
Service Engineering
May 2000

An Introduction to Skills-Based Routing

and its Operational Complexities

By Ofer Garnett and Avishai Mandelbaum

Technion, ISRAEL

(Full Version)

Contents:

1. Introduction

2. N-design with single servers

3. X-design with multi-server pools and impatient customers

4. Technical Appendix: Simulations – the comutational effort

Acknowledgement: This teaching-note was written with the financial support of the

Fraunhofer IAO Institute in Stuttgart, Germany. The authors

are grateful to Dr. Thomas Meiren and Prof. Klaus-Peter

Fähnrich of the IAO for their assistance and encouragement.

 2

Introduction

Consider the following multi-queue parallel-server system (animated, for example, by

a telephone call-center):

 λ1 λ2 λ3 λ4

 θ1 1 θ2 2 3 θ3 4 θ4

 µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8

 S1 S2 S3

Here the λ's designate arrival rates, the µ's service rates, the θ's abandonment rates,

and the S's are the number of servers in each server-pool.

Such a design is frequently referred to as a Skills-Based design since each queue

represents "customers" requiring a specific type of "service", and each server-pool has

certain "skills" defining the services it can perform. In the diagram above, the arrows

leading into a given server-pool define its skills. (For example, a server from pool 2

can serve customers of type 3 at the of rate µ6 customers per unit of time) .

Some canonical designs are: I (Ik), N, X, W, M (V).

 3

When implementing a skills-based system, the major decisions to be made are:

1. Who are the customers - defining customer types (offline decisions)

2. Who are the servers - their skills and numbers (offline)

3. How are customers routed to servers - the control policy (online)

These decisions typically require the involvement of separate divisions in the

organization: Marketing (for no. 1), HRM (for 2) and Operations (2, 3), all supported

by MIS / IT – a truly multi-disciplinary challenge.

System’s design (engineering) consists of classifying the customers and determining

the servers' required skills. A particular single design can have alternative

interpretations, for example:

• Different customer types can represent customers requiring different services

 (e.g. technical support vs. billing) or customer priorities (VIP vs. Members).

• Separate server-pools can be due to servers' level of capabilities / training /

experience (e.g. Hebrew/English speaker vs. Arabic/Russian/Spanish speaker,

generalist vs. specialist, expert vs. novice).

Even with simple designs there can be associated many different control (routing)

policies. The two most common decisions to be made when routing customers are:

1. Whenever a service ends and there are queued customers, which customer (if

any) should be routed to the server just freed.

2. Whenever a customer arrives and there are idle servers, to which one of them

(if any) should the customer be routed.

Skills-Based Routing (SBR) is the protocol for online routing of customers. Routing

decisions can be dynamic - depending on the "state" of the system at the time they are

made, or static – for example, each server pool adheres to static priorities among its

constituent types.

The design of SBR protocols presents challenging research problems, and the goal of

our teaching note is to contribute to their understanding. We achieve this through

performance analysis of alternative system’s designs and staffing levels. The analysis

is predominantly simulation-based since even for relatively simple designs, such as

V- or N-design, the available analytic state-of-art is rather restricted. In our

 4

simulations we are using Poisson arrivals, as models of completely random arrivals,

and exponential service times, which quantifies human stochastic variability.

Customers' patience (in models including abandonment) is assumed exponential -

although not backed up empirically, this serves as a prevalent basic Markovian

approximation. (Details on the simulations are given in the Technical Appendix.)

Note: a design with a multi-server pool is mathematically equivalent to a design in

which the pool is replaced by multiple (as many as in the pool) equally-skilled-single-

servers.

Note: Sometimes one must associate the queues with the server pools rather than with

customer types. A control policy then amounts to routing customers upon their

arrivals, as depicted in the following N- and W-designs.

 5

N-design with single servers (no abandonment)

Consider a help-desk with two servers providing technical support for two products.

The current design is of type I2 (see diagram below) - each server "specializes" in one

product, and serves only the customers requiring technical support for that product.

Type 1 are core customers – they are considered higher priority than type 2 and hence

served by an expert server 1.

We analyze this system analytically as two independent M/M/1 queues.

 λ1 λ2

 1 2

 µ1 µ2

 S1 S2

The system's parameters are:

λ1 = 1.3ρ, λ2 = 0.4ρ,

µ1 = µ2 = 1.0,

S1 = S2 = 1,

where ρ parametrizes the traffic load, and the given rates are per minute.

When the traffic load is low the performance is satisfactory (see Table 1 below), but

as traffic increases - specifically as ρ approaches 1/1.3 - server 1 becomes heavily

loaded and type 1 customers suffer long waiting times. This situation raises questions

as to this design's efficiency, since server 2 is still fairly "comfortable" with the

higher traffic load, and frequently goes idle while server 1 is faced with a long queue.

Perhaps more importantly, with the higher traffic load, the service-level of the high

priority type 1 customers deteriorates dramatically.

 6

Table 1 : Performance of I2 design

 Type 1 Customers / Server 1 Type 2 Customers / Server 2
Traffic
Load
(ρ)

Average
Wait

(seconds)

Average
Queue
Length

Utilization Average
Wait

(seconds)

Average
Queue
Length

Utilization

1/3 46 0.3 43% 9 0.0 13%
2/3 390 5.6 87% 22 0.1 27%
3/4 1170 38.0 97.5% 26 0.1 30%

Can alternative designs be more efficient and provide better service? The answer is

an emphatic “Yes”, as will now be unraveled through a sequence of such designs.

The first alternative is to implement a V-design(1) with a pool of two servers. This is

clearly the most efficient design utilization-wise. However, it requires that the expert

server 1 caters to customers of type 2, which is judged unreasonable.

 λ1 λ2

λ1 = 1.3ρ λ2 = 0.4ρ

 µ1 = µ2 = 1.0 µ3 = 0.5

 1 2 S1 = S2 = 1

 µ1 µ3 µ2

 S1 S2

Another possibility is an N-design(2) (see diagram above): server 2, who is not as

busy as server 1, could help by serving some of the type 1 customers. This requires

additional training for server 2 - to be able to support type 1 customers although at a

slower rate (µ3 = 0.5).

Two control policies will now be considered, which are referred to as "greedy" in the

sense that server 2 does not remain idle when there are customers (of any type)

 7

waiting in queue. The policies differ by whether server 2 gives priority to type 1 or

type 2 customers:

Greedy 1: Server 2 serves type 1 customers as long as there are type 1 customers

waiting and server 1 is busy.

Greedy 2: Server 2 serves type 2 customers as long as there are type 2 customers

waiting, and otherwise serves any type 1 customers waiting if server 1

is busy.

Implicit in the description is that when both servers are idle then type i customers are

routed to server i, i=1,2.

The N-design was implemented so that server 2 could "assist" server 1 in serving the

high priority type 1 customers. As will be explained below, the N-design is indeed

more efficient than I2 : it can handle in principle any ρ ≤ 1 workload while I2 is

restricted to ρ ≤ 1/1.3 < 1.

Question: How much "assistance" does server 1 get from server 2 in each case ?

Graph 1 : Fraction of Type 1 served by Server 2

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

Traffic Load (ρ)

Greedy 1
Greedy 2

When the traffic load is low there is little assistance (with similar values for both

policies) since server 1 easily handles the flow of type 1 customers, and a

queue rarely forms. When ρ ≅ 1/3 we start to see the anticipated difference

between the two policies - more assistance is given under "Greedy 1", and the

higher the traffic load the more assistance is given. Under "Greedy 2" with

traffic loads above a certain point (ρ ≅ 3/5) the amount of assistance given

 8

actually starts to decrease. In this regime server 2 cannot assist as much,

being busy with type 2 customers that enjoy higher priority.

It is significant that the graphs of both policies do not “end” at the same value of ρ.

This will be discussed momentarily.

For a given set of parameters and a control policy, the system can be either stable or

unstable. Consider the following stability heuristics for the case ρ = 1: If server 1

devotes all his time to serving type 1 customers, server 2 will have to serve an

average of λ1 - µ1 = 1.3 – 1.0 = 0.3 type 1 customers per minute, which requires 0.3 /

µ3= 0.3/0.5 = 60% of his time. The remaining 40% of server 2 time are just adequate

to serve the 0.4 / µ2 = 0.4/1.0 workload of type 2 customers.

(Recall that the original I2-type design became unstable for ρ ≥ 1.3).

Question: Does this mean that the system will be stable under both “greedy”

control policies for any 0 < ρ < 1 ?

Graph 2 : "Greedy 1" , ρ = 0.95 - Queue lengths

0
100
200
300
400
500
600
700

0 1000 2000 3000 4000 5000

Time (minutes)

Q
ue

ue
 le

ng
th

Type 1
Type 2

The graph displays a constant linear growth of the queue-length for type 2

customers under the "Greedy 1" policy - clearly indicating instability. (The

queue of type 1 is negligibly flat relatively to type 2.)

Returning to Graph 1: The graph for the "Greedy 1" policy does not reach

ρ = 1 since the system becomes unstable at ρ ≅ 0.9 . Under "Greedy 2", ρ = 1 is

reached, and indeed the fraction of type 1 customers served by server 2

approaches the expected value of (1.3 – 1)/1.3, somewhat below 0.25.

 9

Question: Can you explain what caused the system, under the "Greedy 1" policy,

to become unstable before reaching ρ = 1, and why the stability

analysis preformed does not apply to this case ?

Chart 1 : "Greedy 1" - Servers' utilization profiles

ρ = 0.25 ρ = 0.45 ρ = 0.65 ρ = 0.85

0%

20%

40%

60%

80%

100%

S1 S2 S1 S2 S1 S2 S1 S2

Idle
Type 2
Type 1

Note the servers' utilization profiles (Chart 1 above) for the case ρ = 0.85 :

Server 2 is almost constantly busy, while server 1 is idle more than 20% of the

time. Moreover, server 2 spends most of his time serving type 1 customers.

From here it is clear that server 2 is "assisting" beyond the call of duty – in fact,

he is overworking himself by taking away work that server 1 could and should

have handled by himself. This is the cause for instability : Server 2 gives so

much attention to type 1 customers that his own neglected queue

"explodes".

It is important to realize that we are unable to determine beforehand the

maximum workload such a "Greedy 1" system can handle. The stability

analysis does not apply to this case since the underlying basic assumption

that both servers are fully utilized does not prevail here.

Note: Already from Graph 2 follows that, with ρ = 0.95, type 2 customers

accumulate at a rate of 700/5000 = 0.14 per minute. The offered traffic of

type 2 is 0.4 x 0.95 = 0.38, hence type 2 are served at a rate of 0.38 – 0.14 =

0.24. This translates into only 24% of server 2 time, with the rest 76% devoted

mostly to type 1.

For a more complete understanding of server "assistance", assume that the N-design

was better "balanced" in that the "assistance" given by server 1 was not vital for

 10

keeping server 2 from being overloaded, for all values of ρ < 1. In other words, the

arrival rates (λ1 and λ2) were such that the original I2-type design was stable for all

ρ < 1. An example of such a scenario is: λ1 = ρ and λ2 = ρ2. Unlike the original

setup, where at ρ = 1 server 1 is overloaded with type 1 customers and must receive

"assistance" from server 2 (who has not reached full capacity serving type 2

customers), here both servers just reach their full utilization by serving their own

"types" (they are “balanced”.).

Question: How do you expect the graph for the "Greedy 2" policy to behave as ρ

approaches 1 in this case ?

This “completes” the picture (Graph 1) for the "Greedy 2" case - when the

traffic load is very high (approaching ρ =1) server 2 is so busy with type 2

customers that he is not able to assist server 1, whereas in the previous case

(Graph 1) even as ρ approaches 1 server 2 is not fully utilized serving just the

type 2 customers and therefore “assists” the overloaded server 1 by serving

part of the type 1 customers.

We have seen that the "Greedy 1" policy dictates an inefficient division of the

workload, preventing the system from reaching its full processing potential (i.e. ρ =

1). Nonetheless this policy has the desirable feature that the higher-priority type 1

customers indeed enjoy high priority, contrary to "Greedy 2”. Therefore our

discussion from here on will be based on the "Greedy 1" policy. (“Greedy 2” would

0
10
20
30
40
50
60
70
80
90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North

Graph 3 : "Greedy 2" - F raction of Type 1 served by Server 2,
w ith λ 1 = ρ , λ 2 = ρ xρ

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tra ffic Loa d (ρ)

Graph 3 : "Greedy 2" - Fraction of Type 1 served by
Server 2, with λ1=ρ, λ2=ρxρ

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

Traffic Load (ρ)

 11

have been more appropriate under the alternative, also realistic, scenario where type 2

are the VIP’s.)

To try and overcome the problems of the "Greedy 1" policy, we introduce the single-

threshold control policy. This is a simple variation on the "Greedy 1" policy, with the

following additional restriction: server 2 assists server 1 only when the queue of type

1 customers is at or above a certain threshold.

Note that such a policy (except for the case of a threshold of 1 which is equivalent to

the "Greedy 1" policy) is not work conserving. By this we mean that it is possible to

have customers waiting in a queue while there is an idle server that is capable of

serving them.

With a traffic load of ρ = 0.95, applying a single-threshold can lead to a stable system.

Question: Can you explain the effect of a threshold on the dynamics of the system?

Graph 4 : Threshold = 4 , ρ = 0.95 - Queue Lengths

0
10
20
30
40
50
60
70
80
90

0 2000 4000 6000 8000 10000

Time (minutes)

Q
ue

ue
 le

ng
th

Type 1
Type 2

 12

Graph 5 : Threshold = 6 , ρ = 0.95 - Queue Lengths

0
10
20
30
40
50
60
70

0 2000 4000 6000 8000 10000

Time (minutes)

Q
ue

ue
 le

ng
th

Type 1
Type 2

Graph 6 : Threshold = 8 , ρ = 0.95 - Queue Lengths

0
5

10
15
20
25
30
35

0 2000 4000 6000 8000 10000

Time (minutes)

Q
ue

ue
 le

ng
th

Type 1
Type 2

Comparing the graphs (4-6 above), one sees that the higher the threshold the

longer the queue of type 1 customers (its length is slightly above the

threshold) and the shorter the queue of type 2; also the system reaches its

steady-state faster (but this last trend reverses, as it turns out, for higher

thresholds when the queue of type 1 becomes dominant).

Having a threshold reduces the amount of "assistance" that server 1 gets and

prevents server 2 from assisting when the workload on server 1 is low (below

the threshold). The threshold provides safety against such cases of "over-

assistance" as described following Chart 1 above. With a threshold that is high

enough, server 2 should have enough time to serve the type 2 queue, thus

preventing the "explosion" exhibited in Graph 2. (In our case, such stability is

achieved only for thresholds of 4 or greater.)

 13

Note that a single-threshold control policy can, alternatively, be based on a threshold

with respect to the queue of type 2 customers, in which case server 2 assists server 1

only when the type 2 queue is at or below the threshold. However, using such a

threshold policy is not as effective as the one discussed so far – indeed, to serve as a

successful "divider-of-labor", the threshold must relate to the queue which is served by

both servers. This threshold of type 2 lacks the essential characteristic of preventing

server 2 from needlessly assisting server 1 when the type 1 workload is low.

It is clear that the higher the threshold, the less "assistance" server 1 receives.

Question: How does the threshold affect the average wait in queue of each

customer type ?

Graph 7 : ρ = 2/3 - Average Wait in Queue

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11

Threshold

se
co

nd
s

Type 1
Type 2

Increasing the threshold allows for more cases in which server 2 gives priority

to type 2 customers. As expected, this results in a decrease of the type 2

customers' waiting times, and an increase of the type 1 waiting times.

Question: How about the average total time that type 1 customers spend in the

system (i.e. wait + service, for type 1 customers) ?

 14

Graph 8 : Type 1 - Average Time in System

0
50

100
150
200
250
300
350

1 3 5 7 9 11

Threshold

se
co

nd
s

ρ = 2/3 , µ3 = 0.5

ρ = 1/3 , µ3 = 0.1

With the current parameters (ρ = 2/3, µ3 = 0.5) the results are those intuitively

expected - the type 1 customers' average time in the system increases, similar

to their average wait in queue. However, this is not true in general - changing

the parameters (ρ = 1/3, µ3 = 0.1) we get a "slow server" effect. Since server 2

is so much slower serving the type 1 customers (10 times slower than server 1)

the type 1 customers he serves spend a long time in the system. As in this

example, the "damage" of the slow service is greater than the overall "benefit"

for type 1 customers, of reduced waiting times from having server 2 assist

server 1.

Note the change in the overall average wait as the threshold increases, revealing an

"optimal" threshold (marked in Graph 9 below).

Graph 9 : ρ = 2/3 - Overall Average Wait in Queue

0

40

80

120

160

200

1 2 3 4 5 6 7 8 9 10 11

Threshold

se
co

nd
s

 15

Recall that customers' priorities can be translated into "costs". Assume, for example,

that the cost of a waiting customer is (linearly) proportional to his total wait in queue,

and that type 1 customers (high priority) accumulate cost at a rate three times higher

than that of type 2 customers. It is now possible to find an "optimal" threshold in the

sense that the overall cost rate is minimal.

Question: Will this "optimal-cost" threshold necessarily be the same as the

"optimal-wait" threshold found before (Graph 9 above) ?

Graph 10 : ρ = 2/3 - Overall Cost Rate

0
2
4
6

8
10
12

1 2 3 4 5 6 7 8 9 10 11

Threshold

co
st

 ra
te

 "
un

its
"

Graph 10 displays the overall cost rate in cost rate "units" - 1 "unit" being the

cost rate of a single type 2 customer (a type 1 customer has a cost rate of 3

units). Obviously the "optimal-cost" threshold is not identical to the "optimal-

wait" threshold. Thus different methods for measuring performance of a

system may lead to different "optimal" thresholds.

Question: Is the "optimal-wait" threshold sensitive to the traffic load of type 2

customers ?

 16

Graph 11 : λ 1 = 1.3 x 2/3 - "Optimal" Thresholds

0

4

8

12

16

4/15 1/3 2/5 7/15 8/15

λ 2

Th
re

sh
ol

d

Graph 9 corresponds to λ2 = 0.4 x 2/3 = 4/15, under which the optimal

threshold is 3. As the traffic load of type 2 customers increases, so does the

"optimal" threshold. This is consistent with the interpretation of the "optimal"

threshold as a balance point between "starving" server 1 - leaving him without

enough work to keep him busy, and "neglecting" the type 2 customers.

Therefore with a higher type 2 traffic load, a higher threshold is needed to

retain the balance and prevent "neglect" of type 2 customers.

Question: Reflecting on Graph 11 above, what multi-threshold control policy can

you suggest as a natural refinement of the single-threshold policy ?

Thresholds : C0 < C1 < C2 < C3 < C4 < …

The single-threshold control policy discussed above has a threshold with

respect to the type 1 queue. A multi--threshold control policy also takes into

account the type 2 queue. Even if the average type 2 traffic load is constant,

the type 2 queue length at a given instant represents the current workload of

type 2 customers. Since the "optimal" threshold increases with the type 2

traffic load (Graph 11 above) it is reasonable to have a series of type 1-

queue-thresholds depending on the type 2 queue, which increases with the

queue length.

 17

No calculations are carried out for multi-threshold controls since, as explained

below(4), significant improvements over the single-threshold are not very likely.

Note that for an N-design with multi-server pools, a threshold policy can also have a

server reservation aspect - there can be different thresholds (for routing a type 1

customer to a type 2 server) depending on the number of idle type 2 servers.

V- and N-designs: research on performance analysis and control

(1) An asymptotically optimal control policy for the general V-design is identified by

J. A. Van Mieghem in “Dynamic scheduling with convex delay costs: the generalized

c-µ Rule”, Annals of Applied Probability, 5, 808-833, 1995. This policy is structured

as follows: service within a customer type is FCFS; each type is assigned an index

which is an increasing function of the time that its first-in-queue has been waiting;

finally, the next customer to be served is the one with the highest index.

(2) The parameters for our base N-model and few of the above results were adapted

from the paper by J. M. Harrison: "Heavy traffic analysis of a system with parallel

servers: asymptotic optimality of discrete-review policies", Annals of Applied

Probability, 8, 822-848, 1998.

(3) Optimality of a multi-threshold policy has been verified for the N-design,

numerically via Dynamic Programming, by Y. Newman and Y. Nov (IE&M project,

supervised in 1999 by Prof. M. Pollatscheck and A.M.) To the best of our knowledge,

an analytical proof is still lacking

(4) In a paper by S. L. Bell and R. J. Williams ("Dynamic Scheduling of a system with

 18

two parallel servers in heavy traffic with complete resource pooling: asymptotic

optimality of a continuous review policy", Preprint, 1-43, 1999), it is shown that a

single-threshold policy, as in Graphs 4-6, is asymptotically optimal for the N-design.

Their parametric regime is like ours, where type 1 customers are of higher priority,

and the help of server 2 to server 1 is necessary for stability. (This differs from the

regime in Graph 3, as in H. J. Kushner and Y. N. Chen, "Optimal control of

assignment of jobs to processors under heavy traffic", Preprint, 1-48, 1998.)

Bell and Williams analyze a model with single server-pools and no customers’

abandonment (with, moreover, possible preemption in the midst of a type 2 service in

favor of a type 1 threshold.) Such restrictions are unrealistic for telephone call

centers, which are our prime motivators. We continue therefore with a non-

preemptive model (X-design) that accommodates multi-server pools and customers’

abandonment.

 19

X-design with multi-server pools and abandonment

In the X-design each server pool can "assist" the other by serving the other pool's

customers. Thus, all servers are "skilled" for all services, but may differ in levels of

proficiency (resulting in different service rates).

Adding abandonment to the model eliminates the issue of stability: such a system is

always stable – the heavier the traffic the heavier the abandonment, but the queues

remain statistically stable.

Consider the following scenario : A call center providing customer service wishes to

differentiate between high priority customers ("VIPs", constituting 20% of all calls)

and low priority customers ("Members", 80% of calls). Assume that both types are

characterized by the same service rate: µ1 = µ2 = 24 customers per hour, or an average

of 2.5 minutes per call. Also assume that "VIPs" are more "patient" than "Members":

an average "patience" of 4 minutes for "VIPs" and 2 minutes for "Members".

The service level at this call center is measured by the ASA (Average Speed of

Answer = average time until call was answered, given it was answered). All servers

are equally "skilled" to serve both types.

The X-design with its system's parameters is given as follows:

 "VIPs" "Members"

 λ1=200 λ2=800

θ1=15 1 2 θ2=30

 µ3=µ4=24

 µ1=24 µ2=24

 S1 S2

A number of operational experiments were performed, testing alternative designs and

control policies. All policies tested were work conserving (not of the threshold-type

 20

demonstrated in the previous section). Three setups were selected as candidates (A, B

and C described below). In all three cases the workforce totaled 35 servers, faced with

a call volume of 1000 calls per hour.

Setup A : (X-design)

"VIP" servers : S1 = 20

 If "VIP" queue not empty serve the "VIP" queue + all "Members" waiting

more than 40 seconds, as a single FIFO queue.

If "VIP" queue is empty, serve the first in the "Member" queue.

"Member" servers : S2 = 15

 If "Member" queue not empty serve the "Member" queue + all "VIPs"

waiting more than 6 seconds, as a single FIFO queue.

If "Member" queue is empty, serve the first in the "VIP" queue.

Setup B : (X-design)

"VIP" servers : S1 = 10

 If "VIP" queue not empty serve the "VIP" queue + all "Members" waiting

 more than 120 seconds, as a single FIFO queue.

If "VIP" queue is empty, serve the first in the "Member" queue.

"Member" servers : S2 = 25

Serve both queues as a single FIFO queue.

Setup C : (V-design; feasible since servers are assumed equally skilled.)

Total servers: 35

 Serve as a FIFO queue, but "VIPs" enter the queue with a virtual 15 second

wait (i.e. as if they had joined the queue 15 seconds earlier).

 21

Setup D : (V-design)

Total servers: 35

 ??? - will be unveiled later.

Question: Consulting the following charts (2-5), which of the setups (A, B or C)

would you recommend, if any ?

Chart 2 : 1000 Calls - ASA

16.8

24.6 22.9

16.1

24.6
22.7

16.6

24.6 22.8

18.2

11 12.5

0
5

10
15
20
25
30

VIP Members Overall

se
co

nd
s A

B
C
D

Chart 3 : 1000 Calls - Abandonment

7%

20%
17%

7%

20%
17%

7%

20%
17%

13%

18% 17%

0%

5%

10%

15%

20%

25%

30%

VIP Members Overall

A
B
C
D

Chart 4 : 1000 Calls - Overflows

39%

14%
19%

13%

27% 24%

0%

10%

20%

30%

40%

50%

Members 2 VIP VIP 2 Members Overall

A
B

 22

Chart 5 : 1000 Calls - Servers' utilization profiles
A B C D

0%

20%

40%

60%

80%

100%

S1 S2 S1 S2

idle

Serving Members

Serving VIPs

All three setups (A,B and C) yield practically the same service levels, with

respect to both ASA and abandonment. At this point there is still not enough

information to evaluate Setup C, but from the overflows (Chart 4) and

utilization profiles (Chart 5) we see that Setup B is preferable to A – indeed B

has less “VIPs” overflowing to “Member” servers, and the “VIP” servers spend

more time on their pre-assigned “VIP” customers (it is reasonable to assume

that overflows of the type “VIP 2 Members” are less desirable than “Members

2 VIP” – preferring to have the high priority “VIP” customers receive service

from the pre-assigned “VIP” servers).

Note that the servers are all almost fully utilized (Chart 5) – this is in fact a

heavy traffic scenario !

The managers of the call-center contemplated the alternative setups, realizing that

additional experiments are required. This happened to take place shortly after the

release of a new series of products, causing a 50% increase in avaerage call volume

(i.e. 1500 calls per hour).

Question: Reconsider your recommendation in view of the additional

experiments (Charts 6-9).

 23

Chart 6 : 1500 Calls - ASA

76.4 76.2 76.3

50.3

80.8
72.178.2 74.8

7.1 6 6.2

65.6

0
20
40
60
80

100
120

VIP Members Overall

se
co

nd
s A

B
C
D

Chart 7 : 1500 Calls - Abandonment

28%

48%
44%

20%

50%
44%

24%

49%
44%43% 45% 44%

0%
10%
20%
30%
40%
50%
60%

VIP Members Overall

A
B
C
D

Chart 8 : 1500 Calls - Overflows

29% 29% 29%

3%

13% 11%

0%
5%

10%
15%
20%
25%
30%
35%

Members 2 VIP VIP 2 Members Overall

A
B

 24

Chart 9 : 1500 Calls - Servers' utilization profiles

A B C D

0%

20%

40%

60%

80%

100%

S1 S2 S1 S2

Serving Members

Serving VIPs

Now it is clear that Setup B is superior to to both A and C – for “VIPs”, both

ASA and abandonment are lowest, while the overall performance is at least

as good as the other setups. As before, Setup B is better than A regarding the

overflows and utilization profiles: under Setup A there is so much overflowing

in both directions that both server types appear to be doing the same kind of

work, as manifested through their very similar utilization profile; under Setup B,

on the other hand, the utilization profiles demonstrate that each server type is

mostly “dedicated” to his own customers, as should be the case with SBR.

One concludes that Setup B achieves skills-based routing with improved

performance through limited mutual assistance !

A non-work-conserving policy has the potential of reducing the amount of

overflowing: the likelihood of having free servers to handle new arrivals of their

own designated type is increased by limiting the cases in which calls of the

other type are routed to them.

Note the superior performance of Setup D (ASA-wise). Also recall that, as a V-

design, Setup D has no overflows. This apparently superior setup was NOT tested

since no one had considered implementing such a control policy - a simple LIFO

discipline !

Question: Can you explain the fact that under the LIFO discipline the ASA

decreased as traffic increased ?

 25

ASA = fraction queued of those served ×

average wait of those queued and served

With a FIFO discipline both the "fraction queued of those served" and the

"average wait of those queued and served" increase with the traffic load.

However, under the LIFO discipline the "average wait of those queued and

served" decreases with the traffic load since customers arrive more rapidly

and therefore the next one served from the queue (which was the last one in

the queue to arrive) has spent less time waiting in queue. Customer "stuck" in

the queue will eventually abandon but their long waiting times are not

included in the ASA. As a result, when the traffic load is high and the "fraction

queued of those served" nears 1 (and thus doesn't change much with the

traffic load), the decrease in the "average wait of those queued and served"

becomes dominant, thus the ASA decreases as well.

Judging by the service level, as measured at this call center (i.e. the ASA), Setup D

yields the best results, therefore it seems that a LIFO discipline should be

implemented.

Question: Why isn't it reasonable to use a LIFO discipline at our customer

service call-center ? How can this conflict (with the apparent

superiority of LIFO performance) be settled ?

Chart 10 : 1500 Calls - Average Speed to Abandon

43.5 37.5 38.238.8 39.2 39.232.3 38.6 37.9

230.6

112.7
137.3

0
50

100
150
200
250
300

VIP Members Overall

se
co

nd
s

A
B
C
D

 26

From Chart 10 we see the "price" one pays for using Setup D : For those

customers who eventually abandoned, not only did they not receive the

service they wanted, but they waited a very long time in queue before giving

up. Thus, the method of taking from the end of the line is "unfair" in that it

literally abuses patient customers (i.e. those willing to wait a relatively long

time.) Note that the abandonment profile of LIFO is also not favorable (Chart

7) – while overall it is similar to the other setups, there are many more "VIPs"

abandoning under LIFO.

The "conflict" arises from the choice of ASA as the measure of service level. As

demonstrated above, a call center can have very low ASA while providing

disastrous service to a large part of their customers (in this case the 44% who

abandon). In complex systems, the prevailing assumption that low ASA

indicates good service overall is not necessarily true. It is therefore essential to

include service measures regarding customers that did not receive service,

for example the fraction of customers that abandon.

Remark: One can actually reduce the fraction of "VIPs" that abandon under

the LIFO discipline. This can be achieved with variations on LIFO, in which the

"VIPs" get higher priority by letting them enter the queue with a virtual

negative wait (similarly to the variation that Setup C has on a FIFO discipline.)

A note on Optimality: We have not discussed optimal control policies for the X-

design with multi-server pools and abandonment. The reason for this is simple – we

just don’t know what is optimal, or even approximately optimal! Not even for the

much simpler N-design with single servers and abandonment; and not even for V-

design without abandonment but with many servers. These issues, which are of great

practical significance, provide ample challenges for current leading-edge research.

A note on Performance Measures: As part of the search for an optimal control, one

must specify a criterion (performance measure) for optimality. This is significant –

we already witnessed the consequences of a “wrong” criteria (e.g. ASA leading to the

optimality of LIFO.) One would think that with abandonment there exists a natural

definition for "operational optimality" – simply the fraction abandoning, perhaps

weighted over types according to importance. But even here, some call-center

managers would argue that those abandoning within say 3 seconds should not be

 27

included. More fundamentally, the overall optimality criteria actually becomes

complex – for example, one should not ignore significant "costs" due to customers

who abandon before being served (lost-opportunity costs, negative reputation

costs,…).

 28

Technical Appendix : Simulations - the computational effort

Many simulations were run to produce the graphs and charts appearing in this note.

The code of these simulations was written in C, and uses the SSS library, written by

Prof. M. Pollatscheck. Most of the simulations were run on a 133 MHz Pentium with

32MB RAM.

Following is a table with the number of batches in each simulation (listed by

chart/graph), batch length (in minutes, according to "background story") and the

simulation's approximate run time:

Chart / Graph Batches Batch Length Run Time Type

Graphs 1 and 3

and Chart 1

500 from 1500 (small ρ)

to 20000 (large ρ)

from seconds (small ρ)

to hours (large ρ)

B

Graph 2 1000 5000 minutes A

Graphs 4-6 10000 10000 hours A

Graphs 7-10 1000 from 1500 (high

threshold) to 15000

(low threshold)

from minutes (high

threshold) to hours (low

threshold)

B

Graphs 11 1000 from 1500 (high

threshold) to 15000

(low threshold)

from minutes (high

threshold) to hours (low

threshold)

C

Charts 2-8 1000 1500 hours D

Types:

A - a single simulation produces all the data in the chart / graph.

B - each simulation produces one data point in the chart / graph.

C - multiple simulations run to produce a single data point in the chart / graph.

D - each simulation produces all the data for a single setup.

