Class 7 (14/12/2005)

Arrivals: Some Loose Ends
Service Times; Phase-type Distributions

Arrivals: Review
e Poisson processes (Scaling a Bernoulli Process);
e Brownian Motions (Scaling and Centering);

e A unifying (axiomatic) framework: Levy Processes.

Defining, Modelling and Designing Service Times

e What is ”Service-Time”? via Empirical analysis of face-to-face, telephone services; hospitals,

Service time is a Statistical Distribution: lognormal, exponential.

Service time is a Process: Phase-type distributions.

Beyond Means and Beyond CV’s.

Stochastic Ordering.

Subtleties.

Recitation 7
e Log-Normal models for Call Center Service Times;

e Phase-Type Services - An Example;

Laws of Congestion: Old and New
The 0-th Law for (The) Causes of Operational Queues :
Scarce Resources and Synchronization Gaps (in DS-Project Networks);
The First Law of Conservation :
Little’s Law for Customers, Service-providers and Managers.
Little’s Law for the Offered Load (Utilization Profiles).
The Second Law of Completely Random Arrivals :
Levy/Watanabe Axioms of Randomness;
The Law of Poisson-Counting (Law of Rare Events);
The Law of Independent Memoryless (Exponential) Inter-arrivals;
The Brownian-Law of Rescaling & Centering Arrivals;
The Laws of Decomposition-Superposition.
The Third Law of Human Service-durations :
The Law of Phase-types for the Durations of Human Upaced Services;
The Empirical Law of Exponential /Log-Normal Durations.
The Fourth Law of Sampling :
Random Sampling: Wolff’s PASTA = Poisson Arrivals See Time Averages;
Biased Sampling: Costs of Randomness; (Coefficient of Variation, or Form Factor).
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1.1. A SIMPLE GAME OF CHANCE 17

1.1.4. Making an Interesting Game

We have digressed from our original game of chance to consider the
statistical regularity observed in the plots, which of course really is our
main interest. But now let us return for a moment to the game of chance.

A gambling house cannot afford to make the game fair. The gambling
house needs to charge a fee greater than the expected payoff in order to
make a profit. What would be a good fee for the gambling house to charge?

From the perspective of the gambling house, one might think the larger
the fee the better, but the players presumably have the choice of whether or
not to play. If the gambling house charges too much, few players will want
to play. The fee should be large enough for the gambling house to make
money, but small enough so that potential players will want to play. We
take that to mean that the individual players should have a good chance of
winning.

One might think that those objectives are inconsistent, but they are
not. The key to achieving those objectives is the realization that the player
and the gambling house experience the game in different time scales. An
individual player might contemplate playing the game 100 times on a single
day, while the gambling house might offer the game to hundreds or thousands
of players on each of many consecutive days.

Thus, the player might evaluate his experience by the possible outcomes
from about 100 plays of the game, while the gambling house might evaluate
its experience by the possible outcomes from something like 10* — 10% plays
of the game. What we need, then, is a fee close enough to $0.50 that the
player has a good chance of winning in 100 plays, while the gambling house
receives a good reliable return over 10* — 10° games.

A reasonable fee might be $0.51, giving the gambling house a 1 cent or
2% advantage on each play. (Gambling houses actually tend to take more,
which shows the appeal of gambling despite the odds.) To see how the
$0.51 fee works, let us consider the possible experiences of the player and
the gambling house. In Figure 1.9 we plot six independent realizations of a
player’s position during 100 plays of the game when there is a fee of $0.51
for each play. The game looks pretty interesting for the player from Figure
1.9. The player has a reasonable chance of winning. Indeed, the player wins
in plots 3 and 5, and finishes about even in plot 2. How do things look for
the gambling house?

To see how the gambling house fares, we should look at the net payoffs
over a much larger number of games. Hence, in Figures 1.10 and 1.11 we plot
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Figure 1.9: Six possible realizations of the first 100 net payoffs, positions of
the random walk {S; — 0.51k : k > 0}, with steps Uy uniformly distributed
in the interval [0,1] and a fee of $0.51.
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Figure 1.10: Possible realizations of the first 10* net payoffs (steps of the
random walk {S; — 0.51k : k > 0} with steps Uy uniformly distributed in
the interval [0, 1].

six independent realizations of a player’s position during 10* and 10° plays
of the game. As before, we let the plotter automatically do the scaling, so
that the units on the vertical axes change from plot to plot. But that does
not alter the conclusions. In these larger time scales, we see that the player
consistently loses money, so that a profit for the gambling house becomes
essentially a sure thing. When we increase the number of plays to 10°, there
is little randomness left. That is shown in Figure 1.11. Further repetitions
of the experiment confirm these observations. We again see the regularity
associated with a macroscopic view of uncertainty.

Above we picked a candidate fee out of the air. We could instead be
more systematic. For example, we might seek the largest fee such that the
player satisfies some criteria indicating a good experience. Letting the fee
for each game be f, we might want to constrain the probability p that a
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player wins at least a certain amount w, i.e., by requiring that
P(S100 — f(l()()) > w) >p.

Given such a formulation, we can determine the optimal fee f, i.e., the
maximum fee f such that the constraint is satisfied, which is attained when
the probability just equals p.

As noted at the outset, when we consider making the game interesting,
we might well conclude that a uniform payoff distribution for each play is
boring. We might want to have the possibility of much larger positive and/or
negative payoffs on one play. It is easy to devise more interesting games with
different payoff distributions, but the statistical regularity associated with
large numbers observed above tends to be the same. Readers are invited to
make their own games and look at the net payoffs for 10/ plays for various
values of j.

An extreme case that is often attractive is to have, like a lottery, some
small chance of a very large payoff. However, with independent trials, as
determined by successive spins of the spinner, the gambling house faces the
danger of having to make too many large payoffs. Such large losses are
avoided in lotteries by not letting the game be based on independent tri-
als. In a lottery only a few prizes are awarded (and possibly shared) so
that the people running the lottery are guaranteed a positive return. How-
ever, an insurance company cannot control the outcomes so tightly, so that
careful analysis of the possible outcomes is necessary; e.g., see Embrechts,
Kliippelberg and Mikosch (1997). We too will be interested in the possibility
of exceptionally large values in random events.

1.2. Stochastic-Process Limits

The plots we have looked at indicate that there is statistical regularity
associated with large n, i.e., with large sample sizes. We now want to
understand why we see what we see, and what we will see in other related
situations. For that purpose, we turn to probability theory; see Ross (1993)
and Feller (1968) for introductions.

1.2.1. A Probability Model

We can use probability theory to explain what we have seen in the ran-
dom walk plots. The first step is to introduce an appropriate mathematical
model: Assuming that our random number generator is working properly



Mathematical Framework: Levy Processes

Discrete-time: Random Walk

S(n) = Ar+---+A4A,, n>0, where Ay, Ay, ... iid. r.v.
S0) = 0.

Properties:

1. S(m+n)—S(m)<Smn)—S0) Ym,n>0 (£ same distribution)

2. S(mq)—S(0), S(mg) — S(mq), S(msz) — S(ms), ... independent Vim; < my < ---
S ={S(n), n>0} has stationary (1) and independent (2) increments.

The continuous-time analogue is a

Levy process A stochastic process X = {X;, t > 0} is a Levy process if
(0)  X(0) =0 (for simplicity);

(1) X has stationary increments, that is

X(t+7)— X)L X(r) Vt, 7>0;

(2) X has independent increments, that is
X(t+7)— X(t) independent of {X(s), s <t}, Vt, 7>0;

equivalently, X(t1), X(t2) — X(t1), X(t3) — X(t2)... independent Vit; <ty <---
(Technical) (3) X is continuous in probability: lim; o P{|X;| > €} =0, Ve > 0.
(Convention) (4) X has sample paths that are Right-Continuous with Left Limits (RCLL).

/—\

The Distribution of a Levy Process. (Probabilistic Characterization.)

The finite-dimensional distributions are determined by marginals:

X(tl), X(tz), X(tg), RS 4 X(tg) — X(tg), X(tg) — X(tl), X(tl) — X(O), .. independent
X(tz —to) X(ty —t1) X(ty),... stationary

In fact, they are determined by X (1)!



Modeller’s Dream (from “qualitative” to “quantitative”)

1. A Levy counting process is Poisson \
(Cinlar, pg. 71) -

Y

2. A Levy jump process is Compound Poisson ]
(Cinlar pg. 91) -
changes state in jumps and jumps finitely e
in finite times.

Y

3. A Levy continuous process is Brownian Motion
(Breiman pg. 248)
has continuous sample paths.

The “emergence” of the parameters:

Suppose 3 m(t) = EX(t), t>0. Then
m(s+t) = E[X(t+s)—X(@)]+EX(t)=m(s)+m(t), Vs, t>0
=m(t) = p-t for some pu .

Suppose 3 V (t) = Var X(¢), t > 0. Then

V(s+1t)=V(s)+V(t), Vs,t = V(t) = o°t, forsome o >0.

Final Practical Characterizations

e Poisson process with parameter A (Poisson())): Levy and Counting;
X, £ Poisson (M), t>0.

e Compound Poisson. X; = Z?;l Ag, t >0, where

A ={A;, t >0} is Poisson (A); A = {Ay,A,,...} iid (distribution F); A and A independent.
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e Brownian motion, with parameters y, 0®> (BM(u,0?)): Levy continuous sample paths;
X; ~ N(ut,o%t), t > 0.

p=0, 0 =1= standard BM (SBM).
X £ BM(p,0%) = X, = ut + 0B, t >0, with B =SBM.



Dynamic Randomness: The Poisson Process

Hall, Chapter 3: The Arrival Process

Counting Process A = {A;, t > 0}, where A; = cumulative number of arrivals during

0, t].
Assume: Ay = 0; a single arrival at a time.

Characterization via sample paths of A: -—

or via times of events = jumps Sy, Ss, Ss, ...

or via inter-arriwal times Ty, T5,...: S,=T1+---+1T,, n>1.

T To T3 Ty t

e Completely deterministic arrivals at a constant rate \: T, =

>

e Completely random arrivals at a constant rate A : ?

Today: a mathematical model for completely random arrivals at a constant rate.
(Later: varying rates.)

Contents

e Mathematical Framework: Levy Processes;
e Constructions:

Intuitive (via Bernoulli = Poisson);
Explanatory (via “must” properties: order-statistics);
Axiomatic (Levy + counting);

Practical (exponential interarrivals).
e Properties; PASTA; Biased-sampling & paradoxes.

e Inference & simulation.



Hall, Chapter 3: The Arrival Process N = {N(t¢), t > 0}

§3.1 Definition 3.2 requires too much. As discussed, Levy + counting =
IA > 0> N(t) — N(s) ~ Poisson [A(t — s)].

In particular,
P{ N(t+dt)—N(t)=1} = Adt+ o(t)

{ =0} =1—Adt+o(t).
{ > 1} =oft)

§3.2 Derivation of the Poisson distribution from Bernoulli.

§3.3 Properties of the Poisson Process.

1. Poisson marginals; number of events in any interval is Poisson;

EN, = M ,Var N, =\t
VAt

= (C = VYA gmall for ¢ large.

E X Vi

2. Interarrival times which are iid exp (\).
Beginning of proof: P(T; >t) = P(N; =0) =¢e M t > 0.
This is a characterizing property that is practical for simulation.

Extensions to 15,73, ..., and their independence, if rigorous, requires more
than the “it should be apparent” in Hall, pg. 58.

3. Memoryless property: time till next event does not depend on the elapsed time
since the last event.

4. S, =T+ -+ 1T, ~ Gamma (n,\) = Erlang.
5. Order-statistics property: Given N(t) = n, the unordered event times are
distributed as n iid r.v., uniformly distributed on [0, ¢].

= simulation over [0,] : N(t) ~ Poisson (At); Uy, Us,...,Unq iid U[0,] .

§3.4 Goodness of Fit
How well does a Poisson model fit our arrival process?

Qualitative assessments:

Airplanes landing times at a single runway, during an hour: no
Airplanes landing times at a large airport, during an hour: plausible
Job candidates that arrive at their appointments during an hour: no
Visits to a zoo, most of which arrive in groups, during an hour: no
Arrival times at a bank ATM = Automatic Teller Machine,

during an hour: plausible



§3.5

§3.6

Quantitative Tests

Graphical Tests:
cumulative arrivals vs. a straight line (Fig. 3.2)
paired successive interarrivals (Fig. 3.4)

exponential interarrivals
(How do you identify exp (-) when you see one? Use Histograms!)

Parameter Estimation
Estimate A\ = arrival rate.
MLE (Max. Likelihood Estimator), given A(t), t < T : A = 40,

T
Confidence intervals for % : A{T) + 2, A(%g 75 (3.34)
Sample-size: for (1 — a)-confidence interval of width w, N > [%]Q

Thus, for w =€ §, we need N > [2=]2,

(Eg.: 95%-confidence interval of width = 10% of mean, requires N > |
15001)

~
~

2><1.96]2
0.1
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Service Engineering June 97
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Modelling and Design of Service-Time; Phase-Type Distributions.

References.

e [ssaev, Eva,: “Fitting phase-type distributions to data from a call center”, M.Sc. thesis,
Technion TE&M, 2003. (With ample references and a literature review.)
http://iew3.technion.ac.il/serveng/References/Thesis.pdf

e Neuts, M.F., Matrix Geometric Solutions in Stochastic Models, John Hopkins University
Press, 1981.

e Mandelbaum, A. and Reiman, M., “On pooling in queueing networks”, Management
Science, 44, 971-981, 1996.
http://iew3.technion.ac.il/serveng/References/pooling.pdf

e Buzacott, J.A. and Shanthikumar, J., Stochastic Models of Manufacturing Systems,
pages 63-64, pages 540-541; pages 64-67.

Buzacott and Shanthikumar, on pages 154-155, provide an IE-discussion and references
on human task-time, stochastic variability and working rates. Their sources are likely to
be manufacturing-based. These are their key points:

e Much of the variability is beyond control of the operator.
e There exists minimum time of task duration.

e Paced vs. Unpaced work. (In Services, it is typically unpaced: no upper bound is
imposed on task duration.)

e Typically, for experienced operators service-time distribution is skewed with
P{T < mean } =~ 065~ 1— %, which is consistent with an exponential distribution.
(For many practical purposes, a distribution with CV & 1 “is exponential”.)

e For inexperienced operators: greater mean and less skewness. (My understanding of
this: greater mean and more symmetry.)
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e It is not clear from the literature whether there is serial correlation in performing suc-
cessive tasks.

e Variation of working rate is rarely due to physical fatigue or exhaustion, but rather to
inserted-idleness, while the distribution of task-time is stationary over the day.

Personal Experience. Two patterns of service-duration density are prevalent:

One pattern “is exponential” and the other “is lognormal”.
It is interesting to understand what does the shape depend on: is it experience-related?
job-related? Research is needed to answer such questions.

Examples: Service (Process) Design

e Pooling Resources without changing the service process. (At the City Hall of Haifa,
moving the Treasury Department to a new location gave rise to phase-type service
durations, and motivated M. and Reiman.)

e IVR/VRU: Design of search protocols (Comverse).

e Phone Scripts: Design of phone/chat services at call/contact centers. (Electric Com-
pany).



Contents

e Design of a service system (service time): Pooling.

e What is Service Time?
- Single- vs. multiple-visits.
- Time- and State-dependency.
- Sample Size

Estimation and Prediction, Workload.

Production of Health: Hernia, Even-Doctors-Can-Manage.

After-service work: managing accessibility.

- Averages do not tell the whole story: the need for the distribution.

- Service Time is a Statistical Distribution: for example, Log-Normal, Exponential,

Mixture.

- Heterogeneity of Servers.
e Stochastic Ordering (of distributions).
e Exponential Service Times in Human Services:

e How does one recognize an exponential distribution in a histogram.

e mean = standard deviation (C'V = 1) sometimes suffices, but not always. (For

example, in the QED regime things are yet unclear).

e Meta Theorem: Durations of human homogeneous services are either exponential

or lognormal.
e Service Time is a Process: Phase-type models natural and useful.

e Beyond CV’s: Some subtle effects of the service-time distribution in the QED regime.
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Later (Jackson Networks)

On Pooling in Queueing Networks

Avishai Mandelbaum
Faculty of Industrial Engineering and Management
Technion
Haifa, Israel

Martin I. Reiman
Bell Labs, Lucent Technologies
Murray Hill, New Jersey 07974

February 18, 1996
Revised: October 24, 1996; May 12, 1997; May 4, 1998

Abstract

We view each station in a Jackson network as a queue of tasks, of a particular type,
which are to be processed by the associated specialized server. A complete pooling of queues,
into a single queue, and servers, into a single server, gives rise to an M/PH/1 queue, where
the server is flexible in the sense that it processes all tasks. We assess the value of complete
pooling by comparing the steady-state mean sojourn times of these two systems. The main
insight from our analysis is that care must be used in pooling. Sometimes pooling helps,
sometimes it hurts, and its effect (good or bad) can be unbounded. Also discussed briefly
are alternative pooling scenarios, for example complete pooling of only queues which results
in an M/PH/S system, or partial pooling which can be devastating enough to turn a stable
Jackson network into an unstable Bramson network. We conclude with some possible future

research directions.

1. Introduction

A fundamental problem in the design and management of stochastic service systems is that

of pooling, namely the replacement of several ingredients by a functionally equivalent single

1



"Theorem" :

Two Local Municipalities

Durations of human homogeneous services "are' exponential

"Proof"': Empirical (see below); Theoretical (phase-type dense); Scientific?
Department Station Total Avg. Service STD Utilization |Maximal Service
No. Customers Time (Mins) (Mins) Time (Mins)
1 370 7.55 + 0.68 7.96 37% 79.32
Collection - Reception 2 951 5.42 +0.33 6.27 68% 105.20
3 510 6.51 + 0.50 6.94 44% 63.33
4 377 8.41 +0.75 8.90 42% 58.15
Collection - 5 493 11.59 + 0.80 10.88 76% 74.60
Immigrants 6 569 10.38 + 0.62 8.98 78% 50.87
7 114 10.80 + 1.98 12.82 16% 93.73
8 28 9.07 £ 3.56 11.50 3% 52.07
Collection - 9 47 18.32 + 4.90 20.34 10% 113.57
Back office 10 28 23.39 +5.52 17.75 9% 63.77
11 59 11.99 + 3.16 14.75 9% 70.30
12 128 16.73 +2.34 16.08 28% 88.68
] 13 1460 2.51 £ 0.21 4.92 48% 52.18
Cashier
14 1416 3.86 £ 0.18 4.16 72% 46.92
15 340 13.74 + 1.07 12.02 62% 63.68
Billing - 16 363 10.88 + 0.92 10.60 52% 87.92
Reception 17 473 6.66 + 0.50 6.68 42% 49.93
18 302 11.22 £ 1.30 13.81 45% 100.60
Billing - 19 34 19.29 + 5.64 19.99 8% 78.27
Back office 20 13 12.20 + 3.86 8.47 3% 29.28
Total (1 month) 8075
Water 1 57 7.80 + 1.70 7.61 6.5% 31.28
2 130 9.34 + 1.20 8.37 19.3% 54.68
3 336 9.04 + 0.80 8.93 48.2% 49.05
4 208 9.93 + 1.00 8.82 33.0% 49.12
5 417 8.97 + 0.70 8.55 59.4% 49.37
Tellers
6 144 9.53 + 1.20 8.75 21.8% 41.70
7 156 8.03 + 1.10 7.96 19.8% 35.27
8 67 3.74 + 0.70 3.58 4.0% 21.03
Cashier 9 757 6.64 + 0.40 6.94 79.7% 29.95
Manager 10 190 1.99 + 1.00 8.44 24.1% 38.97
Discounts 11 317 4.59 + 0.40 4.54 23.1% 36.72
Total (1 month) 2779

* Service time ranges given with 90% confidence

“STD = Mean” is what often (but not always) "counts' towards Exponentiality.
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Local Municipalities

Station Total Avg. Arrival Avg. Service STD Maxir.nal Utilization Avg
Department . Service Waiting
No. |Customers Rate Time Time Time
(1/Hr) (Mins) (Mins) (Mins) (Mins)
Water N/A 187 1.8 +0.2 887 £ 1.0 8.15 54.68 13.3% 4.76
Tellers N/A 1328 12.6 + 0.5 882 + 04 8.55 49.37 30.8% 7.73
Cashier N/A 757 72+04 6.64 + 04 6.94 29.95 79.7% 3.89
Manager N/A 190 1.8 +0.2 799 + 1.0 8.44 38.97 24.1% 9.16
Discounts N/A 317 30+£03 459 + 0.4 4.54 36.72 23.1% 3.65
Water 1 57 N/A 7.80 + 1.70 7.61 31.28 6.5% N/A
2 130 N/A 9.34 £ 1.20 8.37 54.68 19.3% N/A
3 336 N/A 9.04 + 0.80 8.93 49.05 48.2% N/A
4 208 N/A 9.93 + 1.00 8.82 49.12 33.0% N/A
Tellers 5 417 N/A 8.97 £ 0.70 8.55 49.37 59.4% N/A
6 144 N/A 9.53 + 1.20 8.75 41.70 21.8% N/A
7 156 N/A 8.03 £ 1.10 7.96 35.27 19.8% N/A
8 67 N/A 3.74 + 0.70 3.58 21.03 4.0% N/A
Cashier 9 757 N/A 6.64 + 0.40 6.94 29.95 79.7% N/A
Manager 10 190 N/A 1.99 + 1.00 8.44 38.97 24.1% N/A
Discounts 11 317 N/A 4.59 + 0.40 4.54 36.72 23.1% N/A

Service Time Histogram — Overall:

Range | Frequency
0-5 51.3
5-10 21.1
10-15 12.6 -
15-20 6.7 §
20-25 3.8 2
25-30 2.3 o
LL
30-35 1.1
35-40 0.6
40-45 0.3
45- 0.2

60%

50%

40%

30%

20%

10%

0%
0-5

5-10

*Service time ranges given with 90% confidence.

10-15

AVG: 7.69 Mins
STD: 7.86 Mins
MAX: 54.68 Mins

Minutes

15-20 20-25 25-30 30-35 35-40 40-45

45-
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Government Office

Hour Frequency | Service Time Waiting Time | Waiting / Service | Avg. Time
Avg. STD AVG. | STD. Ratio In System
8 421 2.7 2.7 17.1 14.1 6.5 19.8
9 404 2.8 2.5 30.7 259 11.1 33.4
10 349 2.9 2.7 29.4 30.7 10.1 323
11 218 2.9 2.7 26.6 32.8 9.1 29.5
12 317 2.2 2.5 233 20.3 10.6 25.5
13 255 2.6 2.6 38.7 31.8 14.9 41.3
14 244 2.3 2.7 34.1 38.6 14.5 36.4
15 53 2.1 2.6 22.2 18.8 10.8 243
Total 2261 2.6 2.6 27.6 28.1 10.5 30.2
Date Frequency | Service Time Waiting Time | Waiting / Service | Avg. Time
Avg. STD AVG. | STD. Ratio In System
23/10 411 3.0 2.7 26.4 259 8.8 29.4
24/10 470 2.7 2.7 23.6 23.4 8.9 26.2
25/10 515 2.3 2.5 29.3 30.3 12.6 31.6
26/10 447 24 2.5 31.9 30.5 13.2 343
27/10 418 2.8 2.9 26.6 29.0 9.4 29.4
Department Frequency | Service Time Waiting Time | Waiting / Service
Avg. | STD | AVG. | STD. Ratio
Women 444 2.4 2.1 43.2 30.5 17.7
Income 412 1.8 2.1 23.7 19.1 13.5
Free Professions 332 2.9 3.0 7.6 12.4 2.6
Men 279 2.3 2.7 29.1 34.0 12.7
Released Soldier 239 2.2 2.3 26.4 21.8 11.9
Registration 201 3.8 2.3 37.5 26.6 9.8
Disabled People 181 3.5 34 18.4 30.2 53
New Immigrants 173 33 3.0 32.6 29.0 9.8
Service Frequency | Service Time Waiting Time
Type Avg. STD AVG. | STD.
Reporting 1746 2.1 2.4 27.4 27.8
Forwarding 239 33 2.8 14.9 25.6
Registration 223 3.8 2.3 354 27.2
Health Committee 85 3.2 2.8 22.0 37.8
Endorsements 52 3.1 3.2 6.8 11.8
Course Offering 28 2.9 3.9 16.0 18.4
Counseling Offering 26 3.8 3.7 7.5 13.7
Income Completion 6 5.8 4.9 20.6 221
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Government Office - Cont'd

Service Times Histogram:

40%

AVG: 2.6 Mins
STD: 2.6 Mins
N: 2261 (~450 per day)

30%

20%

Frequency

10%

0%
0-1 1-2 2-3 34 45 5-6 6-7 7-8 89 910 10-11 11+

Minutes

Waiting Times Histogram:

40%
AVG: 27.6 Mins
0,
30% STD: 28.1 Mins
N: 2261
>
c
o 20%
o
Q
L
10%
0%

0-10  10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-110 110+

Minutes

Note: Average sojourn time is 30.2 mins. Hence Service Index = 0.086. Too Low!
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Phone Calls: Information

Call-Duration Frequency - North:
50%

Average Call Duration:
1.95 Mins.

o B Practice
S 30% — Theory
S
o 20%
-
10%
0% 1 1
o1 12 23 34 45 56 6-7 78 89 910 10-
Minutes
Call-Duration Frequency — Central:
50%
Average Call Duration:
40% 2.01 Mins.
> B Practice
o
S 30% — Theory
>
o 20%
LL
10%
0% 1 1

01 12 23 34 45 56 6-7 78 89 9-10 10-

Minutes

Q. How to recognize “Exponential” when you "'see" one?

A. Geometric Approximation.
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ingredient. We analyze the pooling phenomenon within the framework of queueing networks
where in our case, as will be explained momentarily, it can take one of three forms: pooling
queues (the demand), pooling tasks (the process) or pooling servers (the resources). Here we
consider pooling queues and servers simultaneously, but keep the task structure intact, and
we provide an efficiency index (5) to determine when such pooling is or is not advantageous.

Our models are described in terms of customers who seek service provided by servers.
Service amounts to a collection of tasks, of which there are a finite number of types. Two
main models are considered: in the first specialized model, each task type has a server
and a queue dedicated to it. For example, Figure 1 exhibits a queueing network in which

every customer requires a service that constitutes three tasks, and the tasks are carried out

C1 Co C3
@ — [l () == 111 () = T (o) =

Figure 1: A specialized model with tasks attended by specialized servers.

successively, each by its own specialized server. Customers arrive at rate a, average task
durations are m; and servers’ capacities are c;. In the second flexible model, servers are
capable of handling all tasks and they collectively attend to a single queue of services. For
example, Figure 2 exhibits such a model, which arises through pooling the tandem network
from Figure 1: customers arrive at rate «, seeking the same three-task service as before;
they all join a single queue, which is now attended by a single flexible server of capacity

>k Ck-

c1+c2+c3

—M-{E-E-O -

Figure 2: A flexible model with complete pooling into a single queue and a single flexible
server.
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Customer arrivals are assumed Poisson and task durations exponential. (We comment
on these distributional assumptions in the Addendum.) As articulated in Section 2, we
allow a service to consist of a random sequence of tasks in a way that the service duration
has a phase-type distribution (a phase corresponds to a task). The specialized (unpooled)
model turns out to be a Jackson network [19], as in Figure 3, and the flexible (pooled)

architecture is modeled by an M/PH/1 system [26], as in Figure 4.

P3
c1 C2
= I o) 1=
o
= Py3

[ - 1P

Figure 3: A specialized model with task repetition and feedback.

c1+c2tcs

\@+

(mr)
o« — |[[l[[=—= =
- | Lo

Figure 4: The flexible model, under complete pooling, that corresponds to Figure 3.

In addition to the above two main models, we also consider briefly alternative designs of
pooling. For example, Figure 5 depicts the network from Figure 1, with its queues pooled
into a single queue and the servers made flexible while still maintaining their individual

identities (see Section 5.3). Figure 6 depicts partial pooling of only queues and servers 1
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The Model

Customers/Tasks:

e Customers arrive in a Poisson process of rate «

e A service is made up of a random sequence of
tasks

— K types of tasks, k=1, ..., K
— Work content in task k& exponentially distributed

with mean m;y

— g, = probability that task & is first

— bPj = probability that task £ immediately

follows task j (P is transient)

21



The Specialized Model

Task k£ has a server with service capacity ci
(units of work per unit of time) dedicated to it

. . my
Processing times : mean —
Ck

This yields a Jackson network:
K single server stations
Arrival rates (aqq, aqs, ..., aqk)
Service rates (ci1/m1, ca/ma, ..., cx/MmK)

Routing matrix P



The Flexible Model

There is 1 flexible server with service capacity

K
cle=Y ¢
k=1

This yields an M/PH/1 queue:

K phases

Arrival rate «

Mean phase ‘duration’ (m;/cle, my/cle, ..., mg/cle)
Initial phase probabilities (g1, g2, - - ., qK)

Routing matrix P



Service Design

(=) |

o -

-

Figure 5: Complete pooling of queues only; servers are made flexible but maintain individual

identities.

1+ ¢ cs
& -HeH

Figure 6: Partial pooling.

Figure 7: Splitting services. Fach task returns to the end of the queue.

and 2 (see Section 5.4). Figure 7 depicts a split of the service so that a customer, upon

completion of a task, rejoins the queue (see Section 5.5), and additional designs are possible



Carefull: Recall the Appendix in HW?2

Bramson [6] chose first 322 < d < 1, then K large enough for d* =2 < 1/50, and finally § small
enough so that 0 < § < (1 — d)/50(K — 2)*. The specialized network is, therefore, stable
(p; <1, 1 <k < K) and its (complete) pooling, as in Subsection 5.1, is advantageous.

We consider now two (related) poolings. In the first, depicted in Figure 8, the K servers

are pooled into 3 servers as follows: server 1 attends to tasks 1 and K; server 2 serves

catcea+ - teg1 =1 cates+-tex_o=1
e tex =1 @
_ I _
o« —= ||ll= = =
—

- 5

@_
oF | .

Figure 8: Bramson’s unstable network obtained by partial pooling.

tasks 2,4,..., K — 1; server 3 cares for tasks 3,5,..., K — 2. Thus, a customer starts with
server 1, moves on to 2, then 3, back to 2, and so on, until service K — 1 at server 2,
then the last service back at 1 and finally out. Each server uses the FIFO discipline, under
which Bramson [6] proved that the network is unstable. (See his comment, immediately
following the statement of Theorem 1.) In particular, with probability 1, the sojourn time
of customers increases to infinity, as £ T co. Instability arises because the system roughly
alternates between busy periods of server 2, attending mainly to incoming tasks 2 while
starving server 1, and busy periods of server 1, attending to tasks K while starving server
2. The starvation of both servers is a consequence of FIFO, under which ample 6-tasks

are forced into queueing behind few d-tasks. (A more refined and quantitative intuition is

provided in [6].)
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Service (Process) Design; Phase-Type Service
Late Connections

)

w el
a
(Secs.)

Beginning

Customer’s Query
22.0

A

Customer
24.8 Identification

Customer
Identified?

0

\ 4

Date of Purchase of —
Cable [:]
===\

Billing

A 4 A 4

Date of Connection .. To Marketing
According to I l
g ‘\ (Sales) ?

Periodical Updates

A 4

Information Service

End

? Where does human-service start / end (recall 144)?
“Average” picture.
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# Calls

What is “Service Time”?
Bank Classification of “Continued — Calls”

1200 +

1000 +

Total: 2,400 calls -
20% of all calls.

800 ~

600 -

400 ~

200

Call Type

27



Average Service Durations Over The Day
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Figure 12: Mean Service Time (Regular) vs. Time-of-day (95% CI) (n =
42613)
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Arrivals: Inhomogeneous Poisson.

Figure 1: Arrivals (to queue or service) — “Regular” Calls
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N

Service Time

Overall | Regular New |Internet| Stock
service |customers
Mean 188 181 111 381 269
SD 240 207 154 485 320
Med 114 117 64 196 169

31
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N

Service Time

Survival curve, by Types

1.0

08

06
]

0.4

Survival

0.2

0.0

Means (In Seconds)

1200

NW (New) = 111
PS (Regular) = 181
NE (Stocks) = 269
IN (Internet) = 381
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Hazard Rate: Empirical (Im)Patience

Regular Customers
Priority Customers
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|
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/ ‘ Workload '

Suppose at time ¢, the arrival rate is A(¢) and the mean service
time is v(t), then the workload at time ¢ is defined as

e the expected time units of work arriving per unit of time.

e primitive quantity in building classical queueing models and

setting staffing levels.

~
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with V. = 340.

167
14
127

\Units on vertical axis are “required agents”.

14 16 18

time {qtr hr)

\

Figure 18: 95% prediction intervals for the load, L, following a day
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Shouldice Hospital: Flow Chart of Patients’ Experience

Day 1: .
Surgeons Admit
Waiting Exam Room Acctg. Nurses’ Patient’s
Room (6) Office Station Room
1:00-3:00 pm 15-20 min 10 min 5-10 min 1-2 hours
[
v
Orient’n Dining Rec Lounge Patient’s
Room Room Room
9:30 rm-
5:00-5:30 pm 5:30-6:00 pm 7:00-9:00 pm .
5:30 am
Day 2:
A 4
Pre Op Operating Post Op Patient’s Dining
Room Room Room Room Room
5:30-7:30 am 45 min g
to 3:00 60-90 min 9:00 M
Day 3: .
v Remove Clips
Patient’s Dining Room Clinic Rec Room Dining
Room Room? Grounds Room
6:00 am 7:45-8:15 am 9:00 pm
Day 4: Remove
Rem. Clips
Dining Clinic *External types of abdominal hernias.
Room _ *82% 1%-time repair.
«1R0
458150 Stay Longer 18% recurrf:nce?.
’ i Go Home *6850 operations in 1986.

*Recurrence rate: 0.8% vs.
10% Industry Standard.36



Ambulatory Operations Time
Production of Health

Cystoscopy:
30% Practice .
25% Theory —
20% - ,
g 20% AVG: 11.33 Mins.
S 15% | STD: 2.83 Mins.
T 10% - N: 48
5% -
0% : ; ; ‘ ‘ ‘ ‘ ‘ Mins
0 2 4 6 8 10 12 14 16 18 20
4.1057 < 5991 .
2 2 => Do not Reject
X X 0.95
TURT / TURP:
6% -
Practice .
5% Theory __
2 4% 1 AVG: 37.1 Mins.
acsa 3% STD: 14.41 Mins.
T N: 20
[T 2% i
1% -
Mins
0% ‘ ‘ ‘ ‘ ;
0 5 10 15 20 25 30 35 40 45 50
05113 < 5991 .
2 2 => Do not Reject
X X 0.95
Curettage:
14% - Practice .
12% - Theory __
10%
é‘ 8% AVG: 12.08 Mins.
g STD: 3.08 Mins.
g 6% N: 40
(TR
4% -
2% -
0% Mins

24887 < 7.815
=> Do not Reject
Xz X20.95(6'3) !

CV <1 3
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Operations Time In a Hospital

Operations Time Histogram:

20% -

18%

16% AVG: 2.08 Hours

14% STD: 4.12 Hours
> Sample Size: 4347
o' 12%
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Operations Time In a Hospital

Operations Time Histogram:

20% -
18% -
16% - AVG: 2.08 Hours
14% - STD: 4.12.Hours
> Sample Size: 4347
o 12% -
o 0,
S 10% CV>>1
L 8%
LL
6%
4%
2%
0% =
0O 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 10 105 11 115 12 125 13 135 14

Hours

Operations Time - Morning vs. Afternoon:

Hours

6 - AM
B Queues Reduction

B Regular

EEG Orthopedics Surgery Blood Surgery Plastic Surgery  Heart/Chest ~ Neuro-Surgery Eyes E.l. Surgery
Surgery
Department
Afternoon, Morning,
by Case by Hour
Ethical?

Even Doctors Can Managg!



Service Performance

Service Time — Average:
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What is “Service Time” ?
Utilization Profile in 3 Call Centers Doing the Same Thing

ﬁ
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Figure 6: Histogram of Service Times (in seconds)
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Figure 3: Log-normal QQ Plot of Service Time (Nov + Dec)
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Lognormal Service Time'

Figure 2: Histogram of Log(Service Time) (Nov + Dec)
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Beyond Data Averages
Short Service Times

Jan — Oct:

b 4

7.2 % *
E_
4

AVG: 185
STD: 238

2_ ||
- “““‘||III|IIIIIIIIIIIIIIIIIIlllllllllllllllllllll --------------------

| | | | | | | | | |

[V} 100 200 00 400 500 GO0 700 B0 800

Nov — Dec:
-E-—
?’_
_B_
54 %
5_
4 Log-Normal
AVG: 200 g
STD: 249
3
2_
o I|IIII“IIIII““II“l“llllllllllll-ll. ...... .
| ] ] ] | | ] ] | |
[V} 100 200 00 400 500 B 700 800 800

45



Percent Calls w/Service < 10sec
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Mandelbaum, Sakov and Zeltyn

Table 52: Number of calls handled by an agent

52

Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
AVI 0 0 0 | 1117 | 2208 | 2019 | 2789 | 2710 | 1417 | 2026 | 2523 | 2395
AVNI 1493 | 1736 | 642 | 539 | 1786 | 2219 | 2092 | 2392 | 1156 | 1888 | 1988 | 2136
BASCH 009 | 1164 | 1708 | 1155 | 982 | 906 | 858 | 2185 | 1973 | 1055 | 1326 | 1242
BENSION 1283 | 1135 0 | 1053 | 1108 | 1016 | 1682 | 1298 | 1076 | 1303 | 1546 | 1176
DARMON 309 | 515 | 633 | 519 | 577 | 436 | 309 | 370 | 297 | 194 | 425 | 128
DORIT 696 | 1047 0| 811 | 546 | 862 | 750 | 2228 | 1319 | 1384 | 1640 | 1605
ELI 387 | 508 | 777 | 447 | 560 | 436 | 395 | 458 | 416 | 363 | 502 | 352
GELBER 333 | 143 510 | 427 | 859 | 281 | 386 | 332 67 1 179 | 165 | 269
GILI 668 | 614 | 1155 | 803 | 1108 | 974 | 418 0| 355 | 456 | 412 | 298
KAZAV 1005 | 1693 | 1240 | 1451 | 1731 | 2251 | 1737 | 1168 | 729 | 1570 | 1047 | 2038
MEIR 0 0 0 0 0 0] 127 344 | 318 | 280 | 406 | 454
MORIAH 1360 | 1223 | 1591 | 1351 | 1866 | 1980 | 2416 | 2152 | 1526 | 1940 | 1793 | 515
PINHAS 79 40 | 359 | 244 31 311 422 | 241 | 143 | 105 51 63
ROTH 0 0| 397 | 1202 | 1928 | 1967 | 1831 | 1749 | 1625 | 1914 | 1458 | 1038
SHARON 1985 | 1674 | 2780 | 1938 | 2563 | 2657 | 2537 | 2875 | 1803 | 1935 | 2532 | 2140
STEREN 0 | 1043 | 2294 | 1516 | 2163 | 2231 | 1423 | 2455 | 1672 | 709 | 2375 | 2568
TOVA 1923 | 1679 | 1562 | 1059 | 1464 | 1389 | 1890 | 1811 | 1361 | 1971 | 941 0
VICKY 895 0 0 0 | 1006 | 1378 | 1415 | 1674 | 1472 | 1582 | 1641 | 1990
YIFAT 1312 | 1901 | 1745 | 1305 | 1464 | 1076 | 780 90 | 1137 | 1315 0 0
YITZ 1771 | 1791 | 1402 | 1203 | 1355 | 1367 | 1009 69 [ 705 | 1743 | 2420 | 2353
ZOHARI 801 | 1144 | 1398 | 1148 | 1479 | 1450 | 980 | 1494 | 1423 | 1359 | 1504 | 1094
Z2ARIE 0 0 0 0 0 0 0 56 | 225 | 315 | 432 | 534
Z2ELINOR 0 0 0 0 0 0 0 45 | 352 288 | 222 | 310
Z2EYAL 0 0 0 0 0 0 0 95 | 331 | 428 | 579 | 618
Z2IFAT 0 0 0 0 0 0 0 94 | 260 | 314 | 215 0
Z2LIOR 0 0 0 0 0 0 0 84 | 250 | 136 | 126 | 138
Z2NIRIT 0 0 0 0 0 0 0| 116 | 327 | 474 | 387 | 545
Z20FERZ 0 0 0 0 0 0 0 71| 311 | 260 | 242 | 334
Z2SPIEGEL 0 0 0 0 0 0 0 71| 311 | 260 | 153 | 322
Table 53: Number of calls with short service time
[ ]

Jan | Feb | Mar | Apr | May [ Jun | Jul | Aug | Sep | Oct | Nov | Dec

MORIAH || 233 | 230 | 356 | 290 | 614 | 695 | 865 | 597 | 490 | 455 4 1

AVI 0 0 O 47 111 144|295 | 221 | 121 | 76 35| 26

AVNI 11| 13 4 5 6| 25| 16 18 4 8 8| 11

DARMON 2| 11 8 9 10 7 1 0 1 1 0 0

ELI 9 7 10 12 22| 18| 15 4 8 3 6 5

KAZAV 57 | 40 48 | 44 48 | 63| 40 27 | 15| 18 4 6

MEIR 0 0 0 0 0 0 1 8 3 1 2 1

PINHAS 3 0 58 25 4] 14| 11 6 8 1 0 0

ROTH 0 0 10 10 36 | 21| 43 25| 32| 31 3 6

SHARON 58 | 49 86 52 67| 78| 66 63| 38| 23 43 | 49

TOVA 52 | 163 | 269 | 132 | 231 | 193 | 100 | 109 | 207 | 190 6 0

ZOHARI 4 8 12 22 17| 20 9 14 5 7 10 7
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Hg-‘kﬂ%z&w SU‘W (Reca// the 7&1&/5?:5)

Example: Comparison of Service times among various Servers.

If one breaks the service time down according to the individual servers, the
differences are quite noticeable. Here is the situation in December.

Log(servtime) By server (Dec.)

(Diamonds show 99% confidence intervals for each server.)
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Mandelbaum, Sakov and Zeltyn

Frequency

H eﬂaojzuau: Sorvies
£y 6 Lingle frver

Figure 22: ZOHARI’s service time distribution
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Next we look at the hazard rate for ZOHARI’s service time. The hazard rates were smoothed using HEF'T
[24]. Figure 23 shows the HEFT estimate, superimposed on the empirical hazard rates, and the HEFT
estimate for types PS and NE. The shapes of both the density and the hazard rates are similar to those

observed for the overall agent population; see Section 7.

Figure 23: Hazard rate for ZOHARI’s service time
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N

Service Time

Overall | Regular New |Internet| Stock
service |customers
Mean 188 181 111 381 269
SD 240 207 154 485 320
Med 114 117 64 196 169
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Mandelbaum, Sakov and Zeltyn
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Figure 19: Densities of service times, by types and priorities
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N

Service Time

Survival curve, by Types
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Frequency

A Bank

Private Banking

o Arrivals ‘Waiting Time (Mins) Service Time (Mins) | Sample Avg.
our  IRate (In Hr) Avg. STD Avg. STD Size | #Tellers
8.5-9 15.7 6.2 5.7 39 27 110 1.00
9-10 134 4.6 5.4 35 27 188 1.00
10-11 143 6.4 6.8 34 30 200 1.00
11-12 12.7 72 7.0 44 44 165 0.94
12-125 9.1 3.6 4.1 50 39 41 1.00
Break
16-17 9.5 42 4.8 35 28 63 0.88
17-18 114 4.8 5.6 42 33 76 0.95
Average 123 5.7 6.2 39 33 843 0.97
10.0 7 T20
90 - == \aiting Time [ Service Time ~—#Arrivals Rate  { 4g
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£ I
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General Services

A Bank

Hour Arrivals Waiting Time (Mins) Service Time (Mins) | Sample Avg.
Rate (In Hr) Avg. STD Avg. STD Size #Tellers
8.5-9 85.4 6.9 7.4 32 27 598 45
9-10 66.8 78 8.7 32 30 935 45
10-11 58.9 9.0 8.0 34 33 825 4.6
11-12 56.6 6.5 5.5 36 34 736 42
12-125 378 4.6 4.0 4.8 55 227 45
Break
16-17 68.1 54 4.6 29 23 465 37
17-18 63.3 6.0 5.2 33 27 440 42
Average 624 71 7.1 34 32 4,226 43
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A Bank A Bank

Comprehensive Services Tourists / Business Services
Hour Arrivals ‘Waiting Time (Mins) Service Time (Mins) | Sample Avg. Hour Arrivals Waiting Time (Mins) Service Time (Mins) Sm?lple Avg.
Rate(InHr) |7y yq STD Avg. STD Size | #Tellers Rate(InHr)| 5, STD Avg. STD Size | #Tellers

8.5-9 20.1 6.4 10.0 93 88 141 4.1 8.5-9 77 5.1 6.0 14.0 123 74 3.44

9-10 14.6 4.1 5.7 78 83 205 40 9-10 10.5 81 10.7 10.8 11.0 184 3.57
10-11 16.0 6.6 7.8 92 92 224 39 10-11 11.4 94 12.2 13.2 13.1 201 3.64
11-12 16.0 6.2 7.4 86 87 208 37 11-12 7.5 9.0 13.0 143 132 140 3.64
12-125 113 43 6.6 88 72 68 39 12 -12.5 6.0 6.7 12.5 9.3 75 46 3.62

Break Break

16-17 19.6 8.6 114 98 88 135 31 16-17 82 16.5 12.1 13.9 124 61 2.81
17-18 16.4 9.4 10.1 82 72 107 36 17-18 3.7 3.0 2.7 133 13.7 29 2.71
Average 16.3 6.3 8.5 88 85 1,088 38 Average 79 82 11.4 12.7 12.3 735 3.34
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Figure 8.4: Phase-type fits to December service time by a general structure
oforder k=2 — —, k=3—-—, k=5--- . In the top plot, the solid line
is the kernel density estimator, given as a comparison to the fitted densities.
In the bottom plot, the solid line is the empirical survival function.
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Figure 8.11: Overall service time - December. PH-type structures of order
k=2,3,4,5,6.
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Service times. December. 34433 observations.
Sample mean = 207.0 sec. Sample standard deviation = 272.6 sec.
Type of PH-distributions — Erlang mixtures, p=6.
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Service time — December.

Type of PH-distributions — Hyperexponential, p=4.
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likelihood function is coincide. Figure 8.5 shows three different structures of
PH-distribution of order k = 3 with the same log likelihood function. The

0.03-

Log-likelihood = -215735.877179 (final)

Figure 8.5: Two different structures of the same order, k = 3, of PH-type fit
to the service time - December, starting with different initial values, Figure
a) above. The fitted Coxian structure of the same order, Figure b) above.

corresponding densities are, when plotted, difficult to distinguish from each
other. Then, Figure 8.6 (p. 47) demonstrates the fitted distribution, survival,
density and hazard functions together with corresponding empirical functions
for the PH-distribution of order k = 3 of the structure at left in Figure 8.5.
In addition, Figure 8.5 b) demonstrates the fitted Coxian structure of order
k = 3. It has the same log-likelihood function and, correspondingly, the same
fitted mean and standard deviation.

When one looks at the two structures above by ignoring the small prob-
abilities (the dashed arrows in Figure 8.5 a)), it can be seen that despite of
different estimated set-up of the parameters at first sight, there are similar
length time in the states. Moreover, these two structures can be simplified to
the following, showed in Figure 8.7 (p. 48), with corresponding two different
setups of parameters (q, R) and (q, R)":
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Figure 8.6: PH-type fit of order k = 3 of general structure (dashed curve)

with empirical functions (solid curve).
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The fitted PH-distribution has mean = 207 and standard—deviation = 253, CV = 1.22.
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Let X1, X», X; - three independent random variables exponentially distributed
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Figure 8.7: An example of PH-distribution of third order represented by two

different setups of parameters.
* ~ q
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G
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with parameters \;,7 = 1,2, 3, and an indicator

[ = 1 wp.gq
10 wp.1—¢

independent of X;,i = 1,2,3. Then Y = X; + IX; + (1 — I)X; is time to
absorption, and in both cases:

NNy oy 22820 g
fY(y)_(Al—Az) (e e M) + O — ) (e e ),y > 0.

The PH-distribution of order k = 3 of the structure at left in Figure 8.7
is fitted to compare its results with the fitted PH-distribution of the same
order of the general structure, given in figure 8.5. Figure 8.8 (p. 49) shows
the derived specified structure with corresponding log-likelihood function and
the graph of fitted PH-density functions of general and specified structures
together with kernel density estimator. It is difficult to distinguish between
the two structures, according to the graph of their survival functions. It
can be seen, according to their fitted density functions that there is a little
difference between them at the top of the mode, with preference to spec-
ified structure. However, according to the likelihood function, the general
structure has larger likelihood (or consequently, the smaller log-likelihood).

Table 8.1 presents the fitted PH-distribution mean (Mean), standard-
deviation (SD), coefficient of variation (CV) and log-likelihood function (Log-
L) for the fitted general structure of order k=23,4,5,6 to the service time
- December.

Table 8.2 (p. 50) shows the results of applying EDF tests — the D* and
A? statistics associated with the K-S and A-D tests, respectively. These
statistics heavily depend on size of the sample data. In table at top, the
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Figure 8.8: The specified PH-structure of order k = 3 fitted to the service
time - December (at top). The fitted PH-density functions with empirical

one (at bottom).
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Log-likelihood = -215792.369456 (final).
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by fitting PH-distributions of general structure to service time - December,
by priorities.

Figure 8.17: Service time - December, by priorities. JPH-type structures of
order k = 3,4, 5.
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Figure 8.25: Service time - December, b1| types.' PH-type structures of order
k=23,4,5,6.
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Service Times:

Approximation of Lognormal(u=4.8, 6=1.03) by PH of order 3
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Simulation Experiments with M /G /100 Queues in the
Halfin- Whitt (Q.E.D) Regime

Supervised By: Avishai Mandelbaum” Project By: Roy Schwartz"

' avim@ie.technion.ac.il

! schwartz@ie.technion.ac.il

Draft of July 9, 2002

Industrial Engineering and Management, Technion, Haifa 32000, Israel
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E(Wq)vs. Beta ¢ &ED u.‘

Figure 6: E(W,) vs. 8 (M/M/100, M/D/100 and M/LN/100 with CV = 1)
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E(Wq|Wq>0) vs. Beta (M/M/100, M/D/100, M/G/100 with p=0.75 and p=0.9999 and p=0.5001
and M/LN/100 with cv=1)
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Figure 19: E(W,|W, > 0) vs. (3 for special service time distribution and regular distributions

the case p = 0.5001 has the highest results in the E(W,|W, > 0) case.

Notice that in all three cases of the special distribution, the slope of the corresponding
line of each case becomes steeper as p gets closer to 1 (equivalently as (3 gets closer to 0)
than the slope of the lines that correspond to the regular distributions. It might be worth
mentioning that E(W,|W, > 0) is the only statistic for which we have obtained lines that
intersect with each other, when making graphs for a statistic vs. 3 (i.e. the only instance that
line intersect is in Figure 19). Again, we have no explanation for this phenomenon (it might
be some error in the simulation or a numerical inaccuracy , but we have not been successful
in finding one). We would like to point out, that this intersection of lines is most significant
in the three following systems: M/LN/100 (with coefficient-variance of 1), M/D/100 and
M/G/100 (where p = 0.9999). Note that the line that represents E(W,|W, > 0) in the
case of M/G/100 (where p = 0.9999), for small p’s is very close to the line that represents
the case of M/D/100. However for high p’s, this line is higher than that of the M/LN/100
system.

As in P(Wait > 0), notice that the case p = 0.75 is very close to the M/M /100 sys-
tem. Notice also that in the case p = 0.5001, E(W,|W, > 0) is slightly higher, for each 3
value, than the M/M/100 case (as it was mentioned before, the order between the cases has
changed).

The graph of E(W,) vs. 3 appears in Figure 20. Notice that the order of the lines in this

25
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P(Wait) vs. Beta (M/M/100 and M/D/100 and M/LN/100 with CV=1,10)

beta

Figure 3: P(Wait > 0) vs. 8 (M/M/100, M/D/100 and M/LN/100 with CV = 1 and
CV = 10)

are not correct in the Halfin- Whitt regime. In chapter 6 we present a special service time
distribution that achieved these results in a much clearer fashion.

71



Phase-Type Service Times (Durations).

Service-Time = a sequence/collection of tasks, of an ezponential duration.
There are K types of tasks, indexed by £k =1,..., K.

my, = expected duration of task k; m = (mg)
qr = % of services in which £ is first; q=(q)
P;i, = % of incidences in which task j is immediately followed by k. P = [Pj]

1 — 2K | Py, = probability to end service at k.

Rk

qj \ ’ N\
m,
Fact: service = finite number of tasks < 3[I — P|™!
Indeed, [I — PJ;;! = expected number of “visits to k”, given j was first.

(q[I — P]7')x = expected number of “visits to k7).

As will be articulated below, service-time duration is Phase-type (PH).
(Assuming independence among task-durations.)

Definition. Phase-type distribution = absorption time of a finite-space continuous-time
Markov chain, with a single absorbing state.

Formally: X = {X},t > 0} Markov on states {1,2,..., K, A}, with infinitesimal generator

1

] R e A absorbing (since gan = 0)
Q=" " o r=-—RIl (since Q1 = 0)

K e 1,...K transient < JR™! (fact)

A LO ...0 O

and initial distribution (of Xj) is given by (q1,...,qx,0) = (g,0).

Recall:
P{X; =k} = > gjlexp(tR)]j = qlexp(tR)]

Define: T =inf{t > 0: X; = A} has phase-type distribution, say Fr(-).
Claim: Fp(t) =1-gqe'f1, t>0.

Proof. P(T > t) = P{X; # A} = 3, q(e'F), = qef1.

4
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Parameters:

density fr(t) = qgefr
Laplace transform  [5° e " Fr(dt) = [z — R|™'r
nth moment Joot"Fr(dt) = (=1)"nl¢R™"1

(mean = —gR™'1)

Special Cases:

Exponential (u) : R = [—p] and ¢ = 1.

Erlang: —|1]|—|2| — iid tasks / phases (C’Z(T) = %)

Generalized Erlang: exponential phases in series (tandem) (C? < 1).

Hyperexponential: K tasks in parallel (mixture) (C? > 1).

e Coxian: K phases; end at phase k with probability p.

P
Py 1P,

e Minimum of exponential random variables is exponential.

e Max of exponential random variables is phase-type: e.g., X; ~ exp(1) iid.
This easily implies that F(max X;) =Y, %, Var (max X;) =, Z% bounded!

e Erlang mixtures:

O—=0O=O~
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Importance of Phase-type distributions.

e Empirical + wishful thinking: homogeneous human tasks are exponential.

e Richness: the family of phase-type distributions is dense among all distributions on
[0,00). For every non-negative distribution G, there exists a sequence of phase-type
distributions F,, > F,, = G.

(In particular, we can guarantee convergence of any finite number of moments.)

Dense subfamilies: Coxian, Erlang mixtures.

For Erlang mixtures, this can be explained by the following two facts:
1. The family of discrete distributions is dense.

2. Constants can be approximated by Erlang distributions. Therefore, discrete distri-
butions can be approximated by Erlang mixtures.

e Modelling, via the method of phases. For example, consider M/PH/1 queue (see HW).

M/PH/1: state-space is (i, k) (i = number in queue; k = phase of service) or 0;
Ag
e.g., 0 — (1,k).

Representation directly in terms of (q, P, m).

Denote here R = [I — P]™'  (as in Mandelbaum & Reiman).
Average work content  E(T) = gRm (=X ¢ Rjpmi).

mq 0
Moments: E(T") = nlqg(RM)"q, where M =
0 mg
E(T?)  14+C¥T) q(RM)*1
2(B(T))* 2 (¢RM1)?
6
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