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Leading to Q-Nets (Motivating via Flexibility)

1. In Kleinrock (Vol 2, pg 279), the following 3 models are compared:
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Homogeneous (statistically identical) servers: suÆces to analyze EOS (Economies of
Scale) and some e�ects of pooling.

2. The above is not natural for the analysis of specialization: each server performs
something else.
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Model II is not very relevant, when di�erent tasks are considered.
(It is appropriate when servers perform the same task, but have varying service rates.)

Model III is a single 
exible server, capable of doing everything.
How to model the service time of a 
exible server?

In this case, hyper-exponential or, more generally, phase-type distribution, seems reason-
able.

1

2

k

....

µ

µ

µ

1

2

k
pk

p1
2p

p = 
λ   +  λ   + ...

λ

1 2
i

i

For example, compare
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Dedicated servers

µ1 µ2

Flexible servers

Dedicated servers: 2 single-server queues in series.
Flexible servers: 2-server queues with phase-type service distribution.
Generally,
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Reference: Mandelbaum, A. & Reiman, M.I., \On Pooling in Queueing Networks",
Management Science, 44, 971-981, 1998.
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Jackson Networks (Open)

Examples.
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open  Feed-forward

mixed

1/2

closed

Closed model seems to be less important for services (at least for now).

Model

Services - K service stations, indexed by i; j; k = 1; : : : ; K.
Each station j has a single server that provides service with duration � exp(�j).
Services are independent.

Arrivals - External arrivals: Poisson (�j) to station j
Alternatively: a single Poisson (�) arrival;

splits to j with probability P0j, thus �j = �P0j

Routing (Markovian) - After service at station j, move on to station k with probability
Pjk, join queue at k (hence, move out from j with probability 1�

PK
k=1 Pjk), etc.

Independence - Mechanisms of arrivals, services, switches are independent of each other.
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Data � = (�j) � 0; � = (�j) � 0; P = [Pjk] substochastic.
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(1) Assumptions � 6= 0; � > 0; 9 [I � P ]�1:
(Equivalent to �nitely many visits to all states: recall Phase-type.)
For example, P irreducible and 9j 3

P
k Pjk < 1.

Restrictions Single server (generalizable, even with exact analysis).
Exponentiality (generalizable only approximately).

We consider a \Dumb" model with Homogeneous customers.
(Extensions exist, but, in general, they are very complicated).

The Fluid-View (TraÆc Equations)

�j = �j +
X
i

ÆiPij; j = 1; : : : ; K

in
ow rate to j % - out
ow rate, out of i

Æj = �j ^ �j :

Vector form: (�) � = �+ (� ^ �)P (or � = � + P T (� ^ �)) :

Fact: Under assumptions (1), (�) has a unique solution (proof via Fixed Point results).

3 possibilities for every station:

�j > �j overloaded (supercritical);

�j = �j critically loaded;

�j < �j properly loaded (nonstandard terminology).

Bottleneck (strict) �j � �j (�j > �j)

What is to be expected of strict bottlenecks: explode at rate (�j � �j).
What is to be expected of other bottlenecks: null-recurrence.
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(2) Assume: �j < �j; 8 j; equivalently �j =
�j
�j
< 1. (traÆc intensity)

Then (�) reduces to � = � + �P

� = �[I � P ]�1 (= �R; where R = [I � P ]�1 { fundamental matrix)

TraÆc equations for a network without bottlenecks:

�j = arrival rate to j (external + internal)

= departure rate.

Solve � = � + �P by � = �[I � P ]�1 = �R, that is

�j =
X
i

�iRij = load on j, measured in average number of visits per time-unit.

Rij = average number of visits to station j, of a customer that enters at station i.
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MJP Representation X(t) = (X1(t); : : : ; XK(t)); t � 0
"

# in station 1

State n = (n1; : : : ; nK); nk = 0; 1; 2; : : :

Transitions:

� external arrival to j: Xj(t)! Xj(t) + 1, at rate �j.

� service completion at j, followed by a transfer to k:

Xj(t)! Xj(t)� 1; Xk(t)! Xk(t) + 1; at rate �jPjk :

� service completion at j, followed by a departure from network

Xj(t)! Xj(t)� 1; at rate �j

 
1�

X
k

Pjk

!
:

We can write, in principle, steady-state equations, and solve them.

Jackson's Theorem (1957, 1963; seminal contribution to the Theory of Q-Nets)

Under assumptions (1) and (2), the network is ergodic with stationary distribution

(3) �(n) =
QK

j=1 �j(nj) ; n = (n1; : : : ; nK)

where
�j(x) = �xj (1� �j) ; x = 0; 1; 2; : : : :

Description of Proof(s):

If, for some j, �j = 0, then station j is empty in steady state (�j(0) = 1), and it
can be excluded from consideration. Thus, assume �j > 0; j = 1; : : : ; K, without loss of
generality. This implies irreducibility of X (e.g., state (0; 0; : : : ; 0) communicates with all
other states).

{ One can now verify directly that (3) solves the steady-state equations (Asmussen,
pg. 68).

{ An alternative indirect way exploits the notion of reversibility (e.g., this is the proof
in Bertsekas & Gallager, pp. 223{225).

{ There is also a heuristic explanation/proof, due to J. Walrand, also described in
Bertsekas & Gallager, pp. 227{228.
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{ There are additional directions, each trying to add insight into this wonderful sur-
prising result.

Why wonderful? So simple! Every station, in isolation, is M/M/1-like with param-
eters �j; �j; and stations are independent in equilibrium, when viewed at a snapshot (but
not at di�erent times).

Why surprising! Internal 
ows are typically not Poisson and one expects a \lot of
dependence". (Incidentally, out
ows are Poisson; internal 
ows are Poisson only when
there are no loops.)

Network Performance

Think in terms of a single exogenous arrival stream Poisson (�), which splits to station
j with probability �j=�.

Jackson's Theorem: Xj � Geometric (p = 1� �j), independent.

E(Xj) =
�j

1� �j
:

L = total # in system: E(L) =
KX
j=1

�j
1� �j

; Var(L) =
KX
j=1

�j
(1� �j)2

.

Time in system by Little:

E(W ) =
1

�
E(L) =

1

�

KX
j=1

�j
1� �j

0
@� =

KX
j=1

�j

1
A

=
X
j

�j
�

1

�j

1

1� �j
=
X
j

�j
�

E(Wj):

" steady-state delay at j

Recall: �j =
KX
i=1

�iRij, where R = [Rij] = [I � P ]�1.

"
mean # of visits to j by
a customer entering at i

Hence,

E(W ) =
X
i

�i
�

X
j

RijE(Wj)

| {z }
-%

Prob. to start total sojourn time for a customer
at station i that enters at i
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