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Leading to Q-Nets (Motivating via Flexibility)

1. In Kleinrock (Vol 2, pg 279), the following 3 models are compared:

Homogeneous (statistically identical) servers: suffices to analyze FOS (Economies of
Scale) and some effects of pooling.

2. The above is not natural for the analysis of specialization: each server performs
something else.
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Model II is not very relevant, when different tasks are considered.
(It is appropriate when servers perform the same task, but have varying service rates.)

Model IIT is a single flexible server, capable of doing everything.
How to model the service time of a flexible server?

In this case, hyper-exponential or, more generally, phase-type distribution, seems reason-
able.
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Dedicated servers

Flexible servers

Dedicated servers: 2 single-server queues in series.
Flexible servers: 2-server queues with phase-type service distribution.
Generally,
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Reference: Mandelbaum, A. & Reiman, M.I., “On Pooling in Queueing Networks”,
Management Science, 44, 971-981, 1998.



Jackson Networks (Open)

Examples.
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Closed model seems to be less important for services (at least for now).

Model

Services - K service stations, indexed by 7,7,k =1,..., K.
Each station j has a single server that provides service with duration ~ exp(y;).
Services are independent.

Arrivals - External arrivals: Poisson («;) to station j
Alternatively: a single Poisson («) arrival;
splits to j with probability Fy;, thus a; = aFy;

Routing (Markovian) - After service at station j, move on to station k& with probability
Pji, join queue at k (hence, move out from j with probability 1 — S5 | Pj;), etc.

Independence - Mechanisms of arrivals, services, switches are independent of each other.



Data o= (a;) >0, p=(p;) >0, P =[P} substochastic.

(1) Assumptions «a#0, p>0, 3[1 — P]"L.
(Equivalent to finitely many visits to all states: recall Phase-type.)
For example, P irreducible and dj > 7, P, < 1.

Restrictions Single server (generalizable, even with exact analysis).
Exponentiality (generalizable only approximately).

We consider a “Dumb” model with Homogeneous customers.
(Extensions exist, but, in general, they are very complicated).

The Fluid-View (Traffic Equations)
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Vector form:  [(x) A=a+ (AAp)P (or A\=a+PT(ANAp)).

Fact: Under assumptions (1), (x) has a unique solution (proof via Fixed Point results).

3 possibilities for every station:
Aj >y overloaded (supercritical);
Aj = critically loaded;
Aj <y properly loaded (nonstandard terminology).

Bottleneck (strict) Aj > (Aj > 1)

What is to be expected of strict bottlenecks: explode at rate (\; — p; ).
What is to be expected of other bottlenecks: null-recurrence.
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(2) Assume: \; < p;, Vj; equivalently p; = :—j < 1. (traffic intensity)
Then (*) reduces to A = a + AP

A=all — P]7! (= aR, where R = [I — P]"! - fundamental matrix)

Traffic equations for a network without bottlenecks:

A;j = arrival rate to j (external + internal)

= departure rate.
Solve A\=a+ AP by A=al[l —P]™!=aR, that is

Aj = Z a;R;; = load on j, measured in average number of visits per time-unit.

7

R;; = average number of visits to station j, of a customer that enters at station 7.



JP Representation X(t) = (Xu(t),...,Xk(t), t>0
/l\
# in station 1
State n=(ny,...,ng), ng=20,1,2,...
Transitions:
e external arrival to j: X,(t) — X;(t) + 1, at rate ;.

e service completion at j, followed by a transfer to k:

X;(t) = X;(t) — 1, Xg(t) = Xi(t) + 1, at rate p; Py .

e service completion at j, followed by a departure from network
X](t) — X](t) — 1, at rate i (1 — Z‘ij> .
k

We can write, in principle, steady-state equations, and solve them.

Jackson’s Theorem (1957, 1963; seminal contribution to the Theory of Q-Nets)
Under assumptions (1) and (2), the network is ergodic with stationary distribution

(3) ﬂ'(n) = H]KZI Trj(nj) ) n= (nlv cet JnK)

where
mi(z) = pj (1= pj) , r=0,1,2,....

Description of Proof(s):

If, for some j, A\; = 0, then station j is empty in steady state (7;(0) = 1), and it
can be excluded from consideration. Thus, assume A\; > 0, j =1,..., K, without loss of
generality. This implies irreducibility of X (e.g., state (0,0,...,0) communicates with all
other states).

— One can now verify directly that (3) solves the steady-state equations (Asmussen,
pg. 68).

— An alternative indirect way exploits the notion of reversibility (e.g., this is the proof
in Bertsekas & Gallager, pp. 223-225).

— There is also a heuristic explanation/proof, due to J. Walrand, also described in
Bertsekas & Gallager, pp. 227-228.



— There are additional directions, each trying to add insight into this wonderful sur-
prising result.

Why wonderful? So simple! Every station, in isolation, is M /M /1-like with param-
eters \j, u;; and stations are independent in equilibrium, when viewed at a snapshot (but
not at different times).

Why surprising! Internal flows are typically not Poisson and one expects a “lot of
dependence”. (Incidentally, outflows are Poisson; internal flows are Poisson only when
there are no loops.)

Network Performance

Think in terms of a single exogenous arrival stream Poisson («), which splits to station
J with probability o;/c.

Jackson’s Theorem: X; ~ Geometric (p =1 — p;), independent.

Pj
E(X;) =
o 5y
L = total # in system: E(L) =) ——, Var(L)=) ——.
= L= j=1 (1= pj)
Time in system by Little:
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Hence,
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