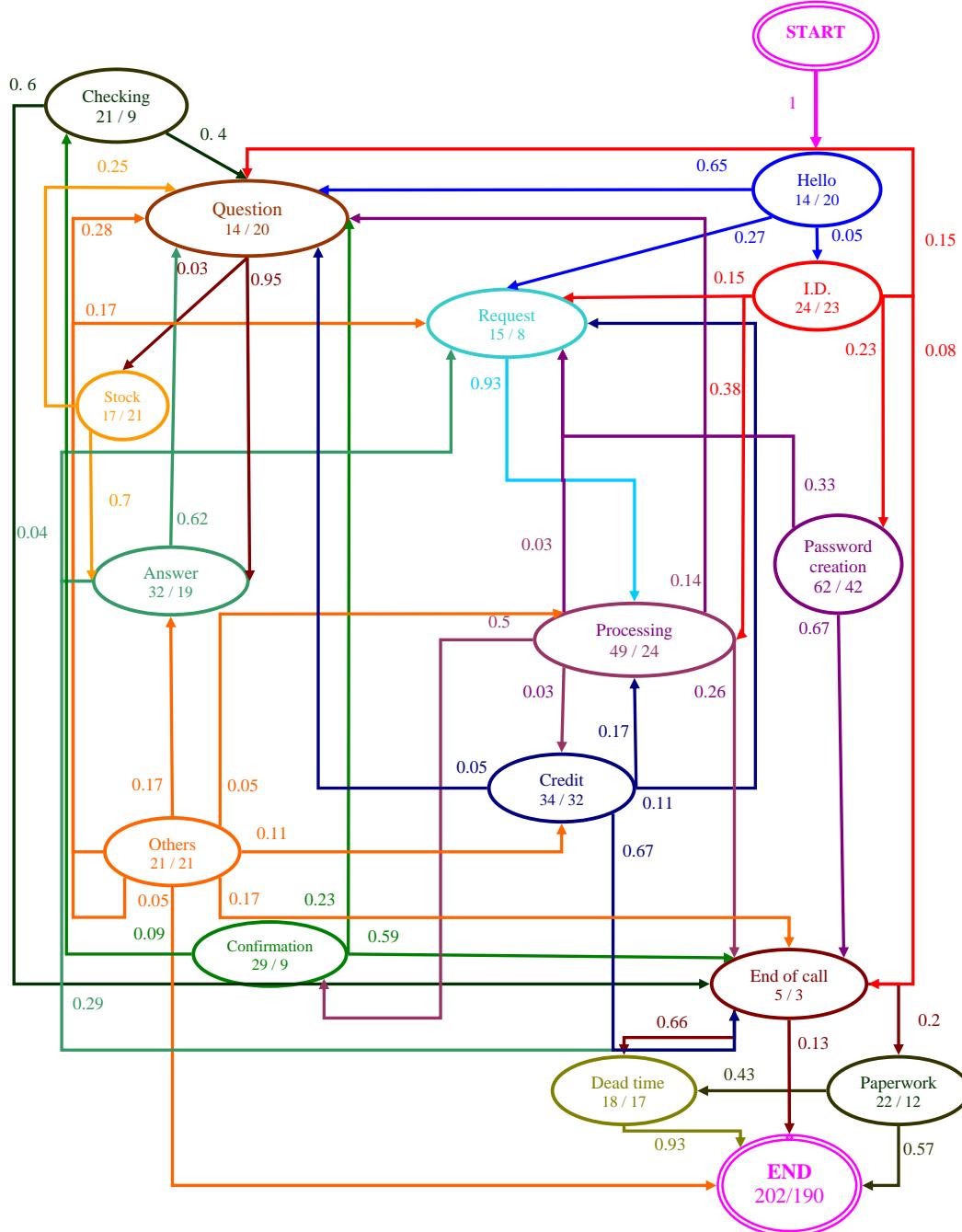
Mean-Service-Time (Regular) vs. Time-of-Day (95% CI)
(n=42613)



Arrivals to Queue or Service - Regular Calls
(Inhomogeneous Poisson)

Service Times: **5 Sec's Resolution**



USBank. Service-Time Histograms for Telesales (MOCCA)

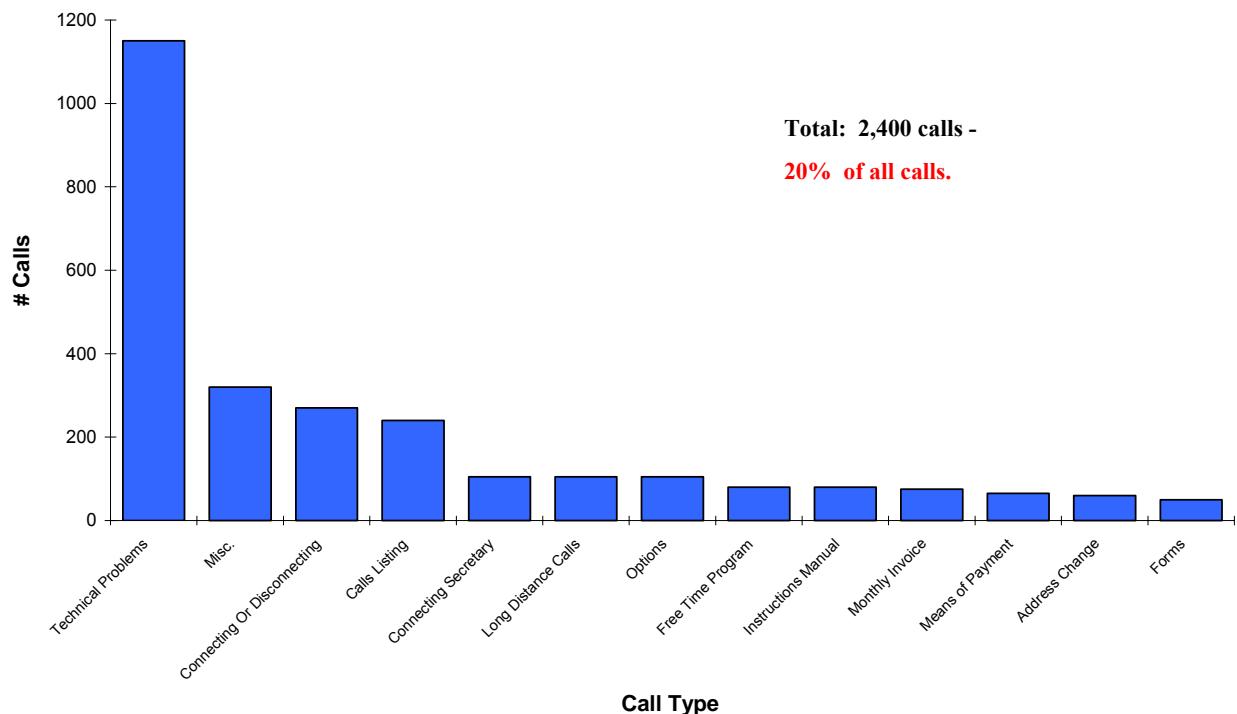

Service Times in Israeli Telecom

IL Telecom: Dynamics of the distribution of agent service time for Private calls

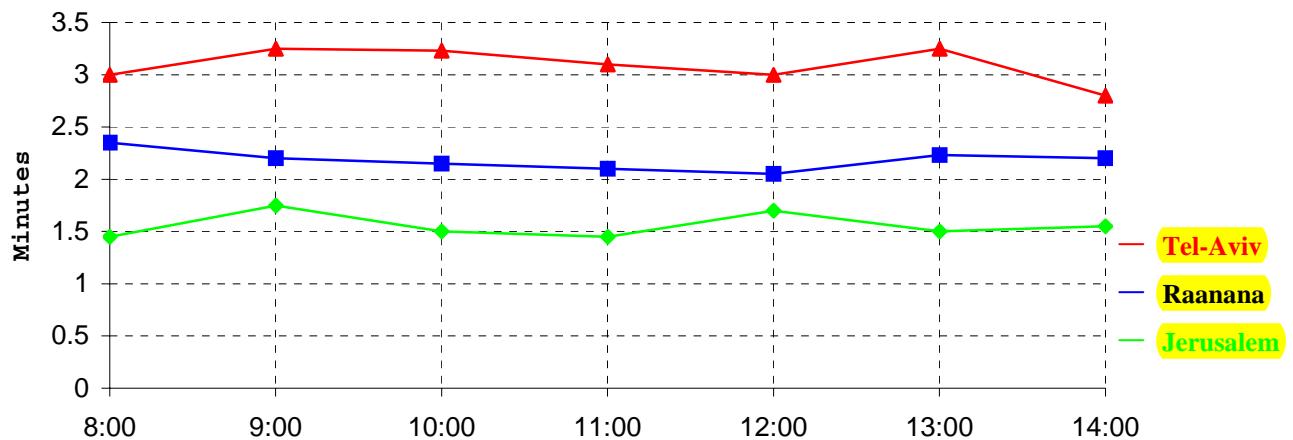
- Overall pattern seems close to LogNormal (except for the very short service times);
- Histograms of different months are **very** similar;
- Reason for short service durations unknown here.

Figure 20: Phase-Type Model of a Telephone Call (# within phases: Mean/STD)

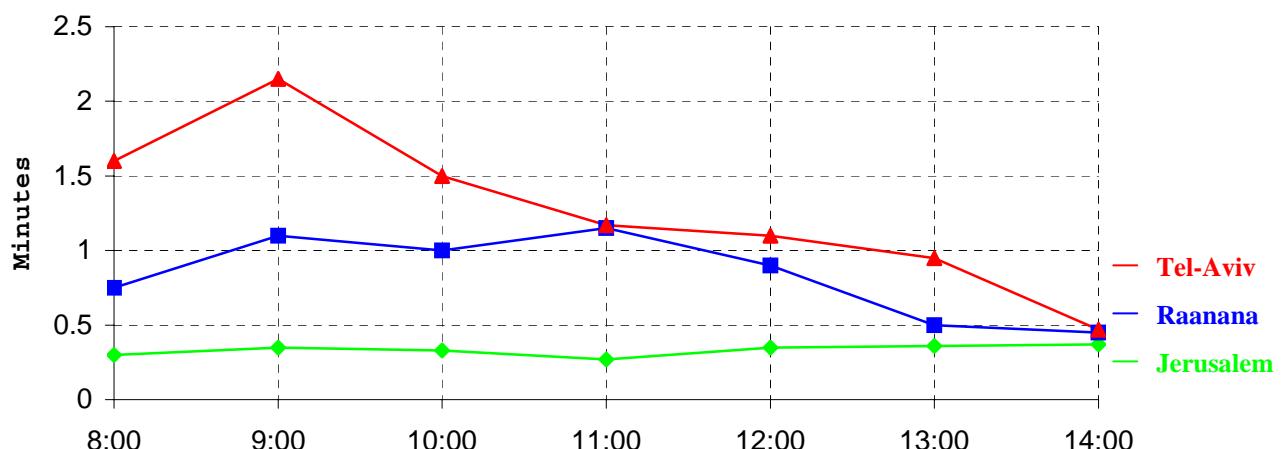
At the first stages of the ServEng course, we taught PH models only as a conceptual framework for the structure of service processes. This role comes out convincingly in the case study that motivated [57]: a service network in a local municipality transformed into a single-stop service station; to this end, the servers were trained to perform all services (flexible, or


Service Time \neq Contact-Time

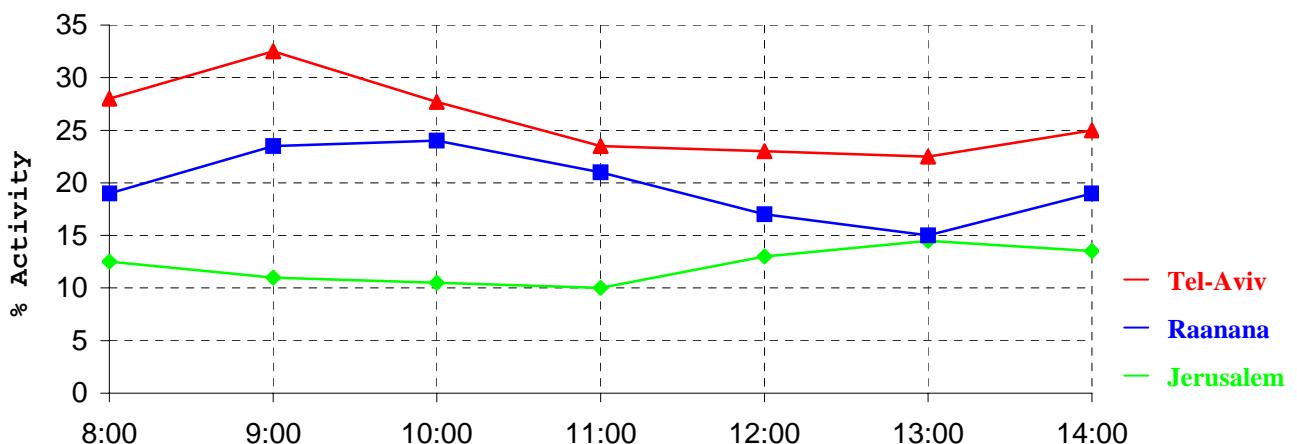
Common (Often Too Common):


- Customers routed for additional services (vs. “First-Time-Resolution”);
- Servers interrupt face-to-face service with a phone-call (vs. the increasingly prevalent “Central Call Center”);
- Agents place customers on hold, eg. technical consultation with veterans;
- Agents can be engaged in non-phone activities, eg. ACW Time (After-Call Work).

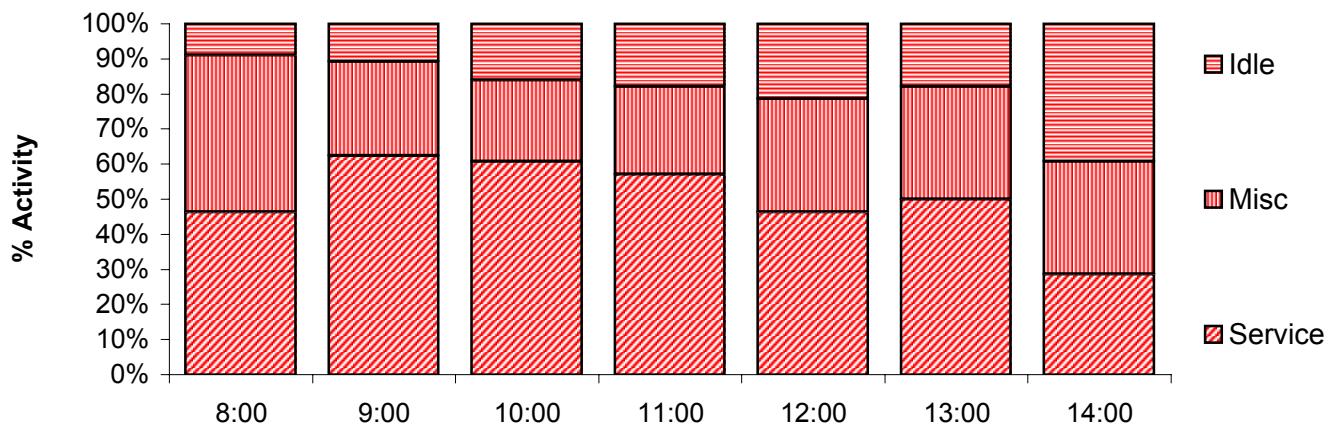
Reasons for Redials in a Cable Company

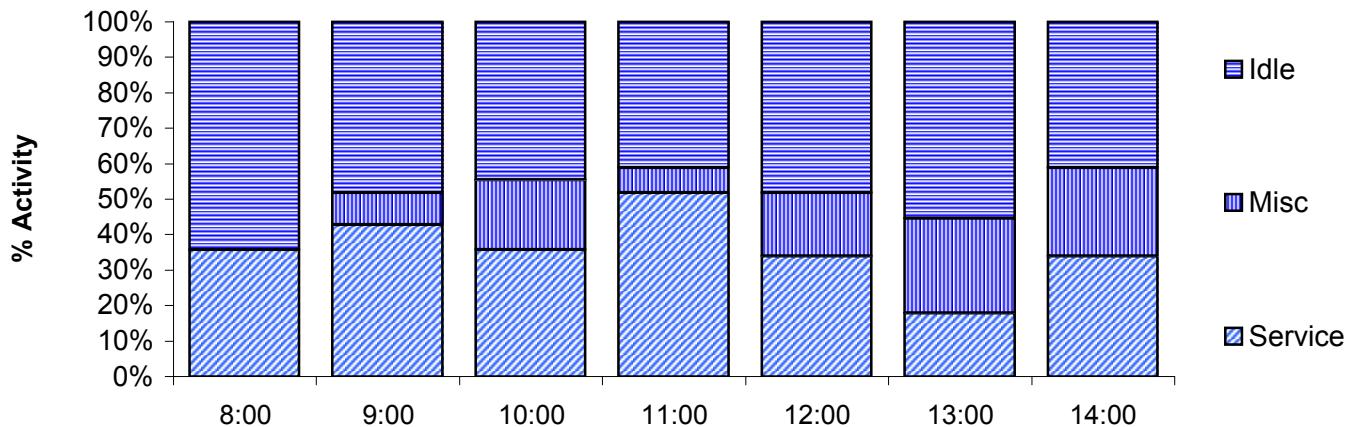


Service Performance

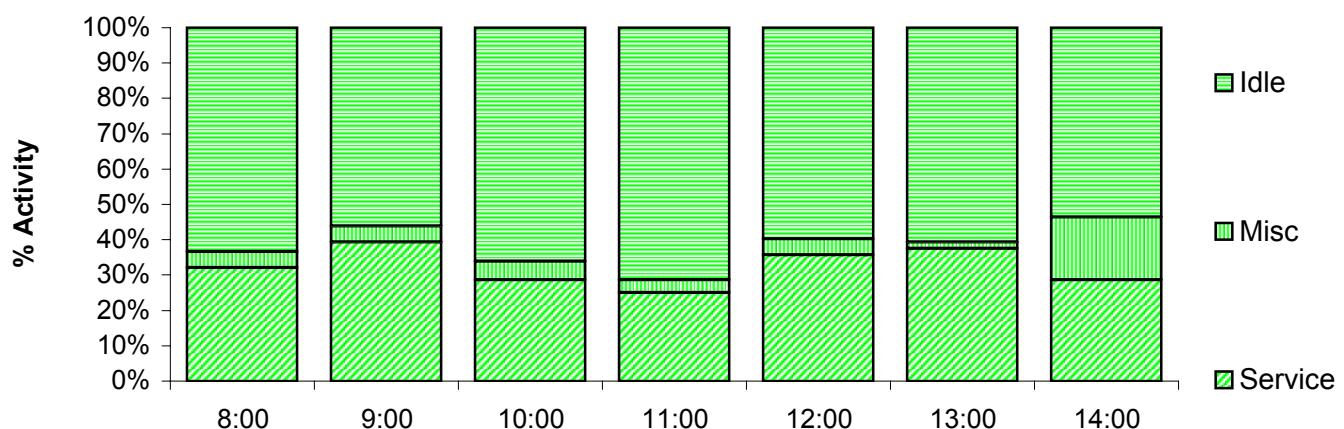

Service Time – Average:

Waiting Time – Average:


% Abandonment:


What is “Service Time” ?

Utilization Profile in 3 Call Centers Doing the Same Thing


Tel-Aviv:

Raanana:

Jerusalem:

Calculating (Mean) Service Time

First approach:

Sum up components of the "service time",
then add related activities of servers.

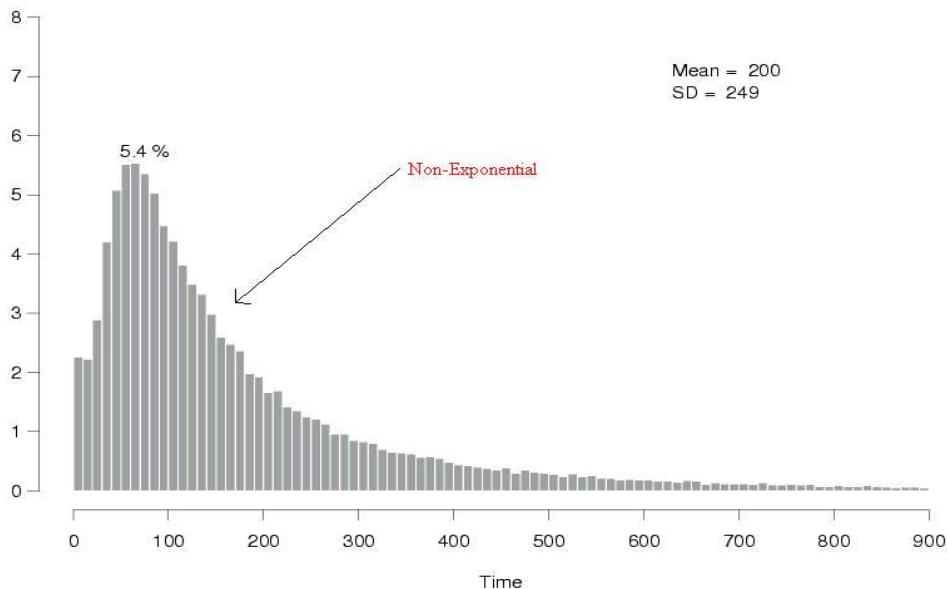
Second approach (Avoids Ambiguities):

Fix a time interval (eg. a shift).

$$\text{Mean Service Time} = \frac{\text{Available Time} - \text{Idle Time}}{\text{Number of Calls}},$$

where

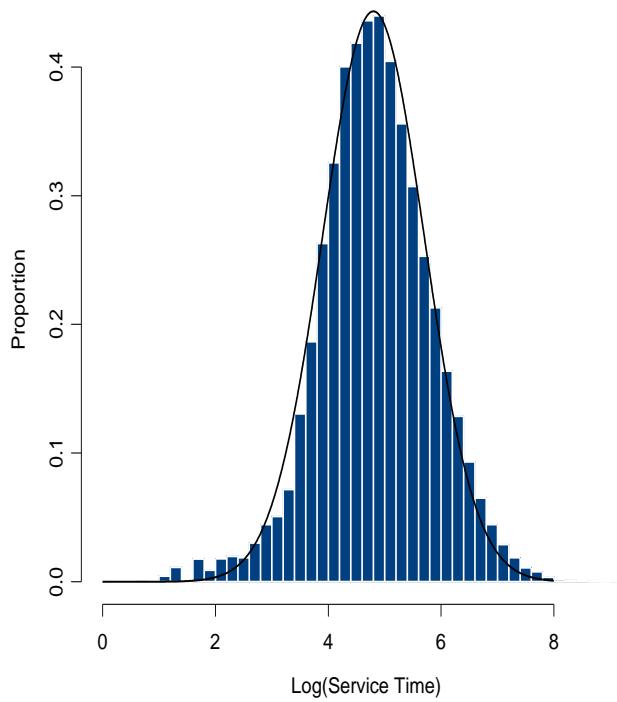
Available Time = # Agents \times Interval Duration,
and


Idle Time is summed over all agents.

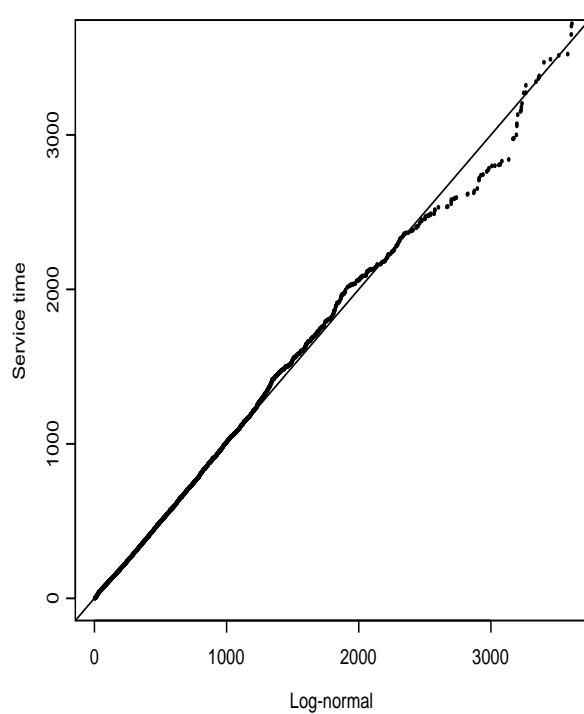
LogNormal Distribution

Empirically prevalent in call centers (overall, service types, individual agents), but yet **no** theoretical explanation.

Israeli Bank. Nov-Dec.


Good in **statistical** models
(eg. regression of $\log(\text{service-time})$).

Not so good for **queueing** models
(which typically “prefer” Exponential durations).


Validating LogNormality of Service Times

Log(Service Times).

QQ Plot

QQ Plots will be reviewed at the Recitation

Lognormal Model for Call-Center Service-Times

Basics of Lognormal Distribution

Definition: X is a lognormal random variable if $\ln(X)$ is normally distributed with mean μ and variance σ^2 .

Density:
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}.$$

Mean: $e^{\mu + \sigma^2/2}.$

Variance: $e^{2\mu + \sigma^2} (e^{\sigma^2} - 1).$

CV: $\sqrt{e^{\sigma^2} - 1}.$

Note that CV does not depend on μ .

For small σ ($\sigma < 0.5$), one can use $CV \approx \sigma$.

Median: $e^\mu.$

Mode: $e^{\mu - \sigma^2}$ (compare the mean, median and mode).

Hazard Rate: (*standard* lognormal random variable):

$$h(x) = \frac{f(x)}{S(x)} = \frac{\frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}}{\int_{\ln x}^{\infty} \frac{1}{\sqrt{2\pi}\sigma t} e^{-\frac{(t - \mu)^2}{2\sigma^2}} dt} \sim \frac{\ln x}{x} \quad (x \rightarrow \infty).$$

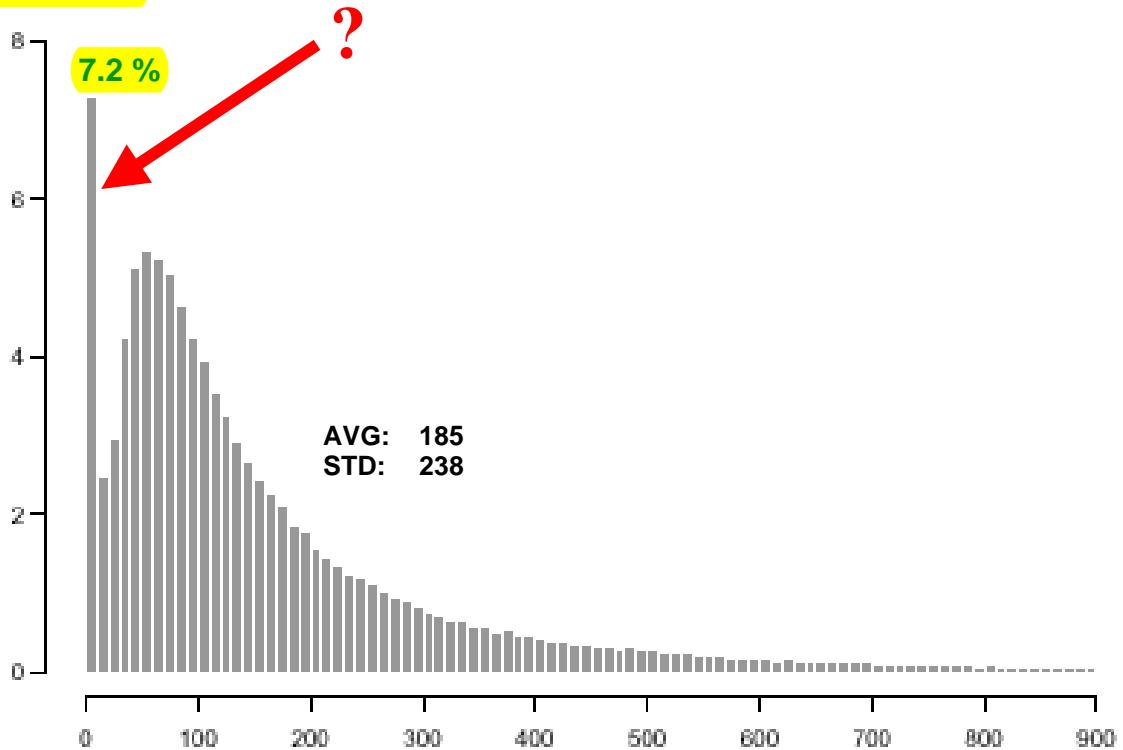
Data Description

We consider November and December service times for the four major service types: IN, NE, NW and PS. (The data was cleaned according to the guidelines used, for example, in the “Empirical Models” homework.) Overall, 64704 service transactions were analyzed.

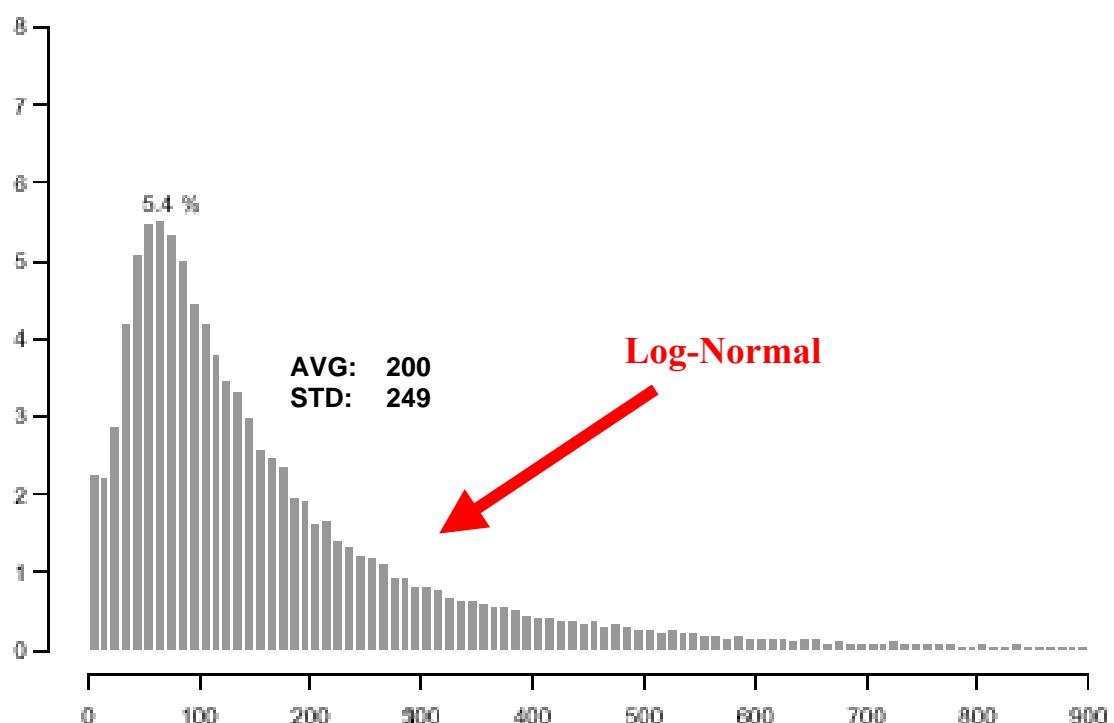
The distribution according to service types is:

IN – 5592, NE – 7622, NW – 5774, PS – 45716.

For every service type we check if the lognormal distribution provides a good fit for its service-time duration.


Results of standard goodness-of-fit tests (chi-square, Kolmogorov-Smirnov) are mostly negative: the lognormal hypothesis is rejected. However, those tests are rarely applicable for large samples of real data such as ours: if the sample is large enough, the test recognizes very small differences between real-data and theoretical distributions, and hence rejects the hypothesis in question. However, the fit can be good enough for applications.

Therefore, we shall use two graphical tests, namely **histograms** and **Q-Q plots**, in order to compare the sample service-time and lognormal distributions, and check if the differences are really significant for our purposes.


Beyond Data Averages

Short Service Times

Jan – Oct:

Nov – Dec:

Percent Calls w/Service < 10sec

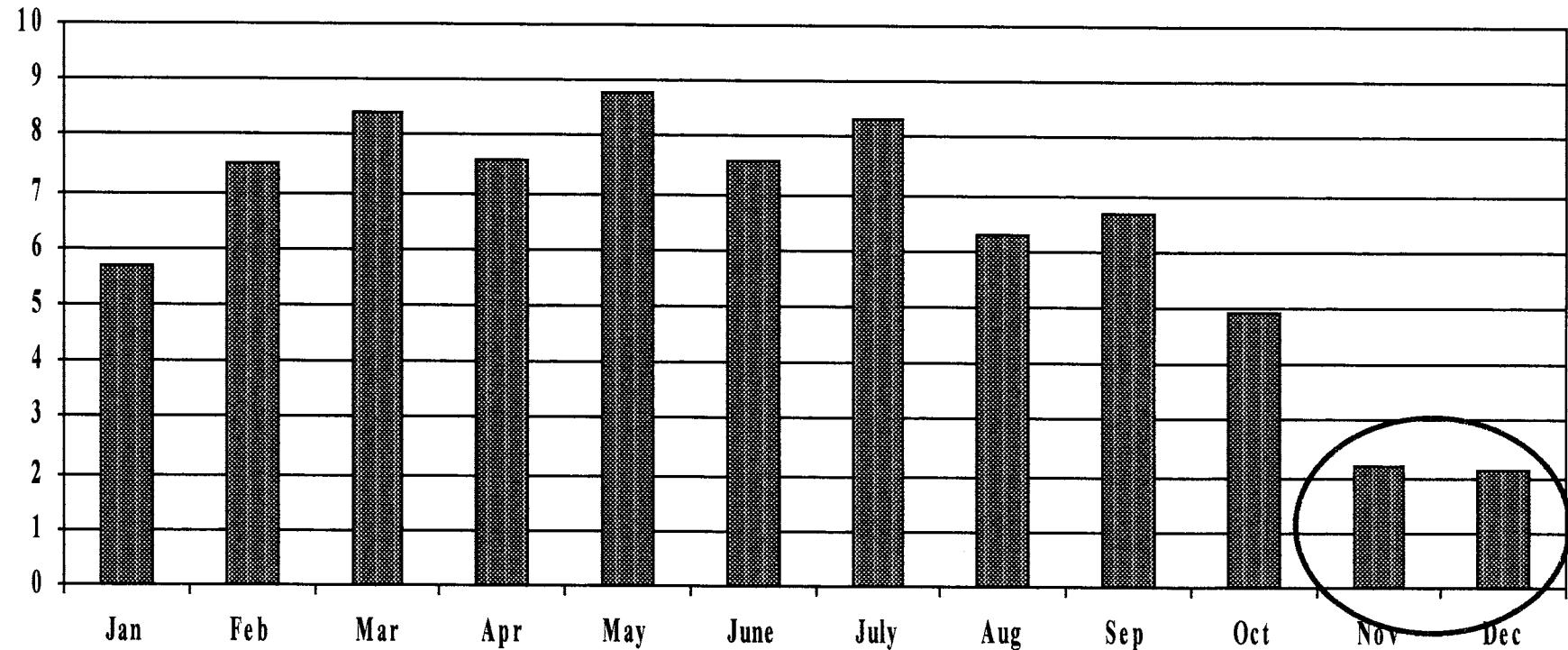
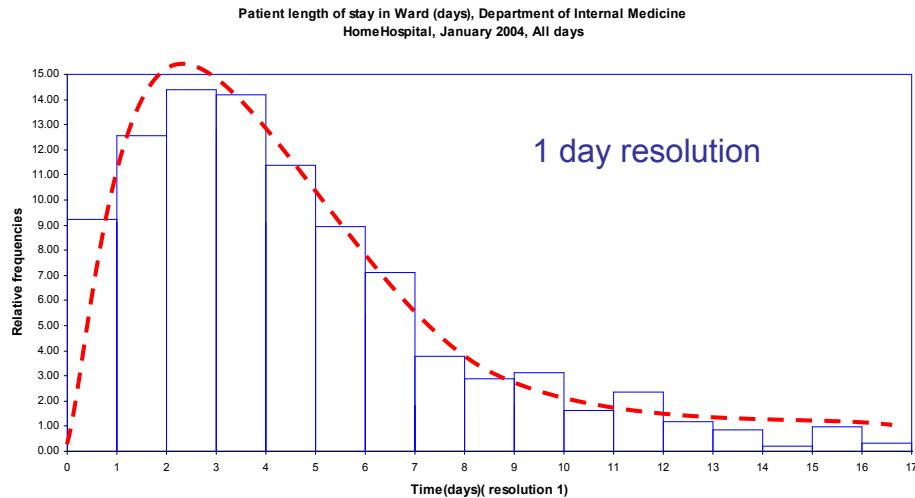


Table 52: Number of calls handled by an agent

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
AVI	0	0	0	1117	2208	2019	2789	2710	1417	2026	2523	2395
AVNI	1493	1736	642	539	1786	2219	2092	2392	1156	1888	1988	2136
BASCH	999	1164	1708	1155	982	906	858	2185	1973	1055	1326	1242
BENSION	1283	1135	0	1053	1108	1016	1682	1298	1076	1303	1546	1176
DARMON	309	515	633	519	577	436	309	370	297	194	425	128
DORIT	696	1047	0	811	546	862	750	2228	1319	1384	1640	1605
ELI	387	508	777	447	560	436	395	458	416	363	502	352
GELBER	333	143	510	427	859	281	386	332	67	179	165	269
GILI	668	614	1155	803	1108	974	418	0	355	456	412	298
KAZAV	1995	1693	1240	1451	1731	2251	1737	1168	729	1570	1047	2038
MEIR	0	0	0	0	0	0	127	344	318	280	406	454
MORIAH	1360	1223	1591	1351	1866	1980	2416	2152	1526	1940	1793	515
PINHAS	79	40	359	244	31	311	422	241	143	105	51	63
ROTH	0	0	397	1292	1928	1967	1831	1749	1625	1914	1458	1038
SHARON	1985	1674	2780	1938	2563	2657	2537	2875	1803	1935	2532	2140
STEREN	0	1043	2294	1516	2163	2231	1423	2455	1672	709	2375	2568
TOVA	1923	1679	1562	1059	1464	1389	1890	1811	1361	1971	941	0
VICKY	895	0	0	0	1006	1378	1415	1674	1472	1582	1641	1990
YIFAT	1312	1901	1745	1305	1464	1076	780	90	1137	1315	0	0
YITZ	1771	1791	1402	1203	1355	1367	1009	69	705	1743	2420	2353
ZOHARI	891	1144	1398	1148	1479	1450	980	1494	1423	1359	1504	1094
Z2ARIE	0	0	0	0	0	0	0	56	225	315	432	534
Z2ELINOR	0	0	0	0	0	0	0	45	352	288	222	310
Z2EYAL	0	0	0	0	0	0	0	95	331	428	579	618
Z2IFAT	0	0	0	0	0	0	0	94	260	314	215	0
Z2LIOR	0	0	0	0	0	0	0	84	250	136	126	138
Z2NIRIT	0	0	0	0	0	0	0	116	327	474	387	545
Z2OFERZ	0	0	0	0	0	0	0	71	311	260	242	334
Z2SPIEGEL	0	0	0	0	0	0	0	71	311	260	153	322


Table 53: Number of calls with short service time

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
MORIAH	233	230	356	290	614	695	865	597	490	455	4	1
AVI	0	0	0	47	111	144	295	221	121	76	35	26
AVNI	11	13	4	5	6	25	16	18	4	8	8	11
DARMON	2	11	8	9	10	7	1	0	1	1	0	0
ELI	9	7	10	12	22	18	15	4	8	3	6	5
KAZAV	57	40	48	44	48	63	40	27	15	18	4	6
MEIR	0	0	0	0	0	0	1	8	3	1	2	1
PINHAS	3	0	58	25	4	14	11	6	8	1	0	0
ROTH	0	0	10	10	36	21	43	25	32	31	3	6
SHARON	58	49	86	52	67	78	66	63	38	23	43	49
TOVA	52	163	269	132	231	193	100	109	207	190	6	0
ZOHARI	4	8	12	22	17	20	9	14	5	7	10	7

gives rise to an exponential distribution (while there could possibly be a LogNormal “hiding” underneath, at the seconds-scale).

- “*Averages do not tell the whole story*”: For exposing operational phenomena of significance, service management must often rely on the full (empirical) distribution function, and at the right granularity. This is important to emphasize since, often, practitioners archive only summary averages, not even standard-deviations, let alone empirical distributions. (This relates to issues addressed in our Measurement lecture; see Section 4.2.)

Figure 17: Length-of-Stay (LOS) at the Internal Wards of a Hospital: LogNormality, in *Days*

We conclude our discussion of service durations with some comments on exponentially distributed durations - this is a prevalent model due to the memoryless property of the Exponential distribution (the only such continuous distribution), which renders it central in Markovian models of service systems.

An immediate (only necessary) test for exponentiality is $CV = 1$ (mean = std). Having passed this test, one could visually confirm exponentially, based on the fact that the operation of rounding retains the memoryless property. It follows that any rounding of the exponential (e.g. the lower integer part) yields a Geometric distribution (the only discrete memoryless distribution); thus, an equal-bin histogram of exponential corresponds to a probability function of geometric, which is easy to recognize visually: specifically, there must be a constant height-ratio between any two adjacent bars of the histogram. See Figure 19, which shows suspects of two exponential examples. The left, with $CV = 1$, describes durations of

phone-calls; the right, with $CV \approx 7.89/7.69$, arises from durations of a face-to-face service in a local municipality. Both are plotted in resolutions of *minutes* (as opposed to seconds in Figure 16).

Figure 18: Length-of-Stay (LOS) at the Internal Wards of a Hospital: Mixture (of Skewed-Normals), in *Hours*

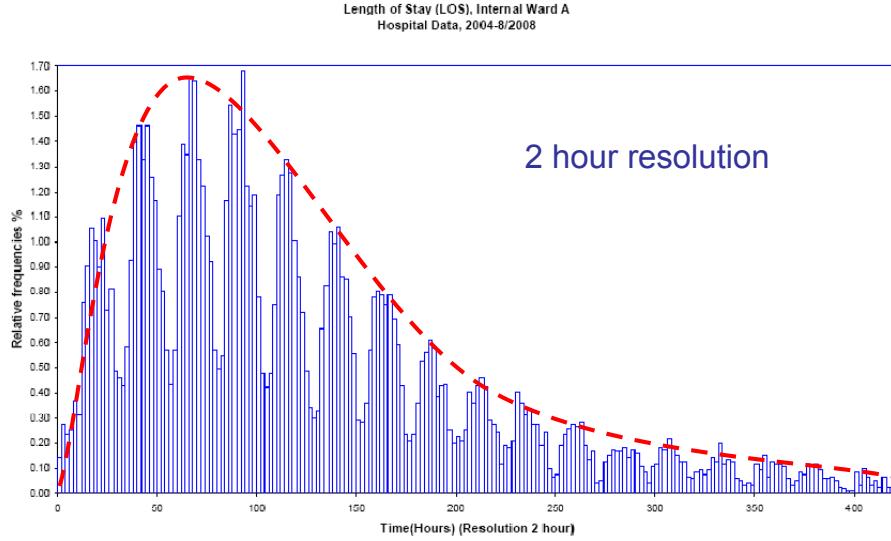
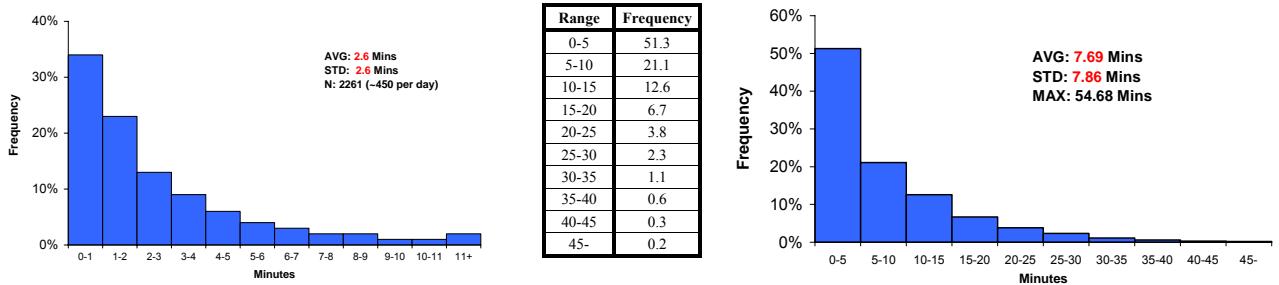
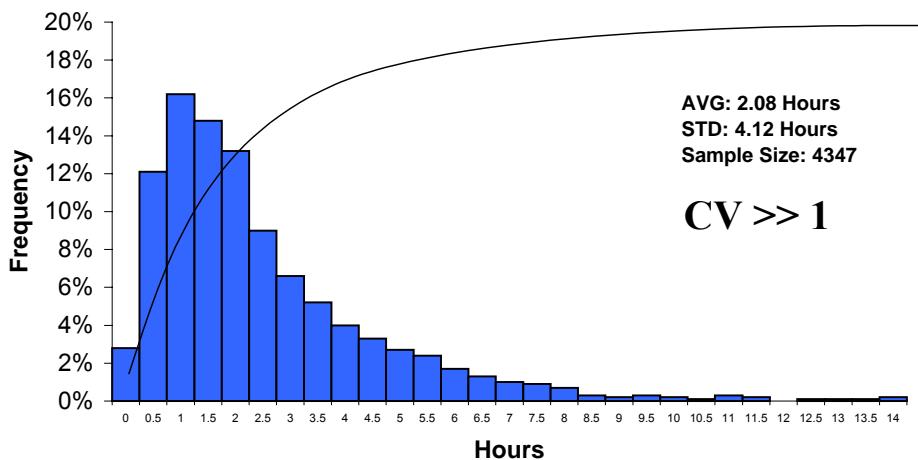
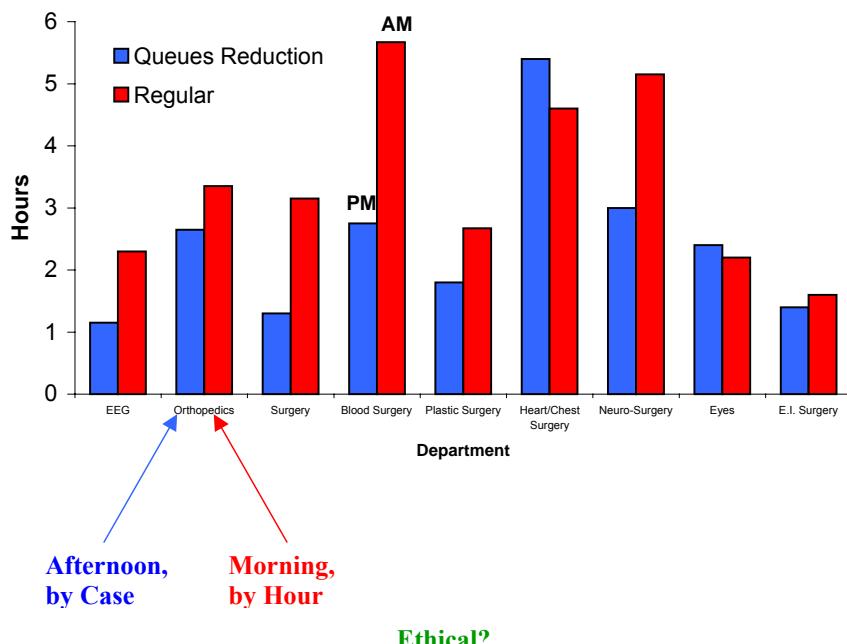



Figure 19: Recognizing the Exponential Distribution when Seeing One: A Call Center and a Local Municipality, in minutes



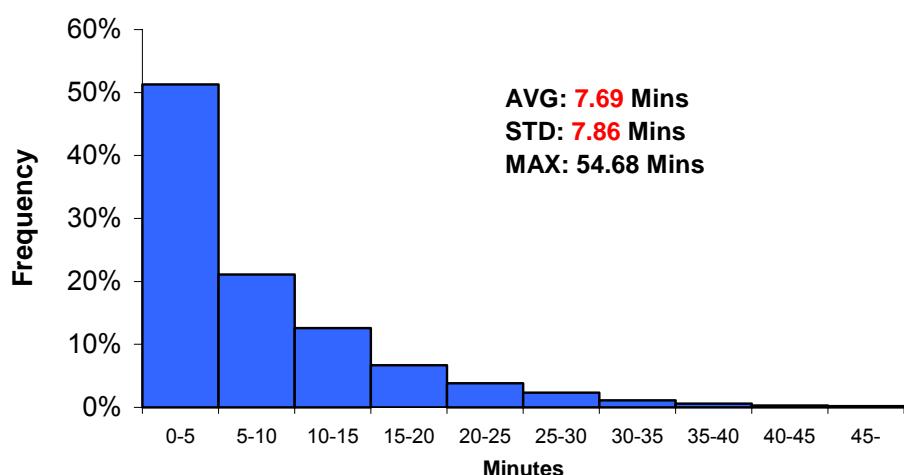
Service Structure: Duration, or its (empirical) distribution function, is a *static* attribute of the service process. (Though we shall later introduce the hazard-rate as a means for capturing dynamic attributes of a distribution). *Structure* is the attribute that captures the *operational dynamics* of the service process, which we model by a *Phase-Type (PH) distribution*: the phases correspond to evolving phases of the service process. See Figure 20, created within an undergraduate project, which presents a (data-based) model of a telephone conversation between customers and telephone agents. Note that resolution is in seconds: for example, the duration of the “I.D.” phase has an average of 24 seconds, with std=23; total duration is 202 seconds on average, with std=190.


Service Times: The **Human Factor**, or Even “Doctors” Can Manage

Operations Time Histogram:

Operations Time - Morning vs. Afternoon:

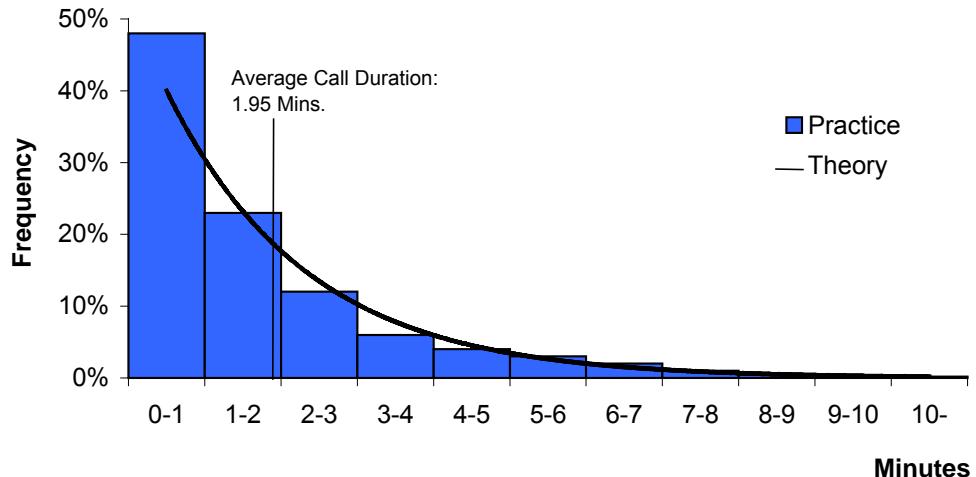
Local Municipalities

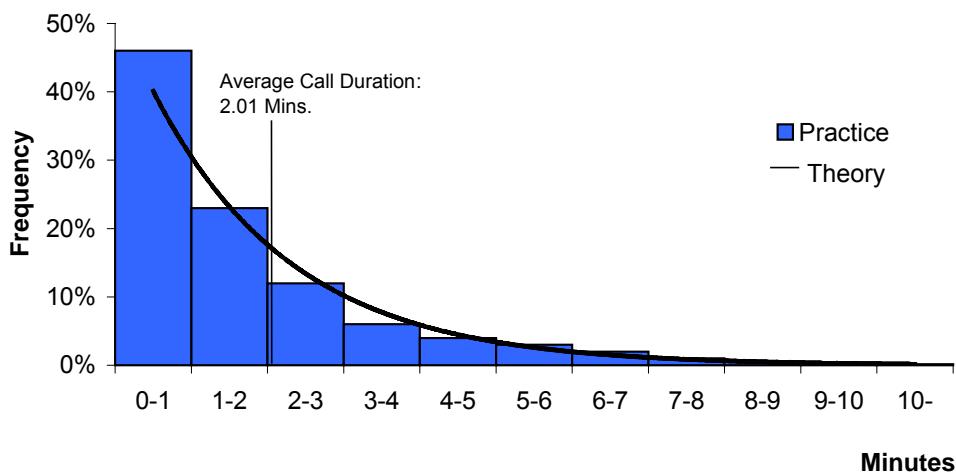

Department	Station No.	Total Customers	Avg. Arrival Rate (1/Hr)	Avg. Service Time (Mins)	STD (Mins)	Maximal Service Time (Mins)	Utilization	Avg. Waiting Time (Mins)
Water	N/A	187	1.8 ± 0.2	8.87 \pm 1.0	8.15	54.68	13.3%	4.76
Tellers	N/A	1328	12.6 ± 0.5	8.82 \pm 0.4	8.55	49.37	30.8%	7.73
Cashier	N/A	757	7.2 ± 0.4	6.64 \pm 0.4	6.94	29.95	79.7%	3.89
Manager	N/A	190	1.8 ± 0.2	7.99 \pm 1.0	8.44	38.97	24.1%	9.16
Discounts	N/A	317	3.0 ± 0.3	4.59 \pm 0.4	4.54	36.72	23.1%	3.65

Water	1	57	N/A	7.80 \pm 1.70	7.61	31.28	6.5%	N/A
	2	130	N/A	9.34 \pm 1.20	8.37	54.68	19.3%	N/A
Tellers	3	336	N/A	9.04 \pm 0.80	8.93	49.05	48.2%	N/A
	4	208	N/A	9.93 \pm 1.00	8.82	49.12	33.0%	N/A
	5	417	N/A	8.97 \pm 0.70	8.55	49.37	59.4%	N/A
	6	144	N/A	9.53 \pm 1.20	8.75	41.70	21.8%	N/A
	7	156	N/A	8.03 \pm 1.10	7.96	35.27	19.8%	N/A
	8	67	N/A	3.74 \pm 0.70	3.58	21.03	4.0%	N/A
Cashier	9	757	N/A	6.64 \pm 0.40	6.94	29.95	79.7%	N/A
Manager	10	190	N/A	1.99 \pm 1.00	8.44	38.97	24.1%	N/A
Discounts	11	317	N/A	4.59 \pm 0.40	4.54	36.72	23.1%	N/A

*Service time ranges given with 90% confidence.

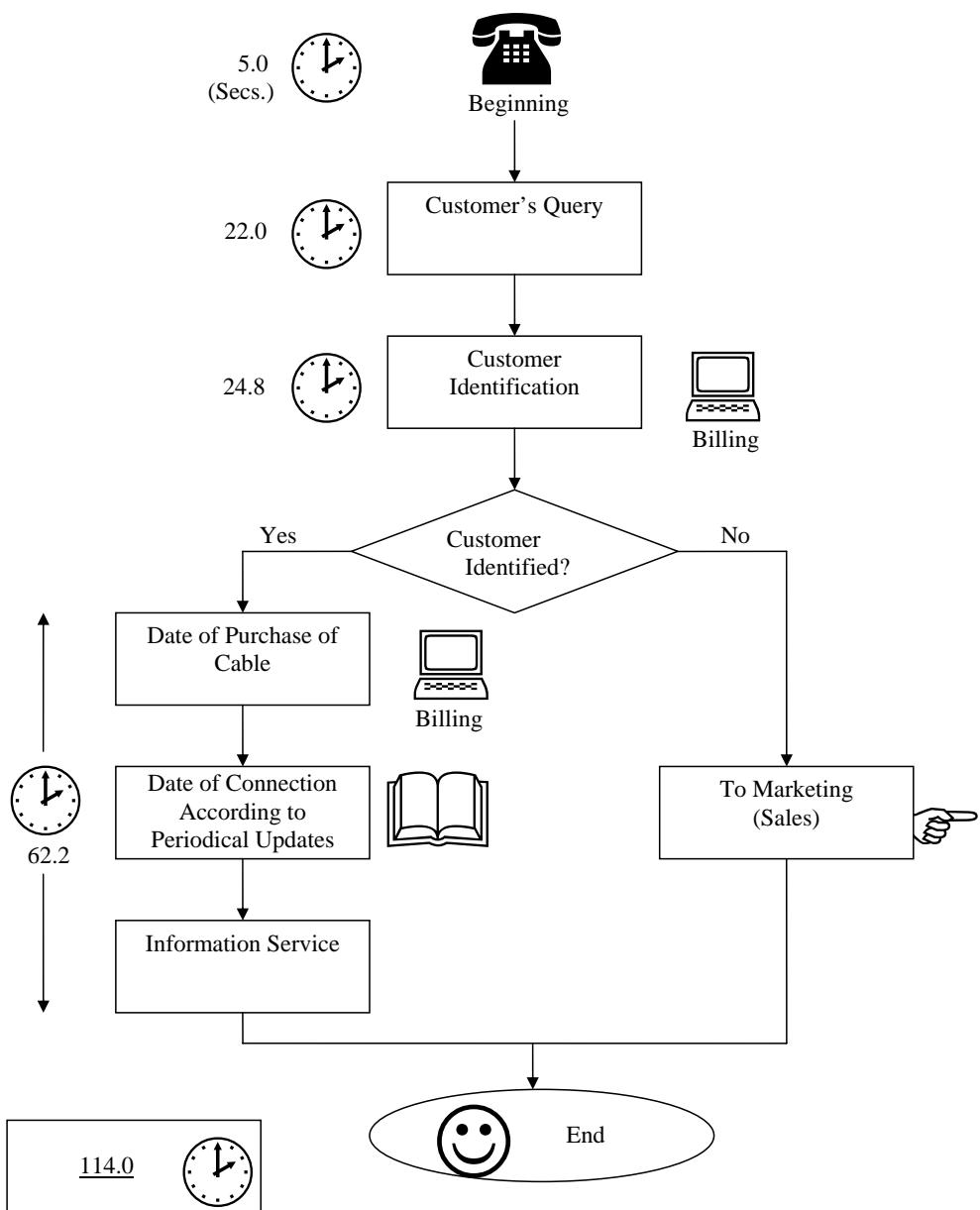
Service Time Histogram – Overall:


Range	Frequency
0-5	51.3
5-10	21.1
10-15	12.6
15-20	6.7
20-25	3.8
25-30	2.3
30-35	1.1
35-40	0.6
40-45	0.3
45-	0.2


Service Times: Exponential (Phone Calls)

Call-Duration Frequency - North:

Call-Duration Frequency – Central:



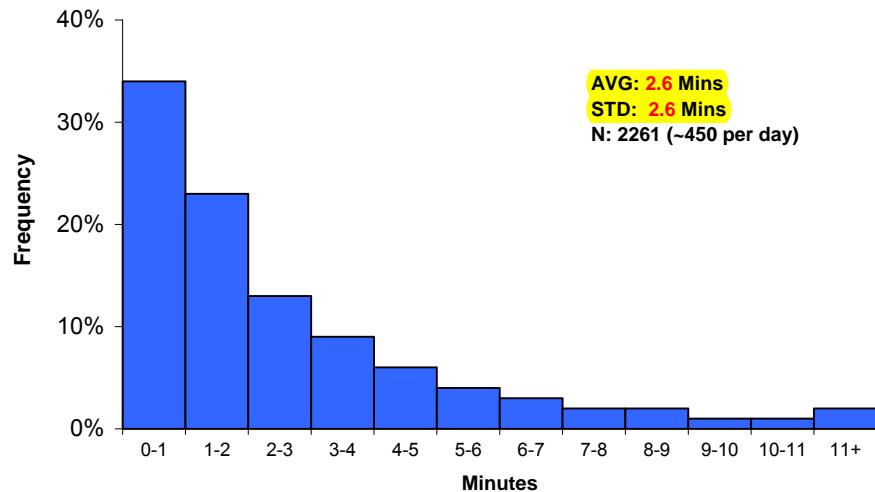
Q. How to recognize "Exponential" when you "see" one?

A. Geometric Approximation.

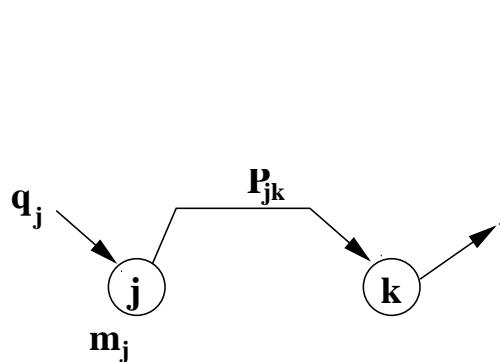
Service Times: **Phase-Type Model**

Late Connections

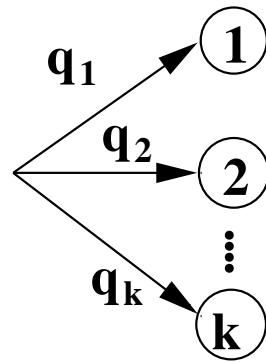
? **Where does human-service start / end (recall 144)?**
 “Average” picture.


Service Times: from Exponential to Phase-Type

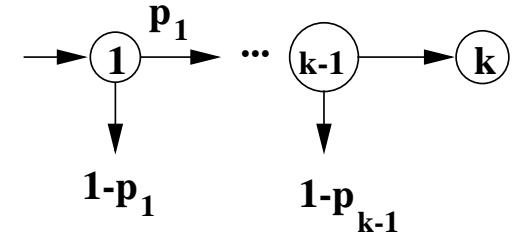
Static Model: Exponential Duration


Face-to-Face Services in a Government Office

Service Times Histogram:



Dynamic Model: Phase-Type Duration


General

Hyperexponential

Coxian

כינוך ו:
כינוך "ס.יאמ"

(הכינוך ו:
כינוך "ס.יאמ")

פרויקט תכנ 1 - 094195

סמסטר חורף התשס"ט

דוח סופי פרויקט שניתי

מועד טלפון - "בנק בטלפון"

(

ד"ר יוסי בן דב מרכז הקורס:

מר ניסן לאי מתרגל אחראי:

פרופ' אבישי מנדלבאום מנהלים אקדמיים:

גב' פולינה חודיאקוב

גב' מיכל رسינסקי מנהלות תעשייתיות:

גב' אפרת ברומר שרף

מגישיים:

ליאת גיני

יואב זקס

קריסטינה קושמן 306461906

ニיצן ראט 026663328

תאריך ההגשה:

12.02.2009

©2004 By CallCenter Comics.com

OUR NEW WFM SYSTEM CORRECTLY FORECASTED
THE NEED FOR 100 MORE AGENTS. UNFORTUNATELY,
WE SPENT THE ENTIRE HIRING BUDGET ON THE
SOFTWARE.

1.1. **מיזול שיחת "שירות" והתאמת התפלגות**

1.1.1. **מיזול שיחת "שירות"**

בכדי לבחון את תהליך השיחה מסוג "שירות" ומפנייה, נערךו מדידות על- ידי האזנה לשיחות במקד深处 וצפיה במסכים מוקלטים אותם רואים הבנקאים. ניתוח השיחות העה כי ניתן לחלק את השיחה לפחות עיקריות (אלמנטים). אלמנטים אלה מתאימים לכל סוג השיחות מסוג "שירות". לאחר הגדרת האלמנטים בשיחה, בוצע חקר זמן אקדמי לצורך אמידת משכי האלמנטים והתפלגותם. נציג כי הבנקאים נבחרו בהתאם לשולש קטגוריות שנקבעו לאחר התיעיצות עם מנהלת אשכול, מנהלת צוות "שירות" ומשבץ המוקד: ותק בנק, מיוםנוות (Skills), אחזו מושה. הבחירה לפי הקטגוריות נעשתה בזורה אשר מייצגת את אוכלוסיית הבנקאים בכל הארץ. כמו-כן, מדגם השיחות נבחר מכל שעות פעילות המוקד (פירוט מלא מצוי בנספח מס' 6 – פילוח האזנות במקד深处).

פירוט האלמנטים בשיחת "שירות":

- **זמן המתנה למערכת** – זהו אלמנט הקיים בכל שיחה - בכל פניה למקד深处, מערכת הבנק עולה במקד深处 הבנקאי. במידה והלקות הזדעה, מועלים פרטיים כך שהבנקאי יוכל לקבל פרטיים ראשוניים על הלקות ולברך אותו לשולם בשמו. במידה והלקות לא הזדעה, או כאשר מדובר בשיחה שהגיעה למקד深处 לאחר הלקות לא נוענה בסניף אליו התקשר (נקראת 'שירות גלישה'), המערכת עולה עם הודעה מתאימה. אלמנט זמן המתנה למערכת הוגדר החל מרגע תחילת הקלטות המסקע ועד לרגע בו הבנקאי פותח באימרת שלום.
- **שלום** – זהו אלמנט הקיים בכל שיחה - הבנקאי פותח את השיחה בברכת שלום והזדהות עצמאית מול הלקות. משך אלמנט 'שלום' הוגדר כחלק מרגע תחילת המערכת ותחילת אמרת השלים מצד הבנקאי ועד לתום ה"שלום החדש" בין הלקות לבין הבנקאי.
- **הזדהות** – אלמנט אופציונלי – ישן שיחות ביחס להלקות לא הזדעה במענה הקולי טרם הגיעו לבנקאי. משך אלמנט 'הזדהות' הוגדר כחלק הזמן שהוקדש לתהליכי הזדהות הלקות.
- **יצירת קוד סודי** – אלמנט אופציונלי – הוגדר כחלק הזמן הכלול את ההסביר על הקוד והכנסת הנתונים לשאלות זיהוי הלקות.
- **שאלת** – אלמנט אופציונלי – הלקות מבקש לקבל מידע בנוגע לנתונים או מדדים כלשהם (כגון: בדיקת מצב עו"ש, שעות פתיחת סניפים). משך אלמנט 'שאלה' הוגדר כזמן החל מרגע תחילת השאלה (או מרגע סיום האלמנט שקדם לה) ועד לסופה.
- **מענה** – אלמנט אופציונלי – אלמנט המופיע לאחר אלמנט 'שאלה' ומוגדר כזמן שנדרש מהבנקאי בכדי להסביר על שאלת הלקות. במידה והבנקאי נדרש לקבל את המידע שנטבקש ממערכת פ.ז.ל או מערכת איתור סניפים, אז זמן המענה נמדד מרגע תחילת תשובה הבנקאי ולא מרגע כניסה למערכת.
- **בקשה** – אלמנט אופציונלי – הלקות מבקש לבצע פעולה מסוימת (כגון: העברת בנקאית, השארת הודעה לסניף). נמדד החל מרגע בקשה הלקות (או מרגע סיום האלמנט שקדם לה) ועד לסופה.

- **ביצוע בקשה – אלמנט אופציונלי** – הוגדר כזמן שנדרש מהבנקאי לבצע את בקשה הלקוח (אינו כולל וידוא הביצוע וاميותו אשר מהווים אלמנטים בפני עצם) החל מסיום בקשה הלקוח ועד סיום הביצוע.
- **VIDOA – אלמנט אופציונלי** – לעיתים, בסוף 'ביצוע בקשה' פונה הבנקאי אל הלקוח וחוזר על פרטי הוראת הביצוע לשם קבלת אישורו. נמדד החל מהרגע בו הבנקאי מודיע כי עליו לקבל את אישור הלקוח ועד מתן האישור על ידו.
- **בדיקת ביצוע בקשה – אלמנט אופציונלי** – לאחר ביצוע הקשה ווידואה, בודק הבנקאי שאכן הבקשה נקלטה במדויקת ובוצעה. הוגדרה כזמן החל מרגע תחילת תהליך הבדיקה (או כהחל מסיום האלמנט הקודם שנמדד) ועד לתום הכרזות הבנקאי כי הבדיקה הושלמה.
- **פניה לרפרנט – אלמנט אופציונלי** – במידה והבנקאי אינו יכול לתת מענה לבקשת הלקוח או לשאלתו, הוא פונה לבנקאי בכיר יותר, קרי, רפרנט. משך אלמנט 'פניה לרפרנט' הוגדר כזמן החל מרגע הכרזות הבנקאי על פניה לרפרנט ועד סיום ההתקשרות ביניהם.
- **כניסה למערכת פ.ז. – אלמנט אופציונלי** – 'מערכת פ.ז.' (פתרונות זמינים לבנקאי) הינה מערכת מידע שימושי לבנקאי, כאשר הבנקאי יכול להיכנס למערכת בעזרת לחץ הנמצא במסכו. משך אלמנט זה הוגדר כזמן החל מרגע כניסה הבנקאי למערכת ועד להשבה ללקוח.
- **כניסה למערכת לאיטור סניפים – אלמנט אופציונלי** – 'מערכת איטור סניפים' הינה מערכת בה נמצאים נתונים לגבי כל סניפי הבנק במדינה, כתובותם, שעות פתיחה וכיו"ב, כאשר הבנקאי יכול להיכנס למערכת בעזרת לחץ הנמצא במסכו. משך האלמנט הוגדר כזמן החל מרגע כניסה הבנקאי למערכת ועד לרגע בו הוא מתחילה להשבה ללקוח.
- **כניסה למערכת בורסה – אלמנט אופציונלי** – 'מערכת בורסה' הינה מערכת המספקת מידע בזמן אמת לגבי מדדים שונים הון בבורסה הישראלית והן בבורסות בעולם, כאשר הבנקאי יכול להיכנס למערכת בעזרת לחץ הנמצא במסכו. משך האלמנט הוגדר כזמן החל מרגע כניסה הבנקאי למערכת ועד לרגע בו הוא מתחילה להשבה ללקוח.
- **שונות – אלמנט אופציונלי** – האלמנט כולל מקרים אשר מתרחשים בתדריות נמוכה ואשר לא ניתן לייחס אותם כאלמנט בפני עצמו, כגון: תלונת לקוחות על משך הבדיקה, 'סיום שיחה' שנקטע באמצעות עלי-ידי הבנקאי או הלקוח. משך האלמנט כמשך המקרה הנדון.
- **הצעת אשראי – אלמנט אופציונלי** – אלמנט חדש ייחשיט שהוכנס רק לאחרונה בו הבנקאי מציע ללקוח, העונה על קריטריונים שהוגדרו מראש, אשראי – שוגבו נקבע אף הוא על-פי קריטריונים אחרים קבע הבנק. חיוי על הצעת אשראי וטיבה נמצא במשך הבנקאי. נציין כי 'הצעת האשראי' מופיעה ברוב המקרים לקראות תום השיחה, לאחר שהבנקאי סיים להשבה על שאלות הלקוח או לבצע את בקשותיו. משך אלמנט 'הצעת אשראי' מוגדר כזמן החל מרגע הצעת האשראי ועד לתום התהליך – בין אם הלקוח התרצה ולקח הלוואה ובין אם לאו.
- **הצעת הוראת קבוע לפקדון – אלמנט אופציונלי** – אלמנט זה הינו אלמנט חדש הנכנס כחלק מהשיעור רק בחודש ינואר השנה. כפי שהוסבר באלמנט 'הצעת אשראי' לעיל, גם במקרה זה, הצעה זו מיועדת ללקוחות בעלי פרופיל אופייני. בדומה לאלמנט 'הצעת אשראי' יופיע אלמנט זה לקראות תום השיחה.

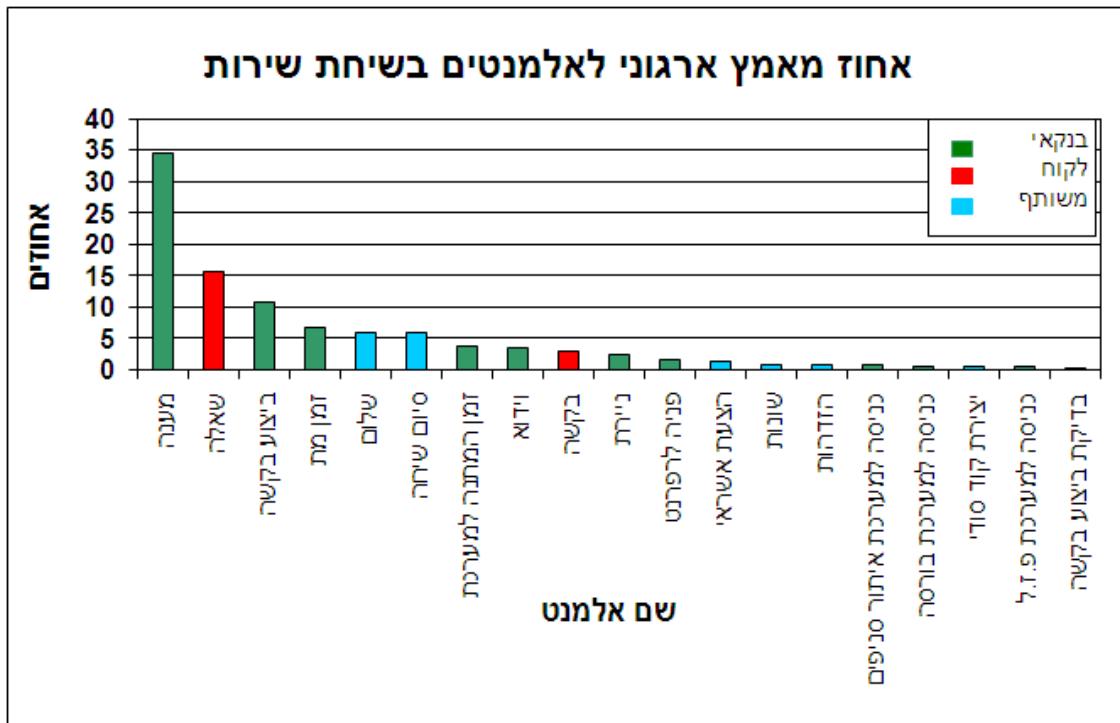
- ו עליה: אין שיחה בה מופיעים שני האלמנטים: 'הצעת אשראי' ו'הווראה קבוע לפקסו' ייחדיו. תיתכנה שיחות בהן מופיע אלמנט אחד בלבד או אף לא אחד מהם.

- סיום שיחה – כביכול מדובר באלמנט אופציונלי, אך למעשה קיים ברוב הנסיבות מוחלט של השיחות. אלמנט 'סיום שיחה' מוגדר כזמן החל מריגע הברכות ההדדיות והתוודות בתום השיחה ועד לניתוק השיחה על-ידי הלוקה. נדגש כי אין זה בהכרח האלמנט האחרון בשיחה, כפי שנראה בהמשך.
- ניירת – אלמנט אופציונלי – לעתים, לאחר שהשיחה הסתיימה, הבנקאי נדרש להזין פרטים כלשהם הקשורים בהתפתחות השיחה או למלא טפסים נוספים במערכת באופן מכובן (כגון: עדכון המערכת בדבר סירוב לקוח להצעת אשראי, זאת במקרה שיפוי חיוי בפעם הבאה שהלקוח ייתקשר למועד).
- זמן מת – אלמנט אופציונלי – לעתים, לאחר ניתוק השיחה על-ידי הלוקה, הבנקאי אינו מנתק מסיבותיו שלו וכן, אינו מבצע פעולות במערכת. משך האלמנט הוגדר החל מהרגע בו תום האלמנט הקודם לו (לרוב 'ניירת' או 'סיום שיחה') ועד לתום תיעוד השיחה במשך המערכת.

לאחר קביעת האלמנטים וההazonה לשיחות, כומתו הנתונים (פירוט טבלה מלאה - ראה נספח 7). מוצגת להלן טבלה הממצצתת את הנתונים

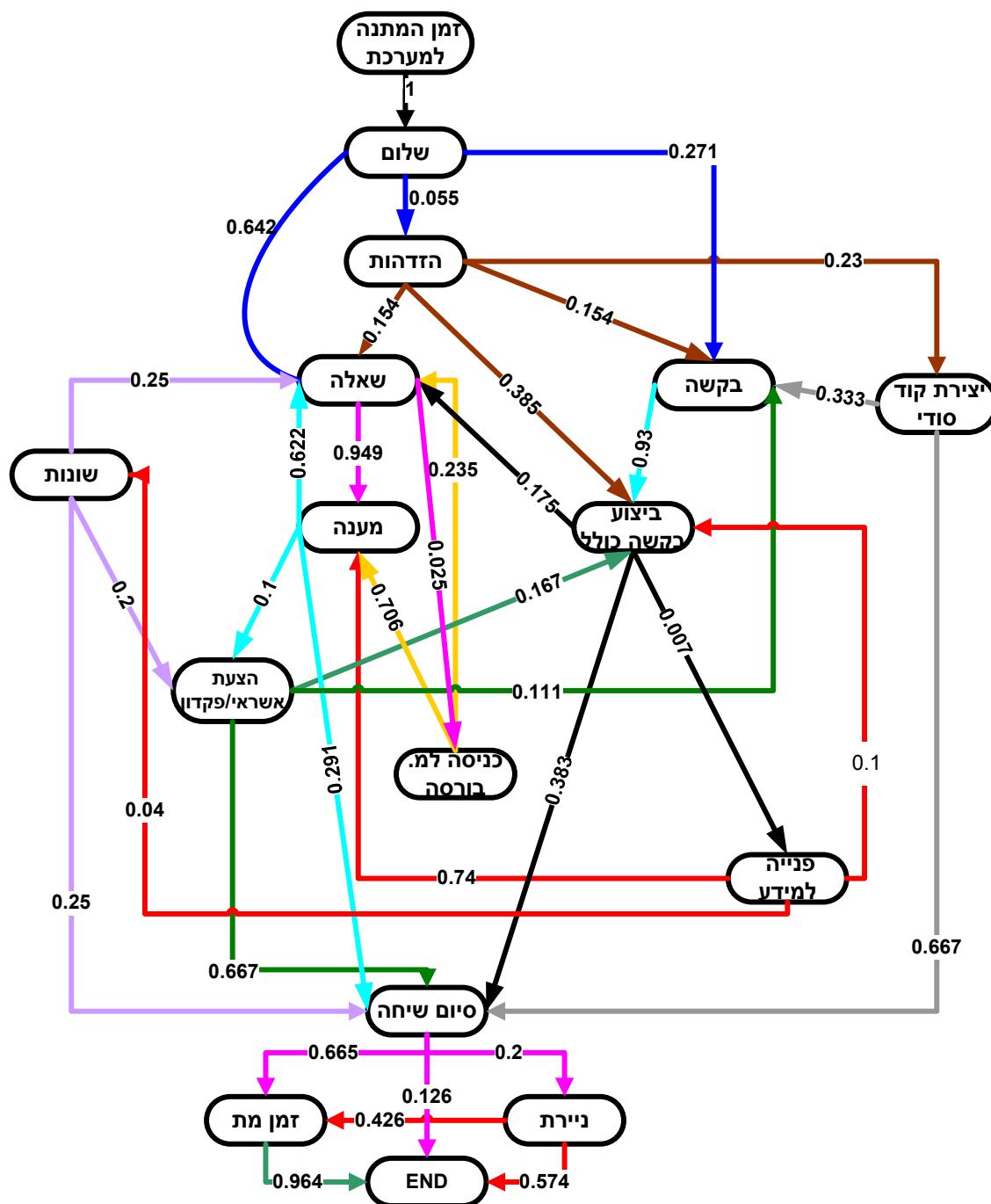
טבלה 1 – ניתוח סטטיסטי של אלמנטי השיחה

תדרות אלמנט בשיחה	אחווד מאמצן ארגוני	ממוצע	תדרות	מאמצן	אלמנט
2.17	34.65	31.64 X	474 =	14997.82	מענה
0.44	10.82	48.79	96	4684.01	ביצוע בקשה
2.17	15.56	14.24	473	6736.04	שאלה
0.77	6.83	17.69	167	2954.54	זמן מת
1.00	3.83	7.64	217	1657.21	זמן המתנה למערכת
0.24	3.55	29.00	53	1536.83	য'ידוא
0.99	6.01	12.10	215	2601.61	סיום שיחה
1.00	6.02	11.95	218	2605.19	שלום
0.22	2.43	22.39	47	1052.54	ניירת
0.39	2.97	14.97	86	1287.80	בקשה
0.08	1.41	33.83	18	608.90	הצעת אשראי
0.05	0.72	28.24	11	310.64	כניסה למערכת איתור סניפים
0.01	1.64	236.41	3	709.22	פניה לרופרטן
0.06	0.73	24.41	13	317.30	הזדהות
0.02	0.56	60.86	4	243.42	יצירת קוד סודי
0.08	0.89	21.37	18	384.59	שנות
0.08	0.67	16.98	17	288.66	כניסה למערכת בורסה
0.02	0.24	21.16	5	105.82	בדיקות ביצוע בקשה
0.04	0.48	22.95	9	206.59	כניסה למערכת פ.ז.ל
9.83					
	100		2144	43288.74	

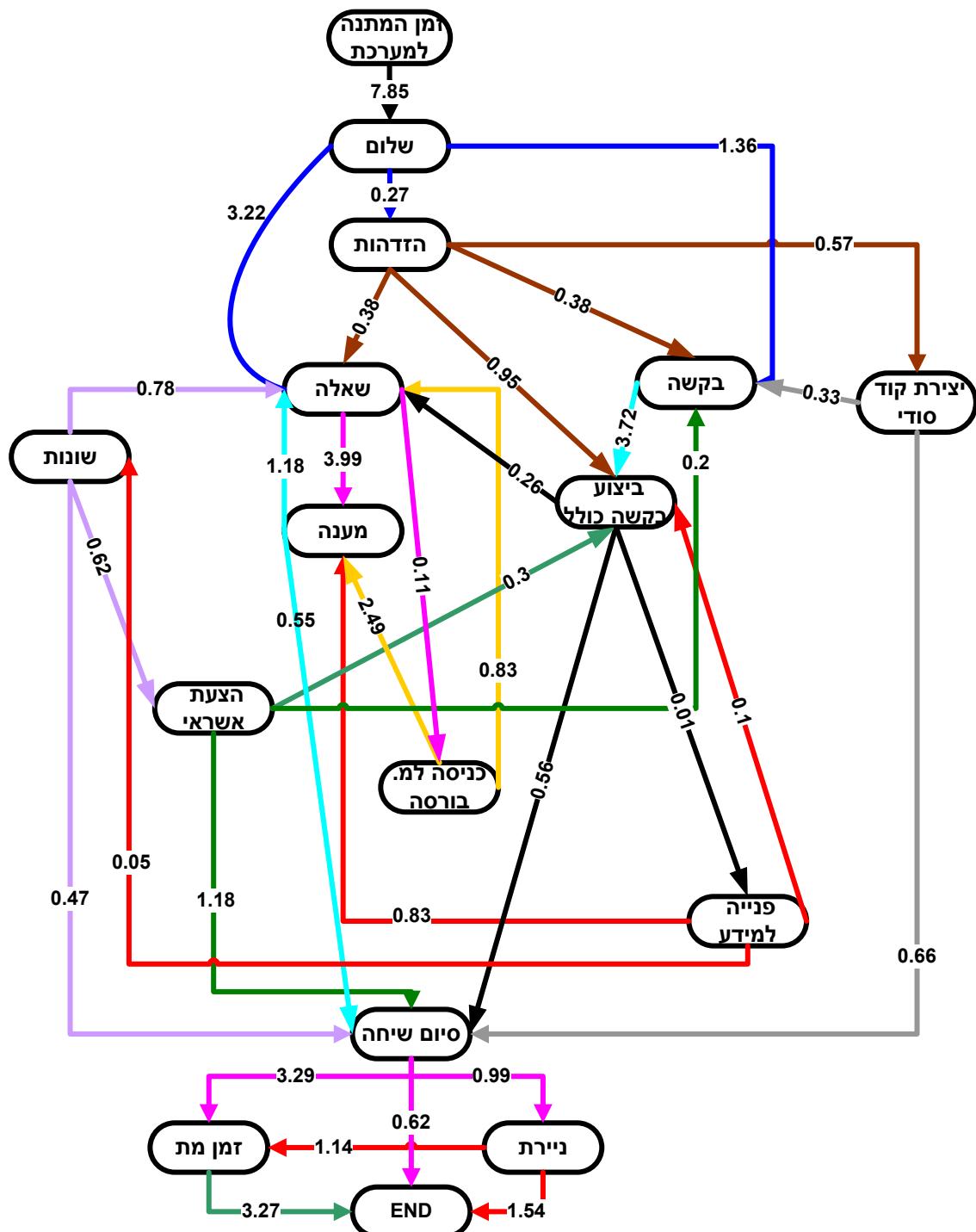

אחוֹז מאמץ ארגוני הינו ממד המחוֹשָׁב לכל אלמנט באחד מהאופןם הבאים:

Total Element Time . 100
Total Cells Time

Element Frequency · Average Element Time , 100

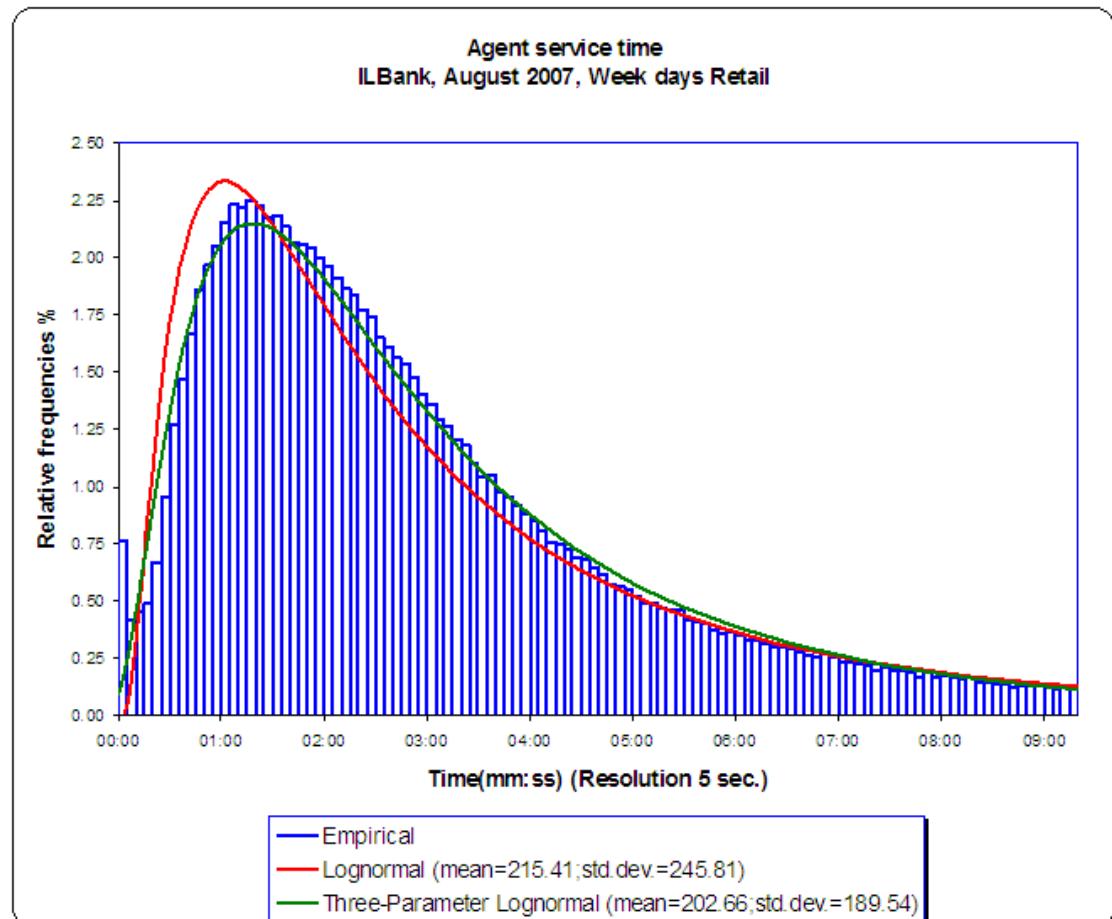

בהתאם, בינו דיאגרמת עמודות המציגה את אחוז המאמץ הארגוני בסדר יורד וכן, את האלמנטים המשויכים לבנקאי, ללקוח או לשנייהם. דיאגרמה זו תורמת לנו בהערכת האלמנטים בהם נטמון בהמשך וקשרים לקיצור משכי שיכחה.

גרף 9- אחוז מאמצ' ארגוני


ניתן לראות כי **אלמנט 'מענה'**, שהינו אלמנט המבוצע על-ידי בנקאי בלבד, מהוות כ-35% מההמאז הרגוני. לכן, קיצור אלמנט זה ישפייע בצורה ניכרת על משך השיחה, ומשתלים לבחון את קיצורו. עובדה מעניינת נוספת היא העובדה כי **הבנקאי חולש על כ- 66% מזמן השיחה**, בעוד הלוקוח רק על כ-18%. כמו כן, אלמנטים משותפים לבנקאי וללקוחו כגון: 'שלום' ו-'סיום שיחה' מהווים כ-16%. לאחר נירמולו היחס בנקאי-לקוח תוך הتعلמות מהזמן המשותף קיבלנויחס של 78-22 לטובות הבנקאי. הדבר מצביע על יכולת לא מבוטלת של הבנקאי להשפייע ולקצר את משך השיחה.

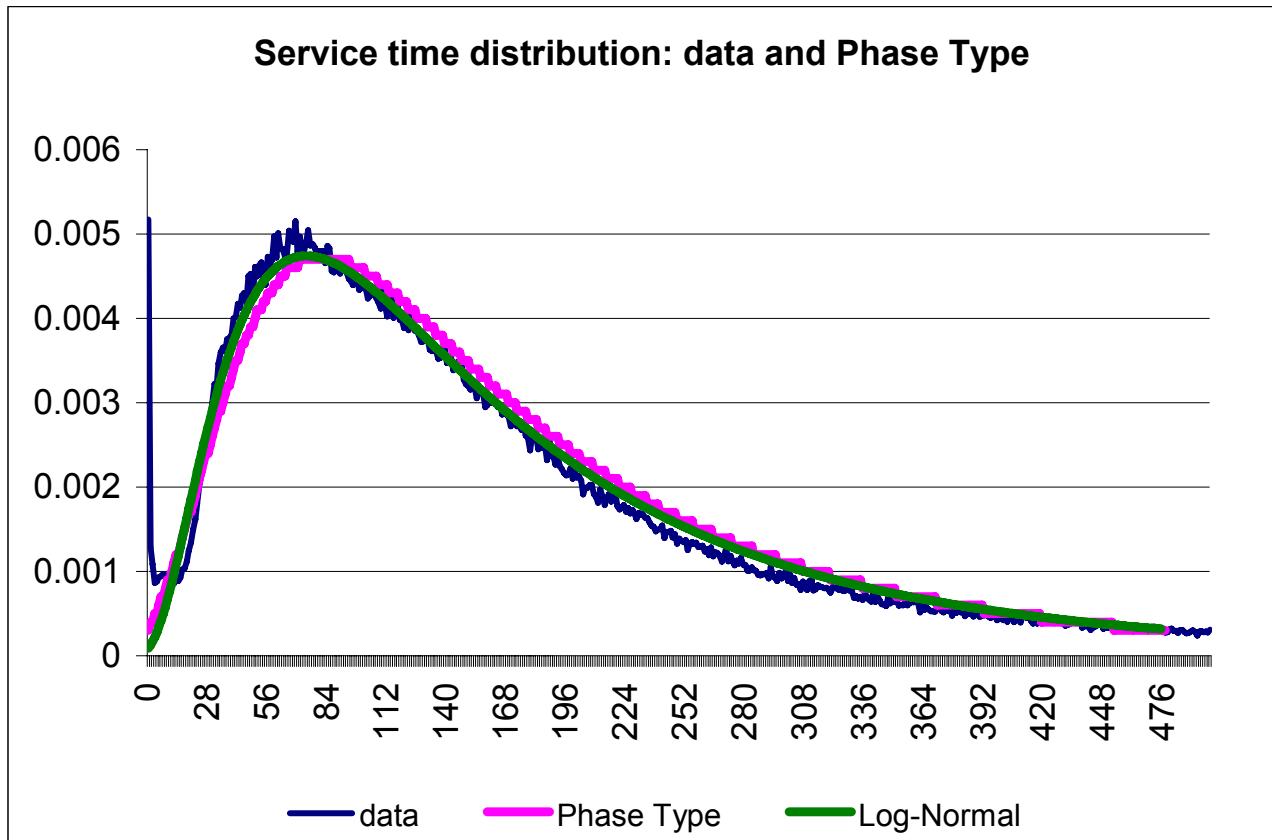
1.1.2. **הטאמת התפלגות Phase Type לשיטה**

תרשים 4 – דיאגרמת הסתברויות מעבר בין אלמנטים


הערה : לשם קריאות התרשים :

- הסתברויות מעבר הקטנות מ-0.1 אינן מוצגות, למעט 3 אלמנטים להם דרשו שתווגו לפחות בפחות הסתברות כניסה אחת. הסיבה לכך היא כי לא ניתן שתהיינה הסתברויות יציאה מאלמנט, ללא הסתברות כניסה אליו.
- אוחדו אלמנטים כפי שהסביר לעיל.
- צבע ייחודי לכלHz יוצא מאלמנט מסוים.

תרשים 5 – דיאגרמת קוצבי מעבר בין אלמנטים


הערה: לשם קרייאות טובות יותר, בחישוב הקוצבים נלקח משך ממוצע של אלמנט בדיקות.

גרף 7 – התאמת התפלגות Log Normal להיסטוגרמת משך שירות אמפירי

ניתן לראות בהיסטוגרמה אחוּ מסויים של שיחות קצרות המctrיך הוזה של עקומת ההתפלגות התיאורטית, כך שעם ההתפלגות Log-Normal בעלת 3 פרמטרים, מתקבלת ההתאמה הטובה ביותר. כמו כן, הפרמטרים קרובים מאוד לנוטוני הפלטה לעיל, עובדה המחזקת את אימומת התוחלת וسطיות התקן שביצעו בתוכנת Matlab.

בנוסף, נערכה השוואת ההתפלגות f כולה של משכי שיחות על-פי PH מול דוחות אונונימוס (SEE) :

גרף מס' 9 – השוואת התפלגות Type Phase מול Log-Normal ו מול נתוני הבנק

קיבלנו שלושת הגרפים מתלכדים. בדיקה נוספת שנעשתה (ראה נספח 12), הינה הפעלת ח' על משכי השיחות במדגם וקבעת גרף בצורת פעמון- תכונה של התפלגות Log-Normal.

התאמות התפלגות PH למשך שיחה וקירובה ל-Log-Normal פותחת אפשרות למחקר עתידי להבנת הסיבה להתפלגות Log-Normal שלמשך השיחה.

ראה הרחבות נוספות בנספח 12 – אימות המודל.

1. ניתוח תרחישים לקיצור שיחת:

תרחישי קיצור השיחה נבחרו על-מנת להמחיש את ההבדלים בין המצב הנוכחי לבין המצב המוצע בהיבט פוטנציאלי החיסכון. האלמנטים נבחרו בהתחשב בפרמטרים כגון: אחוז המאמץ הארגוני, אלמנטים אופציונאליים המאריכים את השיחה אך מהם הבנק יכול להניב רווח.

מנטוני הבנק עולה כי:

כמota שיחות "שירות" ממוצעת בחודש – 667,470 שיחות.

משק שיחה ממוצע – 199.46 שניות.

קיצור אלמנט 'מענה' בשנייה:

לפי תרשימים אחוז מאמץ ארגוני שנבנה, ניתן לראות כי אחוז מאמץ ארגוני (הכולל שכלל של תזריות האלמנט ומוצע משק אלמנט) של אלמנט 'מענה' הוא הגבוה ביותר ומהווה מעל שליש מסה"כ אחוז מאמץ ארגוני.

בוצע תרחיש של קיצור אלמנט זה בשנייה אחת בכל פעם שאלמנט זה מופיע, על פני כל שיחות מסוג "שירות" בכל השנה, ונבדק חסכו כספי לבנק.

תזריות ממוצעת להופעת אלמנט 'מענה' בשיחת "שירות" אחת על סמך המדידות הינה:

$$\frac{474}{218} = 2.174$$

אלמנט 'מענה' הופיע 474 פעמים ב-218 שיחות שנמדדו.

לאחר קיצור האלמנט בשנייה התקבל סה"כ קיצור של $2.17 \times 1 = 2.17$ שניות ממוצע לשיחת. נתוני משק השיחה הוזנו בקובץ חישוב החיסכון בעליות - 199.46 שניות (משק שיחה מצב קיים), מול משק שיחה ממוצע מקוצר של $2.17 - 197.29 = 199.46$ שניות. החיסכון השנתי שהתקבל הינו

528,834 ש"ח.

טבלה 4 - פلت קובץ החיסכון בעליות

чисוב מספר בנקאים נדרשים לשיחות שירות (לפני קיצור)			
מספר בנקאים	עלות לעובד לחודש	מספר שיחה בשניות	פקטור
2.38	199.46	667470	1
чисוב מספר בנקאים נדרשים לשיחות שירות (לאחר קיצור)			
מספר בנקאים	עלות לעובד לחודש	מספר שיחה בשניות	פקטור
2.38	197.29	667470	1
		5.44	חסכון במספר הבנקאים לחודש
		8,100	עלות משרות בנקאי לחודש
		528,834	חסכון לשנה ב שקלים

הערה: הסבר מפורט לאופן חישוב מצוי בנספח 11- חישוב חיסכון פוטנציאלי בעליות כתוצאה מקיצור משק שיחה

ביטול אלמנט 'הזדהות':

בפרויקט משכן שבוצע לפני שנה, הציעו לモען את אלמנט 'הזדהות' על-ידי חינוך הלקחות להשתמש בקוד אישי שקבלו מהבנק. שירות 'משכן' מורכבות יותר מşıhohot "שירות", ובכך בנקאים המטפלים בשיחות משכן מנוסים ובעלי ותק רב כך שלא רצוי "לבזבז" אותם על שיחות של הזדהות.

عقب היותו של Skill "שירות" הבסיסי ביותר, סביר להניח שבנקאים בעלי Skill זה יטפלו בשיחות לא מזוהות. אחוז השירות מסווג הזדהות על סמך המדידות הינו:

$$\frac{13}{218} \cdot 100 = 5.96\%$$

בוצע תרخيص של ביטול אלמנט זה, למורת שמעשית לא ניתן לבטל אלמנט זה לחלוtin (שכן קיימים אנשים עם מגבלות שלא יכולים לבצע הזדהות בمعנה הקולי ולקחוות ש שכחו את הקוד האישית | ולכן רצוי שבנקאים מסווג "שירות" יטפלו בשיחות הזדהות עבור לקוחות אלה).

משך ממוצע לאלמנט 'הזדהות' על סמך המדידות הינו 24.41 שניות. לכן, כל שיחה קצרה ב-

$$\frac{13}{218} \cong 1.46 \text{ sec}$$

לאחר הצבת הנתונים בקובץ חישוב החיסכון בעליית, מתקבל חיסכון שנתי של 355,806 ₪.

קיצור אלמנט 'ביצוע בקשה':

משך אלמנט 'ביצוע בקשה' הינו ארוך מאוד, 48.79 שניות. נבחן תרخيص לקיצור אלמנט זה ב-2 שניות, בכל פעם שהאלמנט מופיע בשיחת "שירות", על פני כל שירות "שירות" בשנה.

התדריות ממוצעת להופעת אלמנט 'ביצוע בקשה' בשיחת "שירות" אחת הינה $\frac{96}{218} = 0.44$

(האלמנט הופיע 96 פעמים ב-218 שיחות). לכן, קוצרה כל שיחה ממוצע ב-0.88 שניות, והחיסכון השנתי שהתקבל 214,458 ₪/ח.

ביטול אלמנט 'הצעת אשראי':

אלמנט 'הצעת אשראי' הינו אלמנט אופציונלי, הנוסף לשיחות "שירות" במטרה להעלות את רוחוי הבנק כתוצאה מכיראת אשראי ללקוחות. אולם, אלמנט זה גורם להארכתמשך שיחת "שירות",

צורך ביותר בנקאים למתן "שירות" והגדלת הוצאות הבנק.

להלן בחינת תרخيص עלות תועלות מביטול אלמנט זה:

תדריות הופעת אלמנט 'הצעת אשראי' בשיחת "שירות" אחת, על סמך המדידות הינו: $\frac{18}{218}$. ממוצע

משך האלמנט: 33.83 שניות. לכן, קיצורמשך שיחת ממוצע שהתקבל הינו: $\frac{18}{218} \cdot 33.83 = 2.79$

שניות. לאחר הצבה בקובץ חישוב החיסכון בעליית התקבל חיסכון שנתי של 679,930 ₪.

החיסכון הפוטנציאלי השנתי הושווה לרוחם ממוצע השנתי מאלמנט זה:

P – הכנסה ממוצעת לאלמנט 'הצעת אשראי' בהינתן שההצעה התקבלה על-ידי לקוחות.

הסתברות משוערת להצלחת (קבלת על-ידי לקוח) אלמנט 'הצעת אשראי' לפי הבנק הינה 0.1.

לכן, חושב חסם תחתון ל-P. חסם זה מציין את ממוצע הרוחם המינימלי מאלמנט 'הצעת אשראי' כך שישתלים להמשיך להציג את האלמנט בתדריות המופיעה כיום.

$$667,470 > P * 12 * \frac{18}{218}$$

הסבר המשוואה:

667,470 - כמות שיחות ממוצעת בחודש.

הכפלת כמות שיחות ממוצעת בחודש ב-12 שווה לכמות שיחות ממוצעת בשנה. לאחר הכפלה ב- $\frac{18}{218}$ (תדירות האלמנט בשיחה) התקבל מספר הפעמים הממוצע של הופעת אלמנט בשנה. רק 10% ממספר הפעמים בהם מוצע האלמנט מניבים רוח, ולכן לאחר כפל ב-0.1 התקבל מספר ממוצע של הצעות אלמנט מוצלחות בשנה. לאחר הכפלה בהכנסה הממוצעת מאלמנט P, התקבלה ההכנסה הממוצעת מאלמנט 'הצעת אשראי' בשנה.

לאחר בידוד P, מתקבל הרוח הממוצע המינימאלי מהצעת אשראי בודדת – $P > 10.28$ נ"ח (10.28 נ"ח > 10.28). דהיינו, כל עוד הרוח הממוצע מהצעת אשראי גבוהה מ- 10.28 נ"ח משתלים להמשיך ולהציג את אלמנט זה.

מסקנה: עקב קבלת חסם תחתון ל- P נמוך מאוד, נסיק כי האלמנט מניב רוחים יותר מהפסדים לבנק (בכך שהוא מאריך את משכי השיחות), ולכן משתלים לבנק להמשיך ולהציג אלמנט זה.

ביטול אלמנט 'הצעת הוראת קבוע לפקדו':

אלמנט זה הינו אלמנט אופציונלי, שנוסף לשיחות "שירות" החל מינואר 2009, במטרה להעלות את רוחוי הבנק. עברו אלמנט זה בוצע גם כנתרחיש דומה לזה שבוצע עברו אלמנט 'הצעת אשראי'. ממדידות שבוצעו לאחר הכנסת האלמנט (בחודש ינואר), נמדד משך ממוצע לאלמנט של 46.87 שניות.

אחוז הופעת האלמנט בשיחות "שירות", לאחר התיעצות עם הבנק הינו 12%. לכן, קיצור ממוצע לשיחת הינו: $0.12 * 46.87 = 5.62$ שניות. לאחר הזנת הנתונים בקובץ התקבל חסכוון שנתי בעליות של 1,369,607 נ"ח.

הчисכוון הפטונציאלי השנתי הושווה גם כאן לרוח הממוצע השנתי מאלמנט זה:

P – הכנסה ממוצעת לאלמנט 'הצעת אשראי' בהינתן שההצעה התקבלה על-ידי הלקוח.

הסתברות משוערת להצלחת (קבלת על-ידי לקוחות) אלמנט 'הצעת אשראי' לפי הבנק הינה 0.1. לכן, חשוב חסם תחתון ל-P. חסם זה מציין את ממוצע הרוח המינימאלי מאלמנט 'הצעת הוראת קבוע לפקדו' כך מישתלים להמשיך להציג את האלמנט בתדריות המופיעה ביום.

$$667,470 > P * 12 * 0.12 * 0.1$$

הסבר המשוואה הינו זהה להסביר המובא הניתוה תרחיש 'הצעת אשראי', תוך התאמת לנתוני אלמנט זה.

לאחר בידוד P במשוואה התקבל $P > 14.25$, כלומר במידה והרוח הממוצע מהצעת הוראת קבוע לפקדו הינו מעל 14.25 נ"ח מישתלים להמשיך ולהציג אלמנט זה.

מסקנה: עקב קבלת חסם תחתון ל- P נמוך מאוד, נסיק כי האלמנט מניב רוחים יותר מהפסדים לבנק (בכך שהוא מאריך את משכי השיחות), ולכן מישתלים לבנק להמשיך ולהציג אלמנט זה.

2. דין ומסקנות

השלב הראשון בפרויקט התמקד בהבנת תהליכי החיזוי והאيوוש המבוצעים בנק. מניתוח התהליכי הבנו כי ביצועו על פי מודל C-Erlang אינו מתאר את המציאות בצורה טוביה. אי התחשבות בנטישת לקוחות והנחה כי סובלנותם אינטואטיבית גורמים לחיזוי יתר של מספר הבנקאים הדרוש. המחבר הניב מספר מסקנות:

1. שימוש במודל A-Erlang לקבעת מספר הבנקאים מתאר את המציאות בצורה מיטבית. על ידי שימוש במודל זה, ניתן לקבוע בצורה טוביה ו邏輯ית את מספר הבנקאים שיישובו. נציין, כי המודל הינו גנרי, ולכן ניתן מיד להניע עתידי בפרמטרי השירות לא תהווה עובדה זו בעיה בקבעת מספר בנקאים מיטבי חדש.
2. התאמת מודל PH לשיחת "שירותות" תוך חלוקה לאלמנטים - באמצעות המודל ניתן לנתח את מרכיבי שירות "שירותות" והשפעתם על משך השיחה. ניתוח זה מהוווה כלי לבחינת עלות אל מול תועלת כתוכאה משנה כל אלמנט בשיחה ופתח למחקר עתידי בנושא. הכנסת האלמנטים מניבי הרוחות בשנה האחרונה ('הצעת אשראי, 'הוראת קבוע לפיקודו') מאפשרת להציג דוגמה מעשית לבחינת כדאיות.
3. מזעור משך שירות - בוצעו מספר תרחישים למזעור משכי השירות בנק, תוך אמידת פוטנציאלי החיסכון בעליות. ביצוע התרחישים הוסקו מספר מסקנות:
 - חלוקת אלמנטי השירות בין הבנקאי ללקוח- הבנקאי שולט על כ-66% ממשך השירות. לכן, ביכולתו של הבנק להשפיע בצורה ישירה על מרבית השירות.
 - האלמנטים המרכזיים בשיחת "שירותות" הינם 'מענה' ו'ביצוע בקשה' - המהווים כ-50% ממשך ארגוני. התמוקדות בקייזור אלמנטים אלו תשפיע על קיזור משך השירות בצורה מקסימלית.
 - האלמנטים 'הצעת האלמנטים' 'הצעת אשראי', 'הוראת קבוע לפיקודו' הינם רוחניים במתכונתם הנוכחית כיום בשיחת "שירותות", אולם הצעה דרך גנריות שתאפשר לבחון עלות מול תועלת מאלמנטים אלו במידה והנהלת הבנק תרצה לעשות זאת בעתיד.
 התאמת המודל התיאורטי PH לנוטוני המדגמים והעבודה כי התקבל גраф צפיפות בצורה Log-Normal,فتحה דלת למחקר עתידי להבנה מדוע משכי השירות מתפלגים כך.

3.ביבליוגרפיה

1. Gans, N., Koole, G., Mandelbaum, A., "Telephone Call Centers: Tutorial, Review and Research Prospects", Invited review paper by *Manufacturing and Service Operations Management* (M&SOM), 5 (2), pp. 79–141, 2003
 2. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Zeltyn, S., Zhao, L. and Haipeng, S. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective", *Journal of the American Statistical Association*, Vol. 100, 36-50, 2005
 3. Mandelbaum, A., Sakov, A., and Zeltyn S., "Empirical Analysis of a Call Center", *Technical Report*, 2000
 4. Aksin, Z., Armony, M., Mehrotra V., "The Modern Call Center: A Multi - Disciplinary Perspective on Operations Management Research", *Production and Operations Management*, Vol. 16 No.6, pp. 665-688, 2007.
 5. Aldor-Noiman S., "Forecasting Demand for a Telephone Call Center: Analysis of Desired Versus Attainable Precision", *M.Sc. Thesis*, Technion, 2006
 6. Cohen, I., Mandelbaum, A., and Shtub, A., "Multi-Project Scheduling and Control: A Process-Based Comparative Study of the Critical Chain Methodology and Some Alternatives", *Project Management Journal*, 35 (2), 39-49, 2004
 7. Suhm, B., Peterson P., "A Data-Driven Methodology for Evaluating and Optimizing Call Center IVRs." *International Journal of Speech Technology journal* Vol.5, pp. 23-37, 2002
 8. Issaev, E., "Fitting Phase-Type Distributions to Data from a Telephone Call Center" *M.Sc. Thesis*, Technion, 2003
 9. Loch, C., "Operations Management and Reengineering", *European Management Journal*, Vol. 16, No. 3, pp. 306-317, 1988
- Spath, D., Fähnrich, K.-P., (Eds.), Advances in Services Innovations, pp. 17-48, Springer-Verlag, 2007

נספח מס' 7 - טבלת ניתוח סטטיסטי של אלמנטי השיכחה

תדרות אלמנט בשישה	אחוז מאמץ ארגון	אחוז מאמץ ארגון	אחוז מאמץ ארגון	מקדם השתנות	סטטיסטיקן	ממוצע משך אלמנט	ממוצע	תדירות	מאמץ	מאמץ (זמן)	אלמנט
2.17	32.10	34.65	0.78	19.37	24.85	31.64	474	14997.82	7853.62		מענה
0.44	16.48	10.82	0.58	24.41	42.00	48.79	96	4684.01	4032.39		ביצוע בקשה
2.17	9.61	15.56	0.60	4.47	7.45	14.24	473	6736.04	2350.29		שאלה
0.77	7.44	6.83	1.61	17.52	10.90	17.69	167	2954.54	1820.99		זמן מת
1.00	6.77	3.83	0.39	2.99	7.64	7.64	217	1657.21	1657.21		זמן המתנה למערכת
0.24	4.81	3.55	0.39	8.69	22.21	29.00	53	1536.83	1177.08		ויזוא
0.99	4.67	6.01	0.67	3.55	5.31	12.10	215	2601.61	1142.24		50ים שורה
1.00	4.60	6.02	0.41	2.14	5.16	11.95	218	2605.19	1125.46		שלום
0.22	3.00	2.43	0.80	12.52	15.61	22.39	47	1052.54	733.52		נירת
0.39	2.88	2.97	1.00	8.17	8.19	14.97	86	1287.80	704.05		בקשה
0.08	1.99	1.41	0.95	25.73	27.04	33.83	18	608.90	486.72		הצעת אשראי
0.05	0.96	0.72	0.72	15.40	21.45	28.24	11	310.64	235.97		כניסה למערכת אחרו סניפים
0.01	0.94	1.64	0.00	0.00	229.62	236.41	3	709.22	229.62		פינה לופנט
0.06	0.94	0.73	0.93	16.37	17.62	24.41	13	317.30	229.06		הזהות
0.02	0.88	0.56	0.69	37.43	54.07	60.86	4	243.42	216.27		יצירת קשר סוד
0.08	0.72	0.89	0.96	13.93	14.58	21.37	18	384.59	174.94		שנות
0.08	0.71	0.67	1.21	12.29	10.19	16.98	17	288.66	173.27		כניסה למערכת בורסה
0.02	0.29	0.24	0.42	5.99	14.38	21.16	5	105.82	71.88		בדיקות ביצוע בקשה
0.04	0.20	0.48	0.82	13.31	16.17	22.95	9	206.59	48.50		כניסה למערכת פ.צ.ל
9.83											
	100	100					2144	43288.74	24463.08		

הסבר לatableה:

מאמץ (זמן): סכימת משך האלמנט על פני כל 218 השיכחות.

תדירות: מספר הפעמים שהאלמנט מופיע על פני כל 218 השיכחות.

ממוצע משך אלמנט: חלוקת סך הזמן בתדירות הופעת האלמנט.

סטטיסטיקן: שונות מדגמית של כל אלמנט והוצאות שורש לקבלת אמד סטטיסטיקן התקן.

מקדם השתנות: חלוקת סטטיסטיקן התקן בתוחלת.

אחווז מאמץ ארגוני: סך זמן האלמנט על פני כל השיכחות חלקי סה"כ משך כל השיכחות כפולה 100.

העלה: לאחר סיכום המדידות הבחנו כי ממוצע משך שיכחה הינו כ-114 שנים על מנת דוחות הבנק שהציבו על ממוצע של כ- 200 שנים. אי לכך, בצענו התאמת על מSCI האלמנטים כך שממוצע משך השיכחה החדש יתאים בצורה טוביה יותר למציאות.

נספח 11- חישוב חיסכון פוטנציאלי בעליות תוצאות מקיצור משך שיחה

עלות שנתית שלilit לשיחה ליחידת זמן (שניהם)	$= (2.38 * \text{call_duration(sec)} * \text{calls_amount} * 8100) / 3600 * 176$
---	--

הסבר :

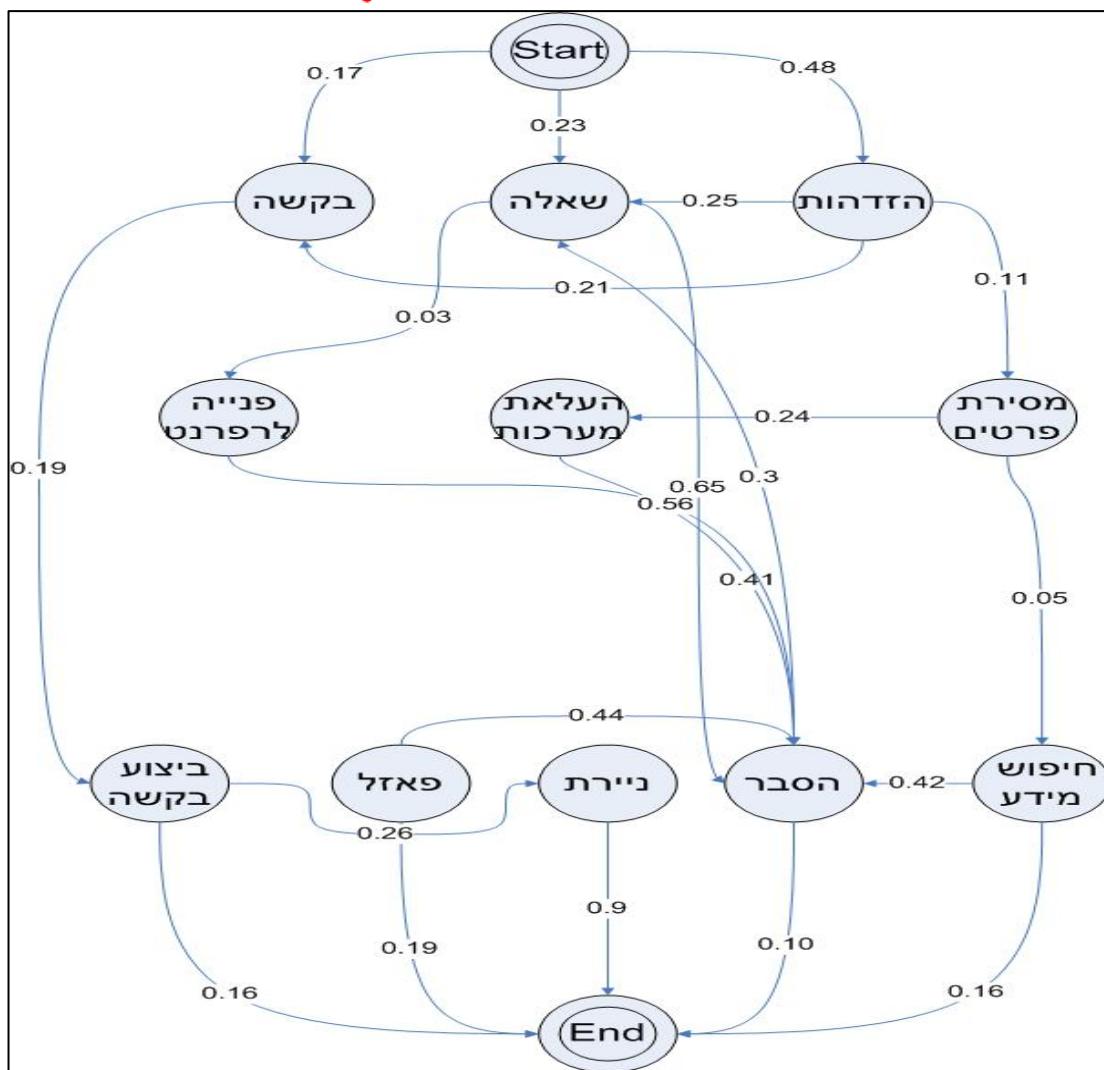
call – ממוצע משך שיחה בשניות

call – כמות שיחות לתקופה המבוקשת (חודש, שנה וכו')

176 – כמות שעות ממוצעת לבנקאי לחודש

8100 – עלות משרת לבנקאי לחודש

3600 – העברת יחידות הזמן לשניות.


2.38 : פקטורי עלות יחידת זמן לבנקאי (100% - אורך שיחה, 138% - תקורות: הפסקה, תדרון, תקלות)

אופן החישוב: מחשבים עלות עבור משך השיחה הממוצע ובעלות לבנקאי נציג 1 נס. לאחר מכן נבצע את אותו חישוב עבור עלות של משך שיחה ממוצע לאחר קיצור. ההפרש בין שני החישובים הינו מספר הבנקאים הנחסך לחודש עבור הקיצור. החיסכון השנתי הוא מספר הבנקאים הנחסך לחודש X עלות לבנקאי לחודש 12 X (8100) חודשים.

Project I: Mortgages

2 Problems: Old + New MTS Systems
Advice from senior agents

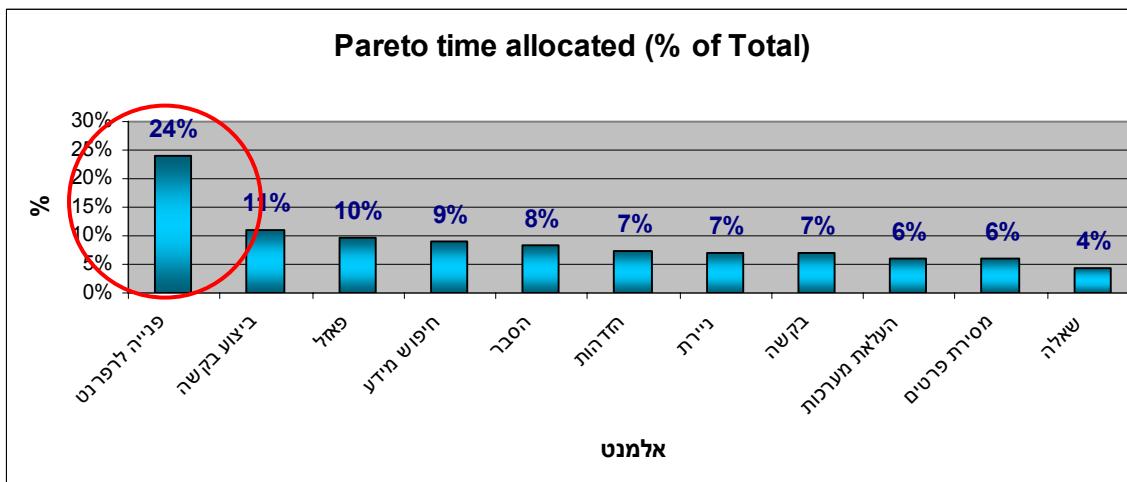
תרשימים מס' 17 -

4.4.3 ממצאים

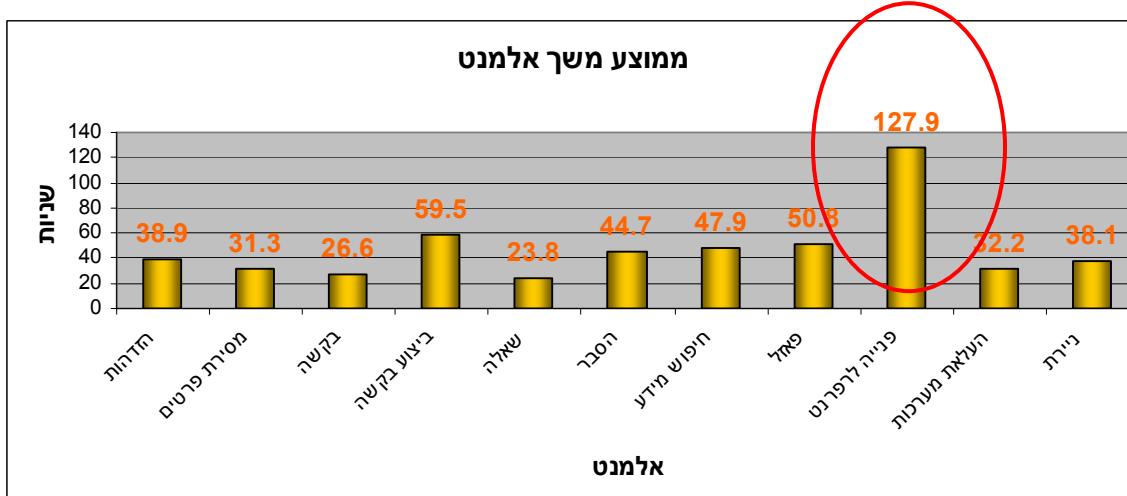
לאחר בניית המודל חושבו הגודלים הבאים:

1. תוחלת זמן שיחה.
 2. סטיית תקן משך שיח.

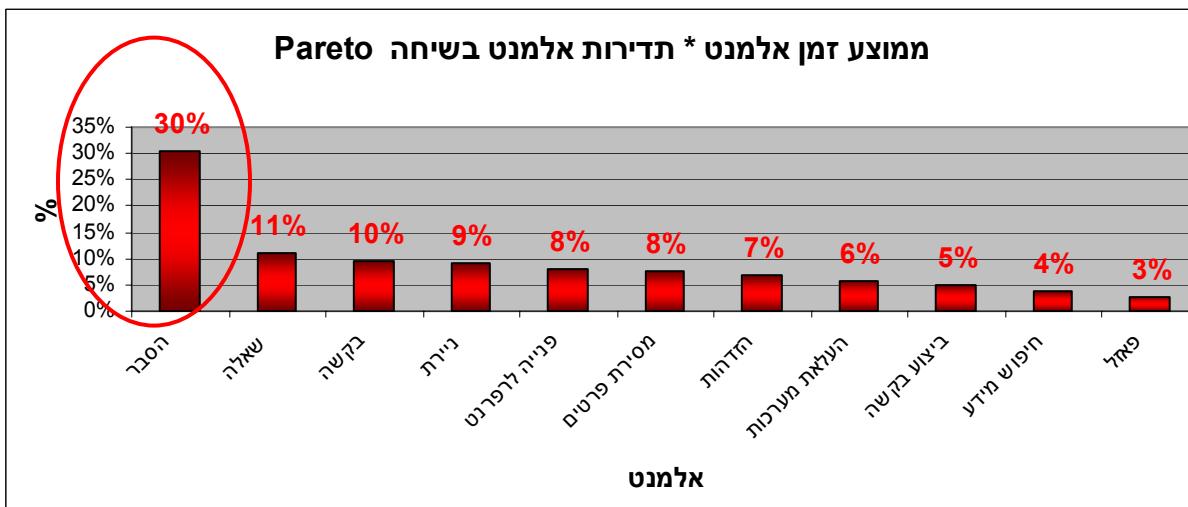
הчисוב התבכע על- פי הנוסחה הבאה :

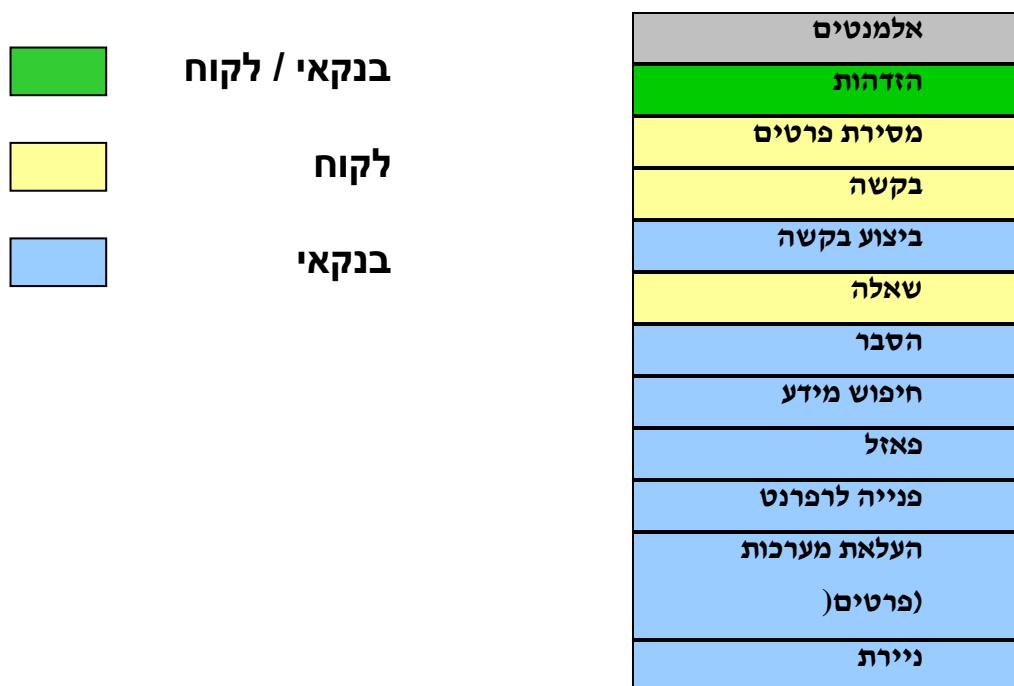

$$\text{המונטג'ו} \cdot \int_0^{\infty} t^n F_T(dt) = (-1)^n n! q R^{-n} 1 - n - n$$

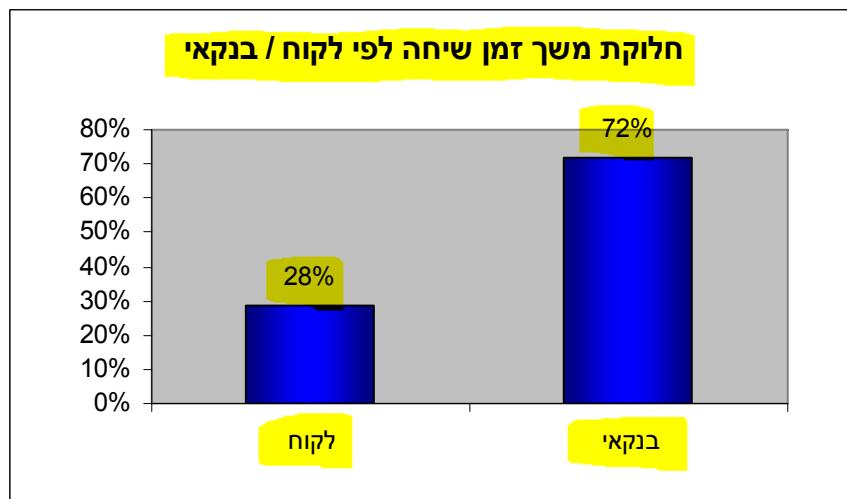
- וקטור הסתברויות ההתלה- q


[0.4800, 0.2300, 0.0200, 0.1700, 0, 0.0300, 0, 0, 0.0600, 0, 0.0100]

R - היוצר האינפיטיסימלי (מטריצת קצבי מעבר)-


נספח מס' 10 - אחוז הזמן שמווקדש לכל אחד מהאלמנטים (מדידות שבוצעו על-ידיינו)


נספח מס' 11 - ממוצעי משככי האלמנטים (מדידות שבוצעו על-ידיינו)


נספח מס' 12 – סך הכל הזמן המוקדש, תדירות* ממוצע משך האלמנטים (מדידות שבוצעו על-ידיינו)

נספח מס' 13 – אלמנטים לפי גורם מבצע

נספח מס' 14 – חלוקת משך זמן שיחה לפי לקוחות/בנקאי (מדידות שבוצעו על-ידיינו)

נספח מס' 15 – פילוח סוג השיחות

Table 1. Call type distribution example.

Call type	% Calls
Sales	24
Establish new account	17
Payment information and arrangements	11
Billing questions	10
Repair	7
Other	31

~~Example: Phase-Type Service Times~~

Reference: “Length of Stay of Elderly People in Institutional Long-Term Care”, Xie, Chaussalet & Millard, 2005.

Operational significance:

- “Most common causes of delay in **discharge from hospital** are patients awaiting placement in a nursing or residential home and awaiting assessment of their needs.”
- Significant **costs** associated with maintaining elderly people in care homes, hence relevant to “government agencies (funding, planers), insurance companies, and purchasers and providers of care.”

Elderly people go through three states, after being admitted to long-term care:

- **Residential** home care (R);
- **Nursing** home care (N);
- **Discharge** state (D).

Goal: Estimate the **sojourn time in long-term care**, both **duration** and **structure**.

Data: “Paths” of 889 patients, some **censored**:

- **392 patients:** $R \rightarrow D$ (219 censored);
- **451 patient:** $N \rightarrow D$ (156 censored);
- **46 patients:** $R \rightarrow N \rightarrow D$.

The states **R** and **N** are **aggregated**: Service time in each is modeled by a *Coxian (Phase-Type)* distribution.

Summary: The above approach is potentially useful in other service contexts. For example, estimating **duration** and **structure** of

- *Telephone or face-to-face services*, in which case data censoring is not important since observations are complete; aggregation is significant, balancing complexity against goodness-of-fit.
- *Customers' Impatience*, in which case censoring is very important to account for (as will be explained in due time).

A continuous time Markov model for the length of stay of elderly people in institutional long-term care

H. Xie, T. J. Chaussalet and P. H. Millard

University of Westminster, London, UK

[Received January 2003. Final revision January 2004]

Summary. The paper develops a Markov model in continuous time for the length of stay of elderly people moving within and between residential home care and nursing home care. A procedure to determine the structure of the model and to estimate parameters by maximum likelihood is presented. The modelling approach was applied to 4 years' placement data from the social services department of a London borough. The results in this London borough suggest that, for residential home care, a single-exponential distribution with mean 923 days is adequate to provide a good description of the pattern of the length of stay, whereas, for nursing home care, a mixed exponential distribution with means 59 days (short stay) and 784 days (long stay) is required, and that 64% of admissions to nursing home care will become long-stay residents. The implications of these findings and the advantages of the proposed modelling approach in the general context of long-term care are discussed.

Keywords: Length-of-stay modelling; Long-term care; Markov model; Survival

1. Introduction

In the UK, the National Audit Office has recently reported that the most common causes of delay in discharges from hospital are patients awaiting placement in a nursing or residential home and awaiting assessment of their needs (National Audit Office, 2003). Under the 1990 National Health Service and Community Care Act and the Care Standard Act 2000, local authorities in Great Britain are responsible for the placement and finance of adults in publicly funded residential and nursing home care that conforms to national standards. Discharge to long-term care is a central component of plans for acute hospital care and the demand for long-term care is expected to increase substantially as the population ages (Wittenberg *et al.*, 2001). In England, already 1 in 5 people aged 85 years or over live in a long-term care institution (Laiho, 2001). In addition, the UK Government is planning to fine local authorities for failing to provide vacancies in residential and nursing home care for hospital discharges. Therefore, it is important for both health authorities and local authorities to have a sound understanding of the patterns of the length of stay (LOS) and movements of residents in long-term care.

A recent survey showed that nearly 70% of the residents in residential and nursing homes were publicly funded and were there permanently (Netten *et al.*, 2001). In earlier research, we found that older people who are placed in nursing homes are more likely to have complex problems. Factors such as being male, immobile, dependent in feeding, urine incontinent, having open wounds and taking multiple drugs are associated with nursing home care placements, whereas older people who are admitted to residential home care are likely to be more independent (Xie

Address for correspondence: T. J. Chaussalet, Department of Mathematics, Cavendish School of Computer Science, University of Westminster, 9–18 Euston Centre, London, NW1 3ET, UK.
E-mail: chausst@wmin.ac.uk

et al., 2002). Therefore, we would expect differences in the pattern of LOS in residential and nursing home care.

Research in the UK shows that the mortality rate for residents in nursing home care is particularly high in the first few months and then gradually levels out (Smith and Lowther, 1976; Bebbington et al., 2001; Rothera et al., 2002). This observation supports the notion of phases in residents' stay in care homes. In the context of hospital geriatric departments, Harrison and Millard (1991) and Taylor et al. (1998, 2000) have shown that, despite the great heterogeneity between individuals (Millard, 1988), compartmental and Markov models, which divide patients' LOSs into short-stay and long-stay phases, capture successfully the behaviour of patients' LOSs. Similar results for residential and nursing home care can be expected.

We model the flow of elderly residents within and between residential and nursing home care by using a continuous time Markov model, in which residents' stay in care homes is modelled as a two-phase process: short stay and long stay. First, we describe the model that we propose and present a procedure for determining the model structure and estimating parameters by the method of maximum likelihood. We also show and discuss results that are obtained from fitting the model to a real data set.

2. A model for movement of elderly people in residential and nursing home care

The proposed conceptual model for the movement of elderly people in residential and nursing care facilities is depicted in Fig. 1. In this model, elderly people can be admitted into residential home care or nursing home care directly, either from the community or following discharge from hospital. In each type of care, residents start their stay in the short-stay phase and either leave care after a short period of time or continue their stay to become long-stay residents. People in residential home care can move to nursing home care if their conditions deteriorate to such an extent that residential home care is no longer adequate. In this paper, we consider only those residents who require local authority funding, and we exclude residents whose admissions are meant to provide short respites for their carers. This restriction is imposed because most local authorities have means of determining suitable care placements for applicants requiring public funds; therefore, these admissions will better reflect residents' physical conditions and needs. Movements from nursing home care to residential home care rarely occur among residents who are supported by local authority funds (Bebbington et al., 2001) and are not modelled.

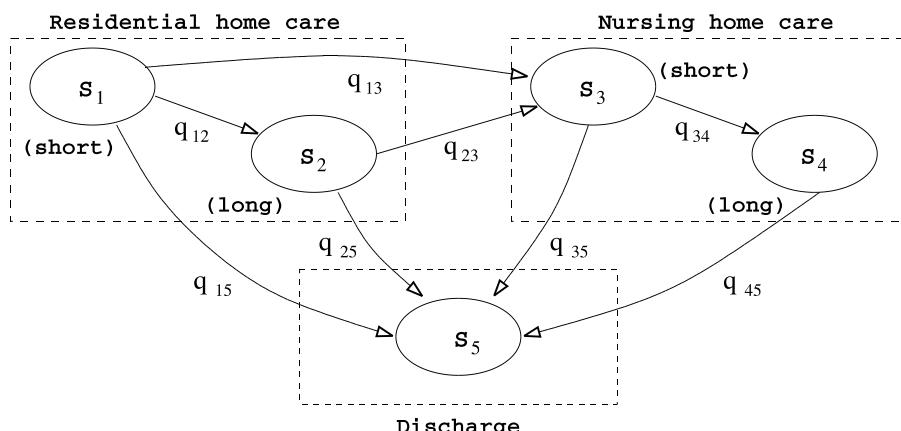


Fig. 1. Markov model for movements of elderly people in residential and nursing home care

Discharges from institutional long-term care are considered permanent. They occur predominately by death and, although a small number of residents are discharged to the community or hospital, they are not expected to return to institutional long-term care. Discharges to the community are rare for local-authority-funded residents, and those to hospital usually mean terminal care (Bebbington *et al.*, 2001).

We construct a continuous time Markov model of the flow of elderly people within and between residential and nursing home care. The phases in each type of care and the discharge state form the system states. Given the Markov model that is described in Fig. 1, the generator matrix \mathbf{Q} is written as

$$\mathbf{Q} = \begin{pmatrix} q_{11} & q_{12} & q_{13} & 0 & q_{15} \\ 0 & q_{22} & q_{23} & 0 & q_{25} \\ \hline 0 & 0 & q_{33} & q_{34} & q_{35} \\ 0 & 0 & 0 & q_{44} & q_{45} \\ \hline 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad (1)$$

where q_{ij} is the instantaneous transition rate between state i and state j ($i \neq j$), and the elements in the main diagonal are defined such that row sums are 0, i.e. $q_{ii} = -\sum_{j \neq i} q_{ij}$.

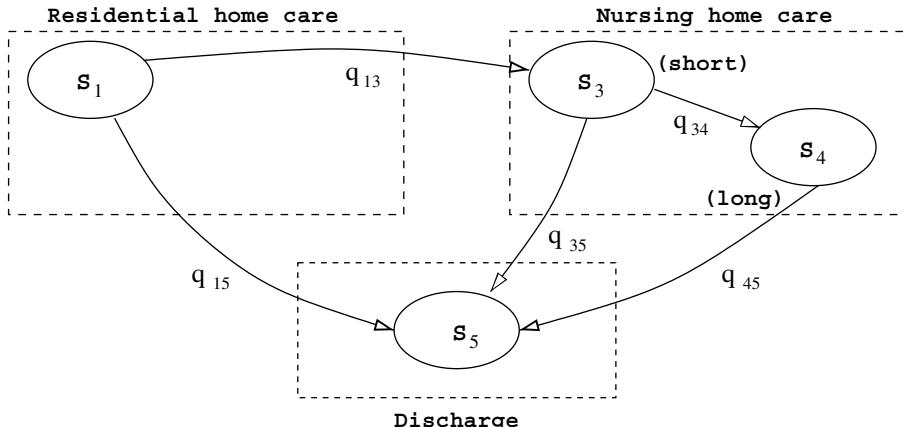
3. Maximum likelihood estimation of model parameters

The actual states of the Markov model are not observable. We can only observe which type of care a person is in. For example, at any time, we observe that a person is in residential home care but we do not know whether she or he is in a short-stay (S_1) or long-stay (S_2) state. This is an aggregated Markov process, i.e. a Markov process in which system states are aggregated into a number of classes (Fredkin and Rice, 1986). There are three classes in the model that is outlined in Fig. 1, namely residential home care, nursing home care and discharge (denoted by \mathcal{R} , \mathcal{N} and \mathcal{D} respectively). We partition the matrix \mathbf{Q} according to the class structure of the model, i.e.

$$\mathbf{Q} = \begin{pmatrix} \mathbf{Q}_{\mathcal{R}\mathcal{R}} & \mathbf{Q}_{\mathcal{R}\mathcal{N}} & \mathbf{Q}_{\mathcal{R}\mathcal{D}} \\ \mathbf{0} & \mathbf{Q}_{\mathcal{N}\mathcal{N}} & \mathbf{Q}_{\mathcal{N}\mathcal{D}} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}, \quad (2)$$

where the submatrices correspond to those delimited by broken lines in equation (1) and the subscripts represent system classes. For instance, $\mathbf{Q}_{\mathcal{R}\mathcal{N}}$ is the submatrix of transition rates from states in \mathcal{R} to states in \mathcal{N} , and $\mathbf{Q}_{\mathcal{R}\mathcal{R}}$ that of transition rates between states within \mathcal{R} .

The theory of aggregated Markov processes has been motivated by and applied to the modelling of ion channels in neurophysiological applications (Colquhoun and Hawkes, 1981, 1982; Fredkin *et al.*, 1985). Generalization and parameter estimation have been investigated by various researchers, including Ball and Sansom (1989), Fredkin and Rice (1986) and Qin *et al.* (1997). We adapt and modify the approach that was taken by these researchers to suit our modelling needs and to deal with the existence of an absorbing state and censored observations.


3.1. Distribution of sojourn time in a class

Calculating the first-passage time (Cox and Miller, 1965) leads to the probability density function (PDF) of the sojourn time in a class, say class \mathcal{R} (Colquhoun and Hawkes, 1981)

$$f_{\mathcal{R}}(t) = -\phi_{\mathcal{R}}^T \exp(\mathbf{Q}_{\mathcal{R}\mathcal{R}} t) \mathbf{Q}_{\mathcal{R}\mathcal{R}} \mathbf{1}_{\mathcal{R}}, \quad (3)$$

Table 2. Determination of the number of states in \mathcal{R} and \mathcal{N}

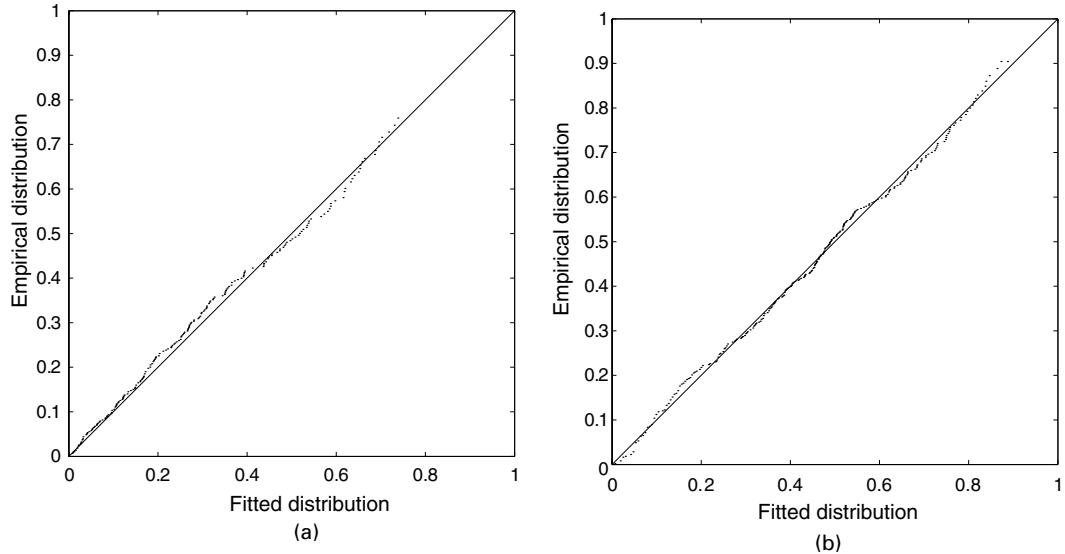

Number of states	Results for residential home care		Results for nursing home care	
	AIC	BIC	AIC	BIC
1	3430.651	3434.733	4879.295	4883.504
2	3433.142	3445.388	4774.788	4787.414
3	3437.142	3457.553	4778.792	4799.835

Fig. 2. Structure of the Markov model for the Merton data set

(Fig. 2). The second-stage Markov model fitting procedure converged quickly with the starting-point proposed in Section 3.3. One-dimensional views of the log-likelihood surface along all parameter axes suggested that the maximum was well defined and that the log-likelihood surface was relatively quadratic near the maximum. For each type of care, the close agreement between the survivor curve that was derived from the estimated matrix \mathbf{Q} (see equation (5)) and the survivor curve that was estimated by the Kaplan–Meier estimator (Kaplan and Meier, 1958) indicates that the Markov model provides a good fit to the data (Fig. 3). This is confirmed by the probability plots (Fig. 4).

4.3. Results

The estimated parameters for the Markov model are summarized in Table 3. These results give interesting insights into the survival patterns of elderly people in institutional long-term care in the London Borough of Merton. A single state provides a good fit to the LOS pattern in residential home care (\mathcal{R}), thus indicating a constant rate of departure from \mathcal{R} . The average LOS for \mathcal{R} is estimated by $1/(q_{13} + q_{15})$, i.e. 923 days (about 2.5 years). On leaving \mathcal{R} , about 79% of the residents will be discharged (permanently) and 21% of them will transfer to nursing home care (\mathcal{N}). Two distinctive states are observed in \mathcal{N} : a short-stay state with an average LOS of 59 days and a long-stay state with an average LOS of 784 days (about 2.1 years). The rate of discharge from the short-stay state is about five times that from the long-stay state. This agrees with empirical observations that initial mortality is higher for the first few months following admission to nursing care (Smith and Lowther, 1976; Bebbington *et al.*, 2001; Rothera *et al.*,

Fig. 4. Probability (P-P) plot of the Markov model fitted survivor curves for (a) residential home care and (b) nursing home care for the Merton data set

Table 3. Estimated parameters for the Merton data set

Parameter	Estimate	Standard error	95% confidence interval
q_{13}	0.000228	0.000034	(0.000162, 0.000293)
q_{15}	0.000855	0.000065	(0.000728, 0.000983)
q_{34}	0.010874	0.002961	(0.005071, 0.016677)
q_{35}	0.006138	0.000793	(0.004584, 0.007692)
q_{45}	0.001275	0.000135	(0.001010, 0.001540)

older people who have been placed in \mathcal{R} by the local authority, 50% will stay more than 21 months, 25% will live longer than 3.5 years and 10% will be there after 5.7 years. Of those who have been placed in \mathcal{N} , 50% will stay for more than 8 months, 25% will live longer than 2.1 years and 10% will still be there 4.1 years after they have been admitted.

5. Discussion

We have built a continuous time Markov model which captures the flow of elderly people within and between residential and nursing home care. Using the framework of aggregated Markov processes, we derived a procedure for fitting the model to observed data. By modelling the system of long-term care as a whole, we captured the movements between facilities and estimated parameters by using the overall joint likelihood function. Using a real data set we showed that the LOS in residential home care can be approximated by a single-exponential distribution with mean 923 days, whereas in nursing home care a mixed exponential distribution with short-stay mean 59 days and long-stay mean 784 days is needed to provide a good fit. About 21% of residential home care vacancies were created by transfers to nursing home care and 64% of all admissions to nursing home care will become long-stay residents. In nursing home care, the

mortality rate in the short-stay state is about five times that in the long-stay state. Thus, the model quantifies the large heterogeneity in mortality rates that is widely observed in nursing home care.

Extensive research in the UK has been conducted to identify the characteristics that are associated with differences in survival patterns in long-term care. This research has mainly focused on identifying risk factors that are associated with mortality, e.g. Bebbington *et al.* (2001), Dale *et al.* (2001) and Rothera *et al.* (2002). From the point of view of individual elderly people, their doctors and social workers, the identification of risk factors that are associated with transfer, early death and long-term survival is of considerable importance. But, for planning, care managers and budget holders need to know the overall pattern of LOS in long-term care. Our model complements other research in providing a full picture of the overall behaviour of LOS in residential and nursing home care.

Methods that explicitly model the survival time (or the LOS in care) of elderly people have consistently shown that a mixture of exponentials gives a good fit to observed LOS data (Harrison and Millard, 1991; McClean and Millard, 1993; Taylor *et al.*, 1998, 2000). Struthers (1963) first reported that LOS in a hospital geriatric department in Southampton followed a combination of two exponential curves: one had a 'half-life' of 2 months and the other had a half-life of 2 years. A mixed exponential distribution implies that a proportion of elderly people in residential and nursing home care will live substantially longer than the mean and the longer their stay the longer their expected further stay will be. A large proportion of older people who have been placed by the Merton Social Service Department in residential and nursing home care will stay substantially longer than their expected LOS, 2.5 years and 1.5 years respectively. In residential home care, 25% will live longer than 3.5 years and 10% will live longer than 5.7 years; in nursing home care, 25% will live longer than 2.1 years and 10% will live longer than 4.1 years. This means that short-term decisions to increase the number of permanent admissions to residential and nursing home care will have serious long-term financial and organizational consequences. Such action will result in, as time passes, a reduction in the places that are available for new admissions since the number of beds occupied by residents admitted in earlier years increases.

The model that we have developed in this paper could help planning authorities to understand the overall pattern of usage of resources for elderly people in their catchment area. Our model can be extended to cope with possible differences in survival pattern between nursing care residents who are admitted directly and those who are transferred from residential care, although we did not find significant evidence to suggest that such differences existed in the data set that we used. Further work is needed to confirm our findings and to extend the model to take into account the attributes of elderly people, e.g. their age, gender and physical and mental conditions.

Given the importance of having vacancies in long-term care to run acute hospitals efficiently and the significant costs that are associated with maintaining elderly people in care homes, the findings of this paper should be of great interest to Government departments, insurance companies, health and social services planners, and purchasers and providers of residential and nursing home care.

Acknowledgements

We thank Ms Teresa Temple, Mr Peter Crowther and the late Mr Terry Bucher from the Housing and Social Services Department of the London Borough of Merton for providing the data. This work was partially supported by the Peel Trust and by the Engineering and Physical Sciences Research Council (grant GR/R86430/01).

תקן איזיפר הסימן: זיהוי גזירה (איך ומי)

עטאות נאכז קי"ק

1. כלי

1.1 זמן נתן מצב - אישוש * קצב מופע * זמן שירות * זמן המנוחה * אורך תור

זמן נתן מצב ממוצע	אישוש ממוצע בדקות	זמן המנוחה ממוצע בדקות	קצב מופע ממוצע בדקות	קצב מנוחה ממוצע בדקות	זמן שירות ממוצע	אורך תור ממוצע	זמן נתן מצב שיא זהה
8.19	28.08	0.48	6.54	17.50	4		
4.34	30.92	0.76	10.91	8.43	2		
0.72	13.45	0.13	14.55	3.20	6		
3.70	9.73	0.70	3.69	22.80	2		
3.05	15.58	0.50	10.25	11.73	4		
0.07	11.72	0.05	17.33	22.80	2		
			8.50	2.00	2-4		

1.2 אישוש מומלץ בעומס נורמה - מצב קיים

זמן נתן מצב ממוצע	אישוש ממוצע בדקות	זמן המנוחה בדקות	קצב מופע בדקות	קצב מנוחה בדקות	זמן שירות ממוצע	זמן שיא זהה בדקות	זמן נתן מצב שיא זהה	זמן נתן מצב שיא זהה
4-6	0-6	2.1-4.8	45	6	6.98	23.4		
3-5	0.6-10	7.1-16.2	35	3	14	4.5		
6-9	0.7-27	7.3-16.8	59	4	12	11.8		
7-10	0-37	3-6.6	61	3	3.5	31.4		
5-7	0-9	3.53-8.1	48	6	10.9	16		
2	1.5-2.7	10-22.8	9	2	18.18	0.6		

24 סע' 3' י.א

Service Times per Service Position

Dept.	Server ID	Service Time Avg. (Min)	Std. Deviation	Utilization %	Service Time Max. (Min)	Total Services
Collection - Front Office	1	7.55 ± 0.68	7.96	37	79.32	370
	2	5.42 ± 0.33	6.27	68	105.20	951
	3	6.51 ± 0.50	6.94	44	63.33	510
	4	8.41 ± 0.75	8.90	42	58.15	377
Collection - Immigrants	5	11.59 ± 0.80	10.88	76	74.60	493
	6	10.32 ± 0.52	8.98	78	50.87	569
Collection - Back Office	7	10.80 ± 1.98	12.82	16	93.73	114
	8	9.07 ± 3.56	11.50	3	52.07	28
	9	18.32 ± 4.90	20.34	10	113.57	47
	10	23.39 ± 5.52	17.75	9	63.77	28
	11	11.99 ± 3.16	14.75	9	70.30	59
	12	16.73 ± 2.34	16.08	28	88.68	128
Cashier	13	2.51 ± 0.21	4.92	48	52.18	1460
	14	3.86 ± 0.18	4.16	72	46.92	1416
Assessment - Front Office	15	13.74 ± 1.07	12.02	62	69.68	340
	16	10.88 ± 0.92	10.60	52	87.92	363
	17	6.66 ± 0.50	6.68	42	49.93	473
	18	11.22 ± 1.30	13.81	45	100.60	302
Assessment - Back Office	19	19.29 ± 5.64	19.99	8	78.27	34
	20	12.2 ± 3.86	8.47	3	29.28	13
Total		7.24 ± 0.10	9.10			8075

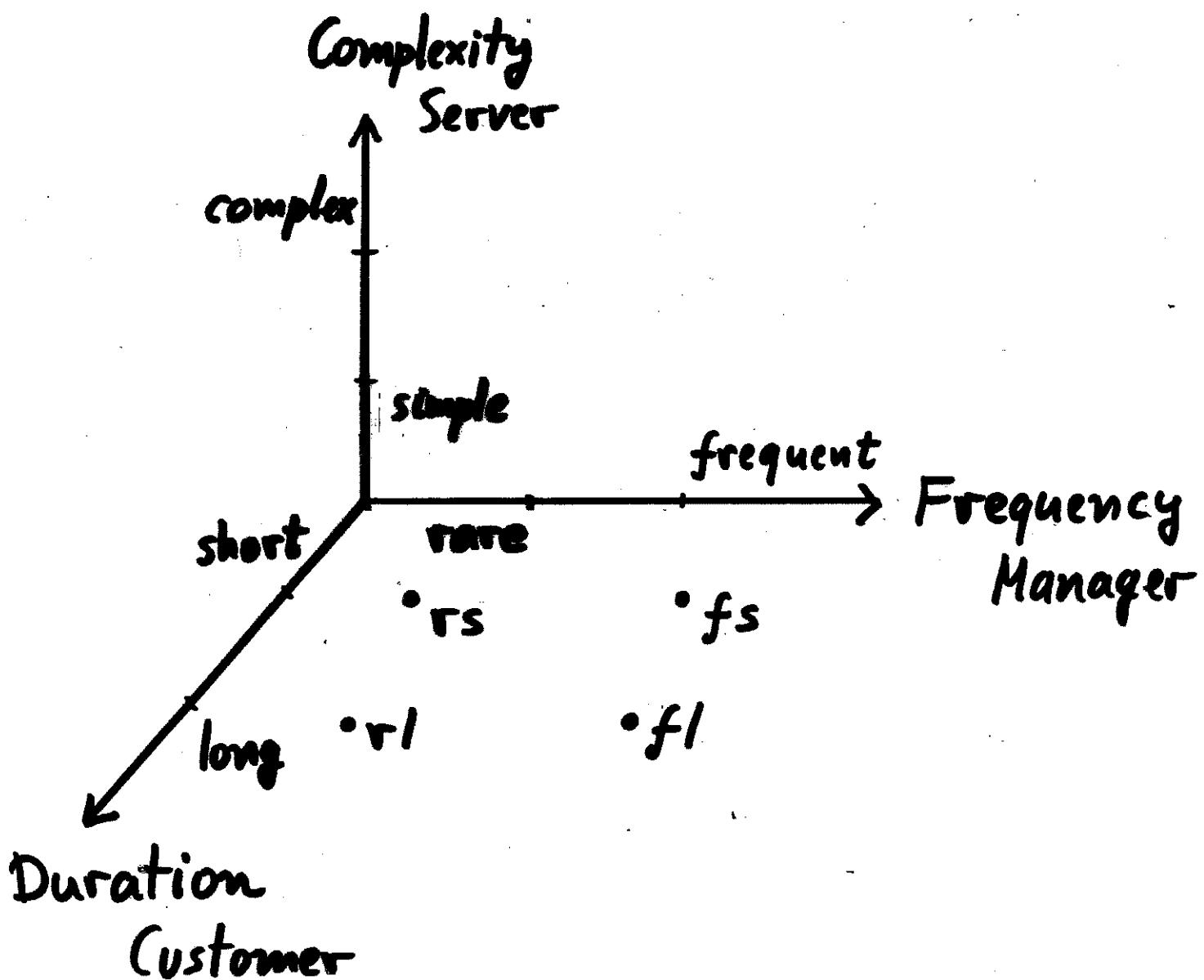
- 90% confidence intervals
- 7364 distinct customers

Recall: Exponential $\Rightarrow E = \sigma$ (i.e. CV=1)

Rank Service-Types by “Effort”

Activity Pareto

	Service Type	Avg. Time (Min)	Transactions (% of Total)	Time Allocated (% of Total)	Cumulative (% of Effort)
1	Tax Query	7.25	29.6	34	34
2	Cashier Payment	4.4	42.8	26.3	60.3
3	Title Transfer	12.1	5.5	10.6	70.9
4	Water Query	5.6	8.3	7.35	78.25
5	Owner Change	17.3	1.5	4.2	82.45
6	Title Deed Verification	7.2	3.4	3.9	86.35
7	Waivers & Discounts	12.4	1.4	2.8	89.15
8	Water Disconnection	15.6	1.1	2.6	91.75
9	Discount Application	13.7	0.8	1.8	93.55
10	Update	10.4	1.1	1.8	95.35
11	Information	8.1	1.3	1.7	97.05
12	Measuring Device	5.9	1	0.9	97.95
13	Measurement Req.	12.5	0.4	0.8	98.75
14	Payment Schedule	6.3	0.7	0.7	99.45
15	Account Change	3.8	0.7	0.4	99.85
16	Cash Transfer – Rebate	2.3	0.26	0.1	99.95
17	Water Account Change	1.8	0.14	0.05	100


4 service-types require 80% of effort

+ space constraints + poor service level

⇒ Redesign network as a single-station

Specialized vs. Flexible; Pooling

A Classification of Service Tasks

Improvement efforts

F C L

R S S

נ/ג נזכן נינגן 3-55

המלצת למשכן החדש : פקיד-כל לכל סוגי הפעולות וכול קופה ללא מזומנים)

שיטת פקיד כל - תמונות מצב מומלצת עפ"י עומס נוחתי.

כאמ' לי' יואט

ענין/ט

נ/ג

מספר גידול על 10 דינר (%)	טמפרטורה בשעות	טמפרטורה בנights	אחוז העסקה לטני	אחוז מומלץ (טמפרטורה)	אחוז מוגע לשעות	קצב שעון
4.7	3.20	8 - 12	(69) 60	(7) 8	36.3	12.30 - 16.30
3.6	3.10	14 - 22	(82) 76	(13) 14	79.4	13.30 - 19.30
3.9	3.05	16 - 24	(78) 78	(15) 15	87.4	9.30 - 10.30
3.0	2.85	15 - 22	(81) 76	(14) 15	85.4	10.30 - 11.30
3.7	3.00	12 - 18	(78) 72	(11) 12	64.5	11.30 - 12.30
2.7	2.70	6 - 8	(54) 46	(6) 7	24.5	12.30 - 13.30
2.6	2.70	5 - 8	(54) 46	(6) 7	24.2	12.30 - 15.30
2.2	2.71	6 - 9	(58) 51	(7) 8	30.6	15.30 - 16.30
3.4	2.65	4 - 5	(34) 30	(4) 5	11.3	16.30 - 17.30

המלצות :

אכו. 15. פ.ק. 3. יואט

מספר עדמות פקיד-כל : 15 עדמות.

איוש עדמות משתנה בזמן : בין 5 ל 15.

הדרכה מדוייקת לצורך התאמה בין פקיד מתפנה לבין צרכן ממתין.

סטנדרטיזציה של שירותים ונוהלי עבודה.

תחולפה מתמדת של פקידים בעמדה כדי להגיע לדרגות תעסוקה גבוהות.

הפרדה אפשרית לפקידים המתמחים בטיפול בדובי רוסיות, כל עוד יש

צורך.

Later (Jackson Networks)

On Pooling in Queueing Networks

Avishai Mandelbaum

Faculty of Industrial Engineering and Management
Technion
Haifa, Israel

Martin I. Reiman

Bell Labs, Lucent Technologies
Murray Hill, New Jersey 07974

February 18, 1996

Revised: October 24, 1996; May 12, 1997; May 4, 1998

Abstract

We view each station in a Jackson network as a queue of tasks, of a particular type, which are to be processed by the associated *specialized* server. A complete pooling of queues, into a single queue, and servers, into a single server, gives rise to an M/PH/1 queue, where the server is *flexible* in the sense that it processes all tasks. We assess the value of complete pooling by comparing the steady-state mean sojourn times of these two systems. The main insight from our analysis is that care must be used in pooling. Sometimes pooling helps, sometimes it hurts, and its effect (good or bad) can be unbounded. Also discussed briefly are alternative pooling scenarios, for example complete pooling of only queues which results in an M/PH/S system, or partial pooling which can be devastating enough to turn a stable Jackson network into an unstable Bramson network. We conclude with some possible future research directions.

1. Introduction

A fundamental problem in the design and management of stochastic service systems is that of pooling, namely the replacement of several ingredients by a functionally equivalent single

Customer arrivals are assumed Poisson and task durations exponential. (We comment on these distributional assumptions in the Addendum.) As articulated in Section 2, we allow a service to consist of a random sequence of tasks in a way that the service duration has a phase-type distribution (a phase corresponds to a task). The specialized (unpooled) model turns out to be a Jackson network [19], as in Figure 3, and the flexible (pooled) architecture is modeled by an M/PH/1 system [26], as in Figure 4.

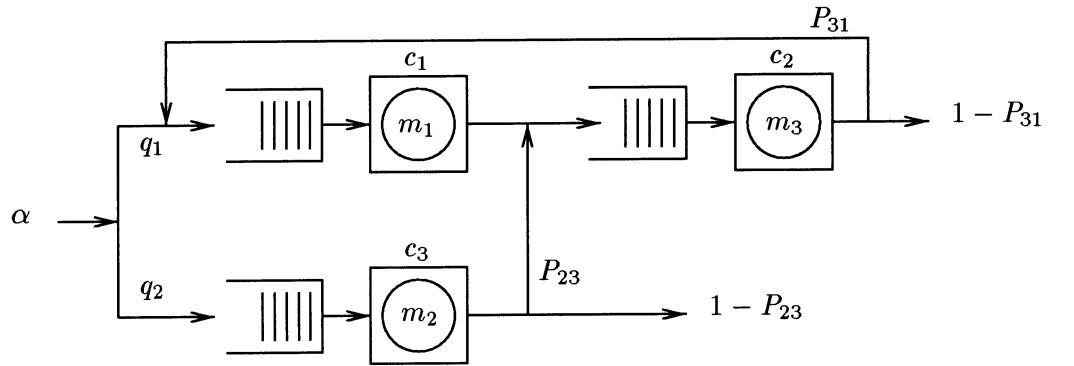


Figure 3: A specialized model with task repetition and feedback.

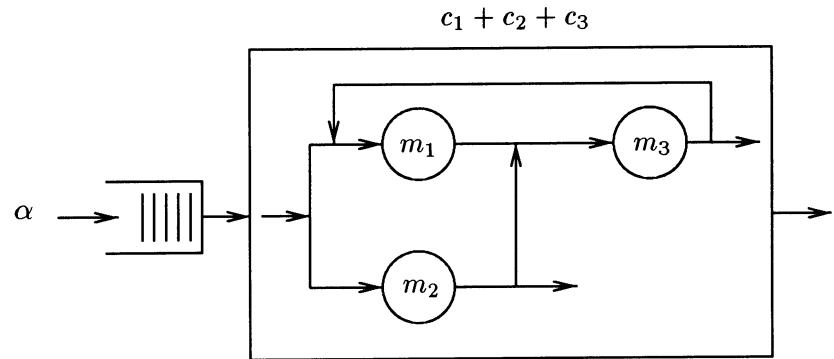
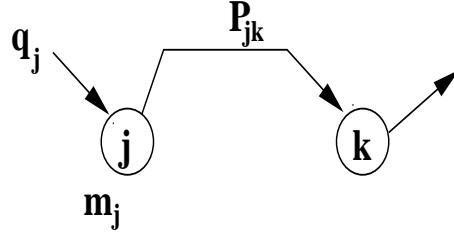


Figure 4: The flexible model, under complete pooling, that corresponds to Figure 3.


In addition to the above two main models, we also consider briefly alternative designs of pooling. For example, Figure 5 depicts the network from Figure 1, with its queues pooled into a single queue and the servers made flexible while still maintaining their individual identities (see Section 5.3). Figure 6 depicts partial pooling of only queues and servers 1

Phase-Type Service Times (Durations).

Service-Time = a sequence/collection of tasks, of an *exponential* duration.
There are K types of tasks, indexed by $k = 1, \dots, K$.

m_k = expected duration of task k ; $m = (m_k)$
 q_k = % of services in which k is first; $q = (q_k)$
 P_{jk} = % of incidences in which task j is immediately followed by k . $P = [P_{jk}]$

$1 - \sum_{\ell=1}^K P_{k\ell}$ = probability to end service at k .

Fact: service = *finite* number of tasks $\Leftrightarrow \exists [I - P]^{-1}$
Indeed, $[I - P]_{jk}^{-1}$ = expected number of “visits to k ”, given j was first.
 $(q[I - P]^{-1})_k$ = expected number of “visits to k ”).

As will be articulated below, service-time duration is *Phase-type* (PH).
(Assuming independence among task-durations.)

Definition. Phase-type distribution = absorption time of a finite-space continuous-time Markov chain, with a single absorbing state.

Formally: $X = \{X_t, t \geq 0\}$ Markov on states $\{1, 2, \dots, K, \Delta\}$, with infinitesimal generator

$$Q = \begin{bmatrix} 1 & & & & \\ \vdots & & R & & r \\ K & & & & \\ \Delta & 0 & \dots & 0 & 0 \end{bmatrix} \quad \begin{array}{l} \bullet \Delta \text{ absorbing} \quad (\text{since } q_{\Delta\Delta} = 0) \\ \bullet r = -R1 \quad (\text{since } Q1 = 0) \\ \bullet 1, \dots, K \text{ transient} \Leftrightarrow \exists R^{-1} \text{ (fact)} \end{array}$$

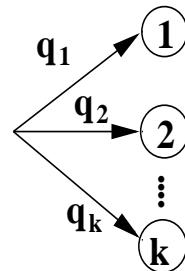
and initial distribution (of X_0) is given by $(q_1, \dots, q_k, 0) = (q, 0)$.

Recall:

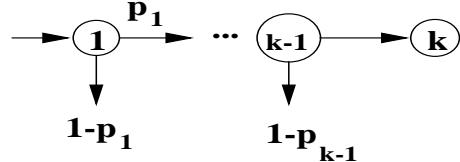
$$P\{X_t = k\} = \sum_j q_j [\exp(tR)]_{jk} = q[\exp(tR)]_k$$

Define: $T = \inf\{t > 0 : X_t = \Delta\}$ has phase-type distribution, say $F_T(\cdot)$.

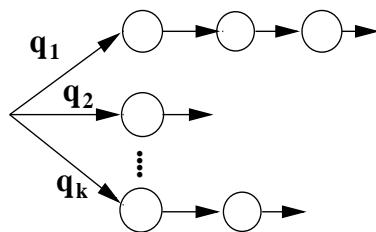
Claim: $F_T(t) = 1 - qe^{tR}1$, $t \geq 0$.


Proof. $P(T > t) = P\{X_t \neq \Delta\} = \sum_k q(e^{tR})_k = qe^{tR}1$.

Parameters:


density	$f_T(t) = qe^{Rt}r$
Laplace transform	$\int_0^\infty e^{-xt} F_T(dt) = q[xI - R]^{-1}r$
nth moment	$\int_0^\infty t^n F_T(dt) = (-1)^n n! qR^{-n} 1$
(mean = $-qR^{-1}1$)	

Special Cases:


- Exponential (μ): $R = [-\mu]$ and $q = 1$.
- Erlang: $\rightarrow [1] \rightarrow [2] \rightarrow [K]$ iid tasks / phases $\left(C^2(T) = \frac{1}{K}\right)$.
- Generalized Erlang: exponential phases in series (tandem) ($C^2 < 1$).
- Hyperexponential: K tasks in parallel (mixture) ($C^2 > 1$).

- Coxian: K phases; end at phase k with probability p_k .

- **Minimum** of exponential random variables is exponential.
- **Max** of exponential random variables is phase-type: e.g., $X_i \sim \exp(1)$ iid. This easily implies that $E(\max X_i) = \sum_i \frac{1}{i}$, $\text{Var}(\max X_i) = \sum_i \frac{1}{i^2}$ bounded!
- Erlang mixtures:

Importance of Phase-type distributions.

- **Empirical** + wishful thinking: homogeneous human tasks are exponential.
- **Richness:** the family of phase-type distributions is dense among all distributions on $[0, \infty)$. For every non-negative distribution G , there exists a sequence of phase-type distributions $F_n \ni F_n \Rightarrow G$.
(In particular, we can guarantee convergence of any finite number of moments.)

Dense subfamilies: Coxian, Erlang mixtures.

For Erlang mixtures, this can be explained by the following two facts:

1. The family of discrete distributions is dense.
2. Constants can be approximated by Erlang distributions. Therefore, discrete distributions can be approximated by Erlang mixtures.

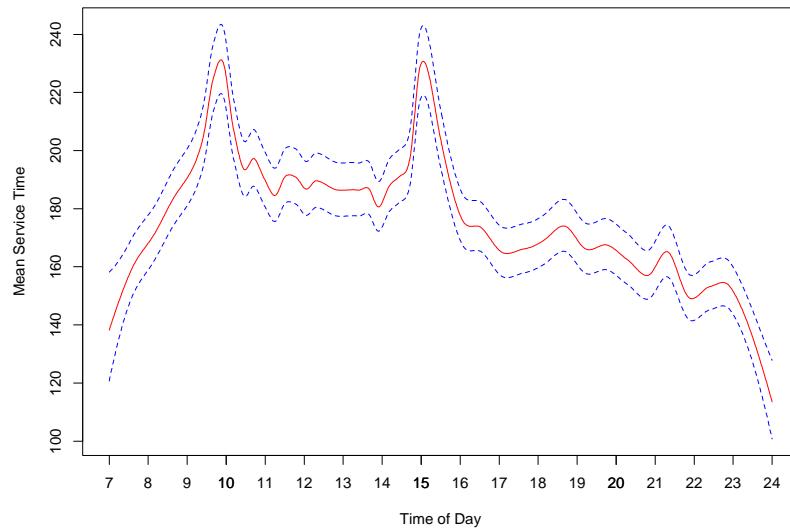
- **Modelling**, via the *method of phases*. For example, consider M/PH/1 queue (see HW).

M/PH/1: state-space is (i, k) (i = number in queue; k = phase of service) or 0;
e.g., $0 \xrightarrow{\lambda q_k} (1, k)$.

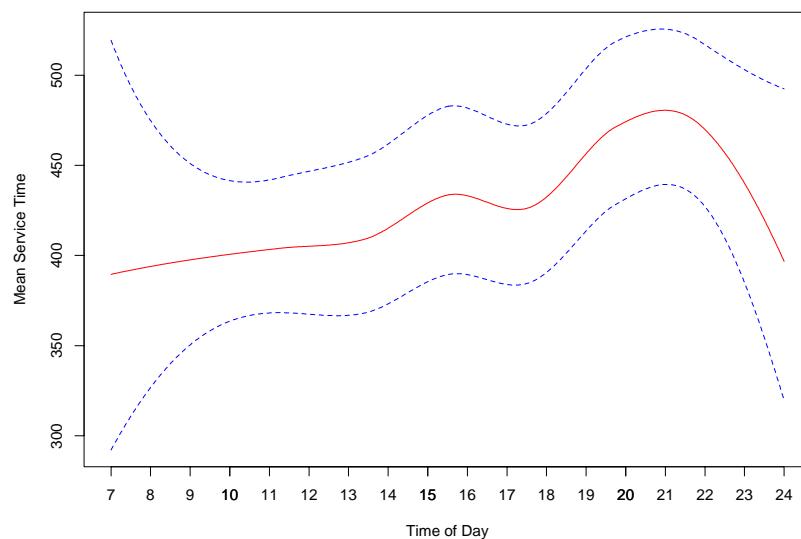
Representation directly in terms of (q, P, m) .

Denote here $R = [I - P]^{-1}$ (as in Mandelbaum & Reiman).
Average work content $E(T) = qRm$ ($= \sum_j q_j R_{jk} m_k$).

Moments: $E(T^n) = n! q(RM)^n q$, where $M = \begin{bmatrix} m_1 & & 0 \\ & \ddots & \\ 0 & & m_K \end{bmatrix}$

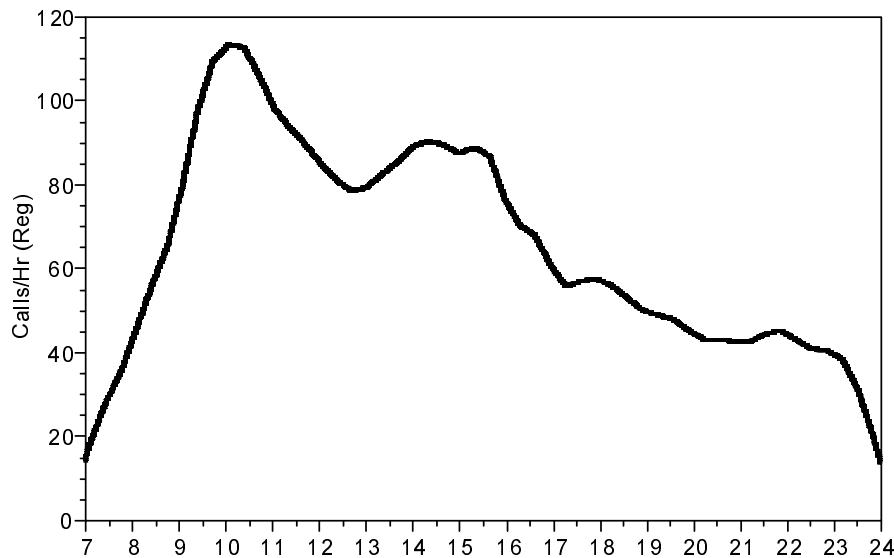

$$\frac{E(T^2)}{2(E(T))^2} = \frac{1 + C^2(T)}{2} = \frac{q(RM)^2 1}{(qRM1)^2}$$

Service Durations: Time and/or State-Dependence



Mean Service Time vs. Time-of-Day

Regular Service (PS)

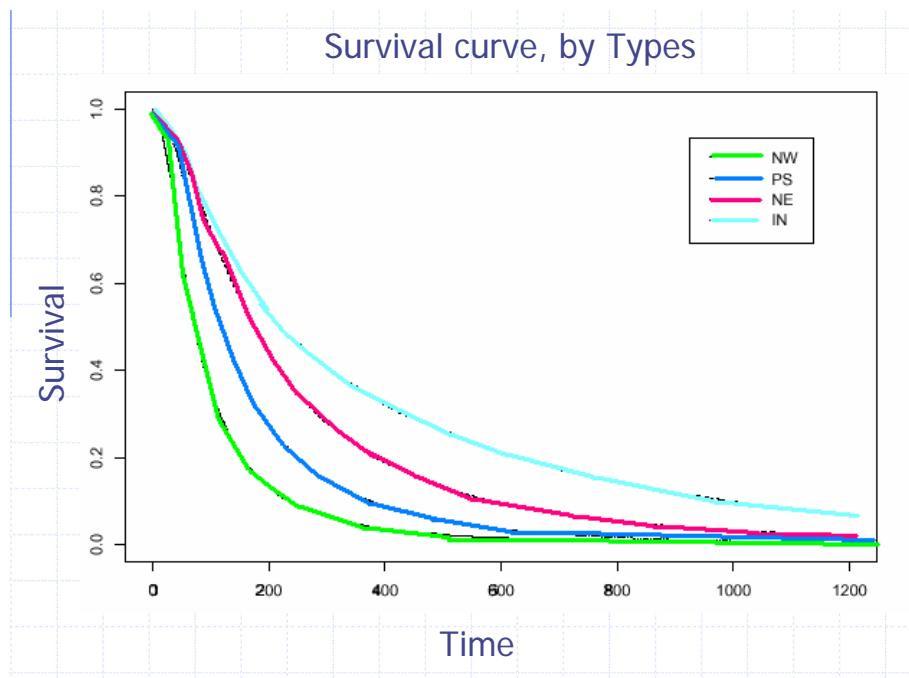

Internet Consulting (IN)

Service Times vs. Arrival Rates

Regular Service (PS): Arrival Rate

At 10:00 & 15:00: (longest services and peak arrival rates?)

Possible Reasons:


1. *Services are longer* during congestion since customers start with complaints.)
2. *Agents are slower* at times of peak loads.
3. Customers that arrive during peak hours require, for some reason, *longer service*.
4. An additional (*human*) reason will be provided after we study *customers' impatience*.

Comparing Service Durations

First: Means, Standard Deviations, Medians

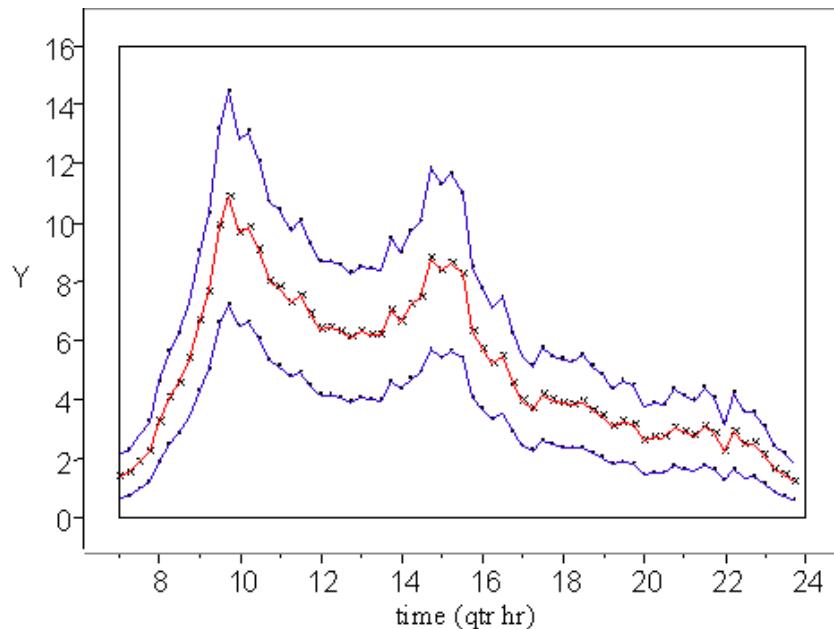
	Overall	Regular service	New customers	Internet	Stock
Mean	188	181	111	381	269
SD	240	207	154	485	320
Med	114	117	64	196	169

Then: Distributions (Stochastic Order?)

Workload (Offered-Load)

Workload (Offered Load): $R = \lambda \times E[S]$

“minutes” of work (=service) that arrive per “minute”.


Example: $\lambda = 3000$ calls/hour; $E[S] = 3$ min.

Consistent time-units, eg. $\lambda = 3000/60 = 50$ calls/min.

Workload $R = 50 \cdot 3 = 150$ min of work per min.

(If time-units hours? hence Workload in **Erlangs**.)

Prediction of Workload: Small Israeli Bank

Root Cause Analysis of Emergency Department Crowding and Ambulance Diversion in Massachusetts

A report submitted by the Boston University
Program for the Management of Variability in Health Care Delivery
under a grant from the
Massachusetts Department of Public Health

October, 2002

Emergency Room Diversion Study: Analysis and Findings

Phase I

Phase I of these investigations involved formulation of a conceptual model that would permit data collection and analysis germane to the problem of ambulance diversion. As preparation for this study, a wide range of relevant medical publications, policy statements and commissioned studies were reviewed. This was followed by personal interviews with representatives in government, hospital administration, public health and the Emergency Medicine community. Information was gathered from throughout Massachusetts and from other key states. Particular attention was given to experience in areas where crowding is particularly severe including metropolitan Boston, San Francisco, Los Angeles and the states of Arizona and Florida. Overall, numerous potential root causes of diversion had been articulated both in the medical literature and lay press, but empirical data to support them were lacking. Available research tended to be descriptive, documenting the extent of crowding without clear delineation of its sources. Various solutions had been proposed and implemented, all without consistent benefit. A partial summary of this analysis has been previously released by the Massachusetts Health Policy Forum of Brandeis University.

An operations management perspective suggested straightforward input-throughput-output analysis. Hospital utilization data provided by the Division of Health Care Finance and Policy was therefore reviewed alongside diversion data provided by regional EMS providers. Analysis of this information revealed the likely operation of mechanisms both internal and external to emergency departments. In addition to simple supply/demand imbalances for emergency care, diversion and utilization patterns suggested bottlenecks and backlogs related to the competition of emergency and non-emergency patients for similar resources. The interrelationships of hospital services then became the focus of attention and patient care pathways were explored with administrators from the two study hospitals.

Two paradigms for the quantitative study of interrelationships among hospital departments were considered. The first involved an analytical approach wherein each relationship was identified, its stochastic character estimated, and appropriate

mathematical models applied. The second involved a simulation approach, wherein stochastic relationships were embedded into computer software that translated real patient flow inputs into utilization and capacity information. Computer simulation was ultimately selected as the route of choice because of its scalability and adaptability.

Phase II

Data Collection/Analysis Effort:

The study was performed at two hospitals in Massachusetts: Hospital A, a large tertiary academic hospital, and Hospital B, a medium-sized acute care community hospital. The following data were collected:

- 42 days of information covering:
- 6000+ admissions
- 8000+ ED visits
- 2000+ staffing/capacity data points
- 300,000+ patient movement/status data points

In order to analyze the relationship between diversion status and other factors within the hospital environment all measures were split into observations at one hour increments.

The study period of 42 days, with 24 hours per day, yielded a total of 1008 full sets of observations. The analysis required collection of patient flow data well beyond the usual capabilities of contemporary hospital information systems.

Point-biserial coefficients of correlation, with diversion status as the binary variable, were examined against a variety of factors. Comparisons when using full hours of diversion versus partial hours as the “true” condition did not reveal significant differences, so partial diversion hours were evaluated as the “true” binary throughout the analysis for the sake of consistency.

It is important to note that in the real world the decisions to commence or cease diversion status are, but their nature, highly subjective. Because the purpose of the study was to examine the root causes of diversion, we did not approach the task from the standpoint of critiquing or attempting to influence this inherent operational subjectivity. As a result, any such analysis is itself subjective to a certain degree.

Because both hospitals straddled EMS regional borders and diversion rules vary by region, each hospital’s data was used for the sake of determining diversion status rather than using centralized EMS data. Also, all diversions were considered equally rather than separately analyzing the factors related to each individual diversion type.

Patterns of diversion were also examined as averages across the hours of the day and the days of the week in order to ascertain relevant hour of the day and day of the week patterns. This data analysis was performed separately for each of the hospitals.

Hospital A:

Diversion Pattern “Hospital A - Diversion Minutes by Hour”

- There were a total of 22 episodes of diversion which started and ended within the study, with an average length of 814 minutes. There was one episode that began prior to the study and ended after the study began and so is not included in this calculation, nor in any calculations which involve the beginning of diversion episodes.
- The hourly diversion pattern shows diversion is highest in the evening hours, settles back down during the early morning hours, and then stays steady until the mid to late afternoon (see Fig. 1).
- The goal of the project was to determine the drivers which create this pattern.

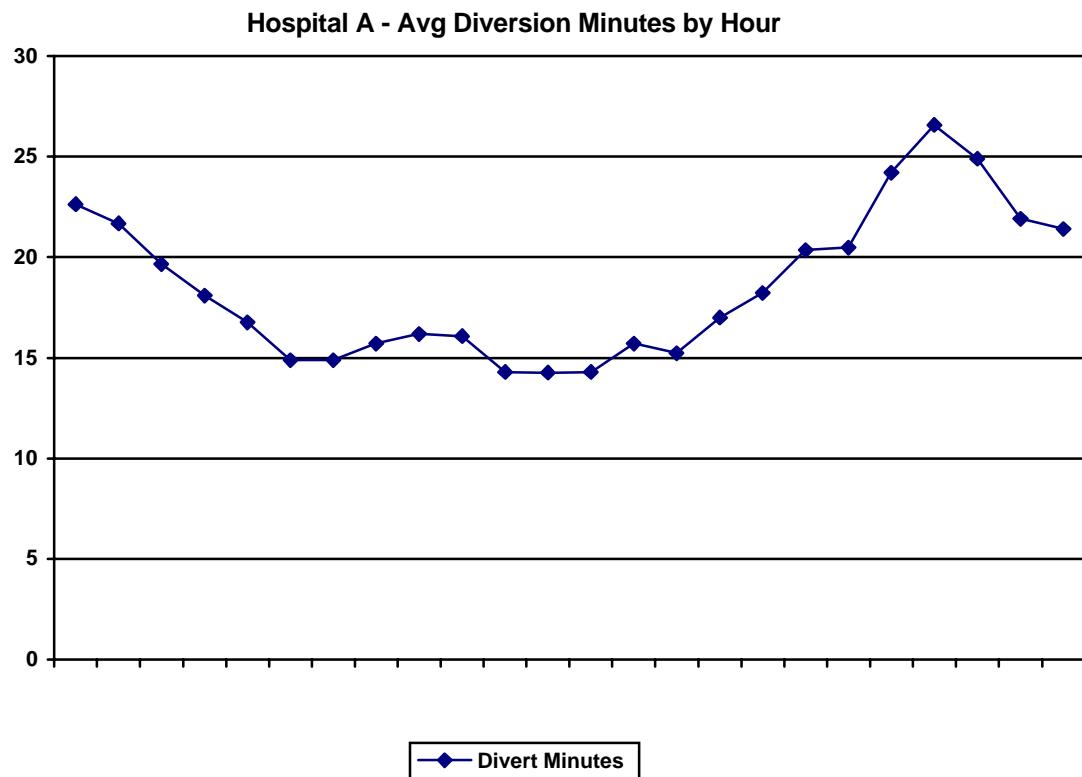


Fig. 1

The following 3 hypotheses were tested to determine the drivers of diversions:

1. ED arrival rate is too high, leading to diversion when the ED becomes full.
2. ED processing of patients is too slow, causing backups that lead to diversion
3. ED arrival and processing rates are fine, but there are not enough beds in the hospital to accommodate the admissions.

There are seven sets of data (see Fig. 2), each representing a different view of arrivals into the ED. The "Arrivals_0" category only includes new arrivals from the hour in question. Each subsequent category, from "Arrivals_1" to "Arrivals_6" includes one more hour's worth added to the total. In other words, "Arrivals_1" includes arrivals from the current hour added to the arrivals from the previous hour, "Arrivals_2" includes all of "Arrivals_1" plus the arrivals from two hours ago, and so on. This is what accounts for the stacked shape as each additional hour is layered on top. Because average length of stay was 340 minutes, 6 hours is used as the maximum lag. Correlation coefficients from each of these cumulatives to Avg Diversion Minutes by hour are as follows:

$$\text{Arrivals}_0 = -0.073$$

$$\text{Arrivals}_1 = 0.001$$

$$\text{Arrivals}_2 = 0.078$$

$$\text{Arrivals}_3 = 0.165$$

$$\text{Arrivals}_4 = 0.259$$

$$\text{Arrivals}_5 = 0.359$$

$$\text{Arrivals}_6 = 0.460$$

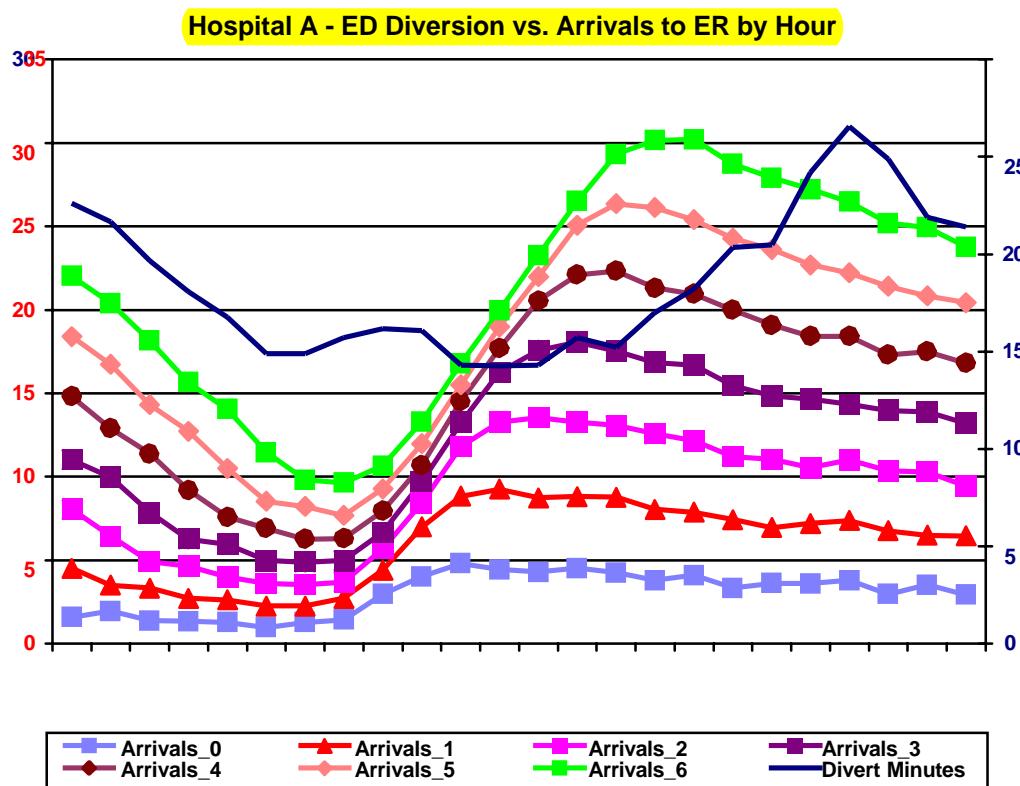


Fig. 2

There is also a possible corollary to hypothesis #1, that overall ED census is a driver of diversion. When counting the non-boarding census and comparing it to diversion status, however, the resulting point-biserial coefficient ($r = -0.051$) makes clear that this potential explanation should be rejected as well.

again points towards examining hospital capacity as the primary determinate of diversion.

Census/Admissions/Discharges: Hospital B

The overall relationship between inpatient census and ED boarders in Hospital B was similar to that of Hospital A. However, detailed analysis of admission sources in Hospital B is not presented because scheduled demand played a far smaller role than that observed in Hospital A.

During the study period, there were 1,158 weekday unscheduled admissions (average: 38.6/day) and 208 weekday scheduled admissions (average: 6.9/day). This suggests very little operational flexibility in controlling the variability or timing of scheduled arrivals. This likely reflects a fundamental difference between most community hospitals and larger academic centers.

Hospital B Conclusions:

The findings at Hospital B are consistent with and reinforce those at Hospital A. Specifically, there was no evidence that ED process times were temporally or mechanistically related to ED diversion while the relationship between ED arrival rate and diversion was weak. Instead, the data suggest that factors outside of the ED that combine to increase boarders and limit ED capacity are more important.

Phase II Summary:

Detailed flow analysis in two very different types of hospitals yielded similar findings with respect to the root cause of emergency department crowding and ambulance diversion. Neither increased patient inflow nor increased process time could be strongly related to diversion status. Instead, diversion was seen as an outflow problem, with busy emergency departments crowding as patients await transfer to crowded inpatient services. This problem is exacerbated in hospitals with large volumes of scheduled admissions, since these necessarily compete for the same resources. The “collision” of scheduled and unscheduled patient flows results in diversion patterns that are specific and reproducible. Because scheduled patient flows are theoretically controllable, better understanding of this phenomenon may suggest means of decreasing diversion. If the experience here may be generalized, we conclude that institutions with small (or uncontrollable) scheduled patient flows will require addition of resources *on the inpatient side* if diversion is to be substantially reduced.

שאלה 4 – תיאוריה ושימושה: עומס מוצע (Offered-Load)

חלק 1. ייצוגים.

במערכת שירות $\{ \lambda(t), t \geq 0 \}$, המופע הוא פואסוני לא הומוגני בזמן עם קבוע מופע M , המופיע הוא פואסוני לא הומוגני בזמן עם קבוע מופע $\lambda(t)$ את משכי השירות S הם בלתי-תלויים, שווי התפלגות, ובלתי תלויים במופע. נסמן ב- $R(t) = EL(t)$ מספר האנשים במערכת בזמן t ויהי $R(t)$ ממוצע מספרם: נתון להראות ש- $R(t)$ נתון על ידי כל אחד משלשות הביטויים הבאים:

$$R(t) = \int_{-\infty}^t \lambda(u) P(S > t-u) du = E \left(\int_{t-S}^t \lambda(u) du \right) = E(S) \cdot E(\lambda(t-S_e))$$

נסמן את "זמן שארית השירות" כפי שהוגדר בכתיבה.
(ביצוגים הנ"ל, $\lambda(t) = 0$ עבור t שליליים.)

4.1.1 נניח שמשך השירות S הוא **צטרמיניסטי**: $S \equiv D$. הוכחו את השווון בין שלושת הטענות של $R(t)$ לקרה זה.

תשובה:

$$S_e \text{ מתפלג אחיד על } [0, D] \text{ . } S_e \stackrel{d}{=} U(0, D)$$

$$\text{Representation 3} = D \cdot E(\lambda(t-S_e)) = D \cdot \int_0^D \frac{1}{D} \cdot \lambda(t-x) dx = \int_0^D \lambda(t-x) dx \stackrel{u=t-x}{=} \int_{t-D}^t \lambda(u) du = \text{Rep. 2}$$

$$\text{Rep. 1} = \int_{-\infty}^t \lambda(u) \mathbf{1}_{\{u > t-D\}} du = \int_{t-D}^t \lambda(u) du = \text{Rep. 2}$$

4.1.2 הסבירו כיצד ניתן להרחב את המקרה הדטרמיניסטי ב- 4.1.1 הניל ל מקרה של S המקביל

מספר סופי של ערכים, דהיינו כיצד מוכחים שאכן :

$$\int_{-\infty}^t \lambda(u)P(S > t-u)du = E\left(\int_{t-S}^t \lambda(u)du\right) = E(S) \cdot E(\lambda(t-S_e))$$

הערה : מאחר ונitinן לקרוב כל משתנה מקרי, בדיק רב כרצונכם, על ידי משתנה מקרי המקביל מספר סופי של ערכים (מ"מ דיסקרטי), סעיף זה מוביל להוכחת שלושת הזהויות הניל ל מקרה של S כללי.

תשובה :

נניח p_i , $S = D_i$ w.p. p_i מ"מ דיסקרטי.

על סמך עמידה מוגה, $\frac{p_i D_i}{E(S)}$,
לכן,

$$\begin{aligned} \text{Representation 2} &= \sum_i p_i \int_{t-D_i}^t \lambda(u)du \stackrel{\lambda_i = \lambda \cdot p_i}{=} \sum_i \int_{t-D_i}^t \lambda_i(u)du \stackrel{4.1.1}{=} \sum_i D_i E(\lambda_i(t-U_i)) = \\ &= E(S) \sum_i \frac{p_i D_i}{E(S)} E(\lambda(t-U_i)) = E(S) E(\lambda(t-S_e)) = \text{Representation 3} \end{aligned}$$

$$\begin{aligned} \text{Representation 2} &= \sum_i p_i \int_{t-D_i}^t \lambda(u)du = \sum_i p_i \int_{-\infty}^t \lambda(u)1_{\{u>t-D_i\}}du = \\ &= \int_{-\infty}^t \lambda(u) \sum_i p_i P(D_i > t-u)du = \text{Representation 1} \end{aligned}$$

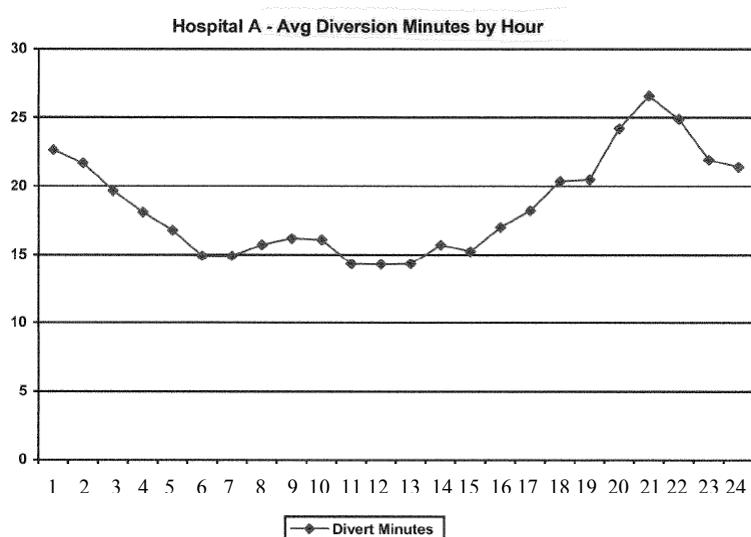
חלק 2 . שימושים

בכתה הוסבר ש- $R(t)$, כפי שהוגדר לעיל, משמש כהגדרת **העומס המוצע** (Offered Load) למערכת שירות בזמן t , כאשר המופיע אליה ומשכי השירות בה הם כמפורט בחלק 1. (כזכור, $R(t)$ נמדד ב- Erlang).

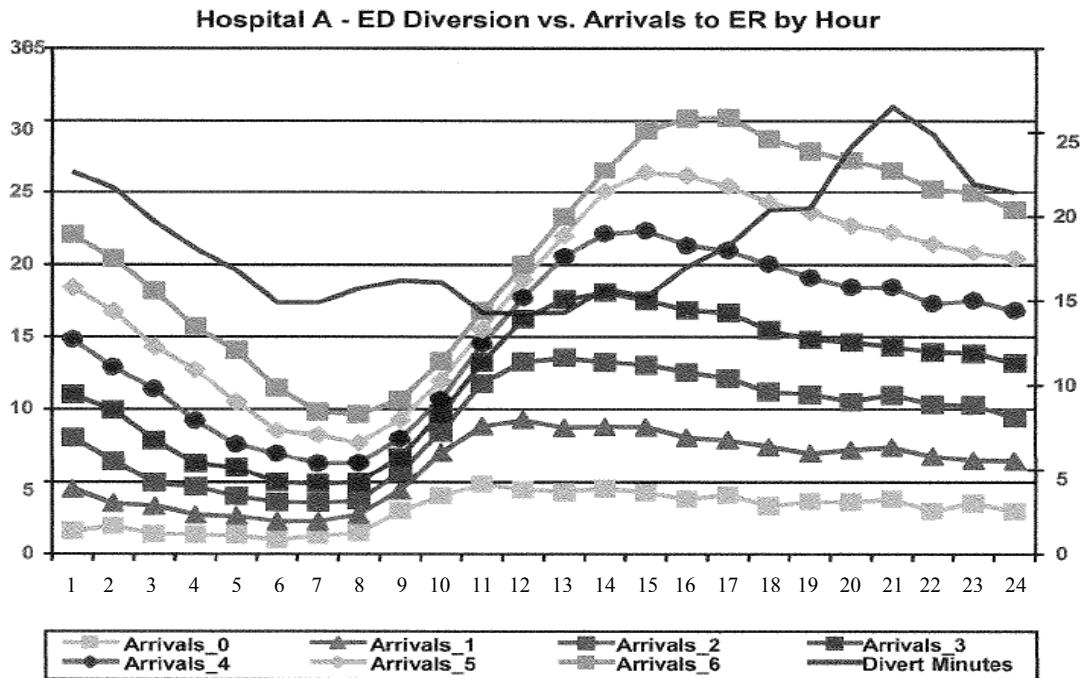
4.2.1 הסבירו בקצרה מדוע אכן **ההגדרה מתאימה**. עשו זאת בהסתמך על הייצוג הרביעי הבא של $R(t)$:

נסמן – $A(t)$ – מספר המופעים הכלול עד זמן t (כולל).

$E[A(t)] = \Lambda(t)$ – תוחלת מספר המופעים המצטבר עד זמן t .


$R(t) = E[\Lambda(t) - \Lambda(t-S)]$ – נובע שמתקיים :

תשובות :


$R(t) =$ כמות העבודה הנמצאת במערכת בזמן t ; עבודה נמדדת ביחידות זמן שירות, או לחילופין מספר יחידות זמן-שרות הנדרשות לטיפולה. לכן $R(t) = E(L(t))$.

הביתוי $R(t) = E[\Lambda(t) - \Lambda(t-S)]$ ממחיש יפה את העבודה שכמות העבודה בזמן t כוללת עבודה שהגיעה לפני כן, בהתאם לתהליך ההגעות המוצע $\Lambda(t)$.

4.2.2 הגף הבא מתאר את תופעת ה- **Ambulance Diversion** (הסתת אמבולנסים) שתוארכה בלילה (ונפוצה בארה"ב). למשל ערך הגף בשעה 21:00 הוא אחוז הפעמים בתקופה הנמדדת שעה 20:00-21:00 הוכרזה כשעה שבה המילון חסום לכינוס חולמים חדשים דרך אמבולנסים (במקרה שלנו 27%).

הגרף הבא מנסה לקשר בין שעתשיא הסטת האמבולנסים לשיא העומס במילון. הסבירו את הגרף.
כיצד ניתן היה לשפר את ההתאמנה בין הזמןאים בהם מתרחשים השיאים?
שימו לב: תוחלת זמן השהייה במילון הנדון היא 6 שעות.

תשובה:

הגרף Arrivals_0 מתאר את כמות החוליםים המומוצעת לשעה שהגיעו למילון לארוך היום, עם שיא הגעות ב- 11 בוקר. הגרף Arrivals_1 בשעה t הוא כמות ההגעות בשעה t + כמות ההגעות בשעה $t-1$, ..., כלומר הוא סומם את ההגעות בשעתים האחרונות. וכך... כלומר הגרף Arrivals_6 סומם את ההגעות ב- 6 השעות האחרונות ע"י הנוסחה: $\text{Arrivals}_6(t) = \Lambda(t) + \Lambda(t-1) + \dots + \Lambda(t-6)$.
לכן גраф 6 מחשב בפועל את העומס המוצע $(R(t))$ לפי הקירוב הבא:

$$R(t) = E[\Lambda(t) - \Lambda(t-S)] \approx \Lambda(t) - \Lambda(t - E[S]) = \Lambda(t) + \Lambda(t-1) + \dots + \Lambda(t-6)$$

מראים ששיא העומס מתקיים בשעה 17-15, כלומר הוא מוזז בזמן לעומת שיא ההגעות שקורה ב- 10-11.

אך עדין יש פער זמן לא מוסבר בין שיא העומס הניל' לשיא ההסתות (שמרתחש בשעה 21). הפרש זה יכול לנבוע, למשל, מאחד ההסבירים הבאים (או משילובם): א. האמד $-R(t)$ לא מספיק מדויק. במקרה זה אנו ממליצים על השיפור הבא: כדי להשתמש בנוסחת העומס המומוצעת המדויקת, או באחד הקירובים היוטר מדויקים שנלמדו בכיתה.

ב. הסטת האמבולנסים, כפי שהסביר בכתה, בדרך כלל מופעלת כאשר מחלקות האשפוז חסומות, זהה קורה בשעה יותר מאוחרת, לעומת שיא העומס במילון.
ג. יתכן שפער הזמןאים מציב על כך שהפעלת נוהל הסטת האמבולנסים מופעל מאוחר מדי, כלומר רק לאחר שרואים עומס בלתי סביר במילון, מתחילה להפעיל אותו ועד שהוא מגיע לאפקטיביות מירבית עבר זמן ניכר.