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NONPARAMETRIC (GENERALIZED) JACKSON NETWORKS

MJP models that preserve product-form

e (locally) State-dependent service rates: Allows one to incorporate multi-server and
infinite-server nodes. The “bottom-line” is the same as before: in equilibrium,
stations are independent, and in isolation, each “behaves [ike” the corresponding
single-station model (e.g., M/M/m; or M/M/o0).

Single-class models with state-dependent arrivals, services, and transition probabil-
ities, have been approximated by fluid and diffusion models.

o Multi-class networks: Allows a heterogeneous customer population. Product form
is preserved if service rates are associated with servers, not with customer classes.
(They are allowed to depend on the total number of customers in a queue.)

Multi-class models with services that depend on the class are complicated, and
provide a current research-challenge. (Even stability is not yet well understood!)



Nonproduct form: Nonparametric (Generalized) Jackson network
e Single-class;
e Arrival processes that are renewal (iid interarrival times);
e Services that are iid;

e Independence of mechanisms, as before.

Decomposition Approximations

e K service stations;

e External arrivals to station j: Renewal (o, Cg;), that is, iid interarrival times with
mean 1/a; and CV? = C2;
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e Services at station j: iid with mean E(S7) = 1/u;, CV? = CZ;

Routing: Markovian P = [P;];

Independence of mechanisms of arrivals, services, routing, as before.
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Traffic equations, as before, with solution (A;) that exposes bottlenecks.
Assume \j < p;, j=1,...,K,or pj = \;/p; < 1.
Then, under some (mostly technical) conditions, the network is ergodic. However, the

network model is not amenable to exact analysis. Thus, one must resort to approximations
(of an “exact” (general) model, vs. ezact analysis of an approximate (special) model).



Generic Decomposition Approximation

E(WJ) = B(SY) lf—jpcﬂj j=1,...,K ,
J

where 012\/1j is an approximate measure of the variation at j, corresponding to the Method
employed.

Average delay of a marked customer, the route of which constitutes V7 visits to station
J,75=1,..., K, is given by

i E(S) + E(W])] -

Ezxample: For a customer entering at station 7,
ZRW (S7) )+ EW] N, R=[I-P]"

Recall: R;; = average number of visits to j by a customer who starts at :.

To approximate the distribution of delay, under FIFO, use cautiously the following guide-
lines:

e Exponential law of congestion: ij ~ exp (mean as above).

e Snapshot principle: Workloads (and queues) “do not” change over the duration of
a visit (snapshot of the state upon arrival).

e Independence assumption: Given the route, delays at different stations are condi-
tionally independent.

Ezxample: The delay T" during the route 3 -7 — 2 — 7 is

T =8 +5+5*+55+W,+2W + W],
where S7 are service-times, ij are exponentials as above, and the summands are all
independent.

Remark: The above is justified if C? = C? = 1, and more!

Possible Approximation Schemes:

0. Use data to approximate 012\4]'-
1. QNA (Whitt, 1983-95; see Hall, §10.6, pg. 390-95).

2. Q-Net = Brownian approximations (Harrison; Nguyen, Dai,. . .).

b

Bottleneck decompositions (Reiman; Nguyen, Dai,...).



QNA = Queueing Network Analyzer (whitt, 1983-95)

Approximation: each station “is” GI/G/m;
stations are independent;
customer flows are renewal processes;
Two-moment approximations = (A, C2, u, C% m)?

Primitives: exogenous arrivals (o, ng);
services (u5, C%;);
routing P = [P;] (Pyj =¢j/a, a= Z]Kﬂ ;).

Parameters: (A;) via Traffic Equations;
(C%;) via Variability Equations (below).

Network MOP’s Restrict to Averages
E(L) is deduced immediately from E(W) via Little.

Delay statistics computed based on the laws and principles, and making the assump-
tions, all as described above.

Network Calculus (QNA)

Superposition (merging)
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Decomposition (splitting)

(A, ) ——O{: p (Ap. pCH(1-p))

Departures (flow through)

(A, D) — ()——=  (A,C4=pCs+(1-p)Ca)
(u,C3)




Traffic equations Aj = aj + YK NP, g=1,... K.
Variability equations C? =a; + Y5 C%b;, where a;,b;; determined as follows:
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First, assume P; =0  (Whitt has a reduction scheme for that.)

NPy . . . ) ) .
Let |gij = )\—” fraction of arrivals to j coming directly from i
21 (g = oo/ A = aj/ A5 Poj = a/a).

CZ; = CV? of arrivals to j, j=1,..., K.
Cg = CV? of departures from j, j =1,..., K.
Cf = CV? of flow between i and j, i =0,..., K, j=1,..., K.

(C3; = CV? of exogeneous interarrival times.)

1. Arrivals to j are superposition of flows from 7 #£ j to j.
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2. Flows between ¢ and j are decomposition of departures from 1.
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3. Departures from j are related to arrivals by
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(1) + (2) + (3) yield the Variability Equations.




Remarks
1. With Cf; = C; =1 (as in Jackson), we get C7; = 1, as we should.

2. For a multi-server station, one must modify only the departure scheme:

(A C) — (A, C3)

where |C3 =1+ (1 —p*)(C?—1)+

This reduces to the previous scheme when m = 1.
For M/M/m and M/G /oo we get C7 = 1, as we should.

3. Heavy Traffic: C3 ~ C%; when p; = 1, in which case
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is an explicit expression for ij (a Brownian approximation). Thus, there is no need
to solve any equations here. Simply use the parameters
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to approximate individually each station. Then calculate system performance as
articulated previously.

4. History: QNA has had 3 stages of development, as far as I know:

4.1 The original version, in [1983], which is a refined version of the above.
4.2 Refinements tailored at multi-type models (1988-1994).

4.3 Enhancements that develop C2(p) (vs. C?), where p is the traffic intensity of
the queue which the arrivals join [1995].



