Service Engineering

Class 12

QED (QD, ED) Queues
Erlang-B/C: Some Proofs, Facts and Analysis

e Frlang-B in the QED-Regime (Jagerman);

e Erlang-C in the QED-Regime (Halfin & Whitt);

e QED Erlang-C: Some Intuition;

e Erlang-C in the ED-Regime;

e Conceptual Framework;

e Pooling;

e Cost Optimization for Erlang-C (with Borst & Reiman);
e Constraint-Satisfaction; The 80-20 Rule.



The Erlang-B Queue in the QED-Regime

Recall the Erlang-B Formula:

R" jn R’
A _
E,, = P{Blocked} = o /j§:0 i

Consider a sequence of M /M /n /n queues,
indexed by the number of servers n = 1, 2, .. ..
e )\, = arrival-rate, varies with n;

e /1 = service-rate, fixed (independent of n).

e R, =M\,/pn (Offered Load) ; p, = R,,/n (Load per Server);
We shall use R and p, without the subscript n, for simplicity.

Theorem (QED Erlang-B; Jagerman, 1974)

As n — oo, the following 3 statements are equivalent:

1. Customers: E, ~ %, for some v > 0;

2. Servers: pr~1— ﬂ, for some —oc0 < < 0 ;
n

3. Manager: n ~ R+ 3vVR (square-root “staffing”):

in which case

¢(=0) _ 0B

(=F)  (B)’

where ¢, ®,® and h are the density, cdf, survival function and

v = h(=f) =

hazard rate of N(0,1) (standard-normal), respectively.
Note: Servers’ Occupancy ~ 1— ﬁ\}%”, accounting for blocking.
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QED Erlang-B: Proof

Proof:
2 <= 3 is straightforward algebra from the definitions.

3 = 1. Assumen = R+ 5\/? The key observation is a
Poisson-Representation of the Erlang-B Formula:

P{XR = n}
Eam:: )
where Xp £ Poisson(R).
X — _
Pixns ) = P{TEE < T

CLT3

P{N(0,1) < B} = ®(F).

P{Xr=n} = P{n—1< Xp <n}
p n—R-—1 XR—R < n—R
{ VR T VRS 7
P{B \/*<N(7><ﬁ}

1

Q

1
v P(B) ~ N o).
Finally, fg((g)) = 1?51)_(%) = h(—0), by the symmetry of N(0,1).



QED Erlang-B: Proof (Continued)

1=3 n=R+BVR+o(VR) iff

Ve >0, R+(B—e)VR<n<R+(B+¢)VR forlarge enough
n.

Assume 3 does not hold. This implies that along some subse-
quence:;

n>R+(B+e)VR.
E, ,, decreasing inn = limsup/nkEy, < h(—0 —¢).
h(-) increasing function = h(—0 —€) < h(—[)
= Contradicting 1. q.e.d.



Erlang-C: Previously Known Facts

Recall:
1. The Erlang-C Formula:

A _ R
EQ,n = P{Wq>0} = i;ﬂz = ol 1—p o ,

where |
n—1 RJ R"
T = —
' JEO J! nl(1—p)

2. Palm’s Relation between Erlang-C and Erlang-B:
El,n

Es, = :
> (1 — p) + pEl,n

3. The Waiting-Time distribution:
Wq 0 WD 1 — Egjn
) 11> WP E?,n

S =

1/7 ; exp (mean =



The Erlang-C Queue in the QED-Regime

Theorem (QED Erlang-C; Halfin & Whitt, 1981)

As n — 00, the following 4 statements are equivalent:

0. QED: By, = a, for some 0 < a < 1;

1. Manager: na~ R+ [BVR, forsome 0<f < oo
2. Servers: p~1— Jﬁﬁ

)

1 1
3. Customers: EW W, >0~ — - —;
[ (J‘ q ] \/ﬁ /L/B
in which case
3 ~1
o = aB) = |1+ ,
) { h(—ﬁ)]

which we call the Halfin-Whitt Delay-Function.
Note: Bv/ R = Safety-Staffing, in analogy to Safety-Stock.

Proof:
1 <= 2 asin Erlang-B.
0 <= 2isaconsequence of Palm’s relation and QED Erlang-B:

EQn — El,n
’ (1 —p)+ pE1n
L W=B/vn _P+ﬁ -
B/v/n+h(=B)/v/n h(—p3)

Finally, 3 <= 2 by the Waiting-Time distribution of Erlang-C.
q.e.d.



Delay probability

The Halfin-Whitt Delay-Function

,3 -1
E, ., = P{W, >0} = |1+
’ h(—pB)

1
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0.5 (safety-staffing = 0.5 - vVR) = P{W, > 0} =~ 0.5;
2 (safety-staffing = 2-vR) = P{W, >0} ~ 0.02;
3 = P{W, > 0} = 0, QD Regime;

QQQ
|

For example, with offered-loads
e R =100: 100+5=105 and  1004-20=120;

e R =1000: 1000+16=1016, and 1000+63=1063.




QED Erlang-C: Exact Performance

R= AxE(S) Offered load (Erlangs)
N=R+ gJR S = “service-grade” >0
——
=R+ 4 V- safety-staffing

Expected Performance:

-1
% Delayed = P(f) = {1+ 'B¢('B)} , >0 Erlang-C

o(P)
Congestion index = E{ \éValt Wait > 0} =i ASA
% | VAl T Wait>0l=eTA TSF
E(S)

p

Servers’ Utilization = Ilfl ~1— N Occupancy



QED Erlang-C: Intuition via Waiting-Time

e Recall: The Waiting-Time distribution is given by

Wq B 0 WD 1 — E2,n ;
E(S) exp <mean = % : 1_1p) wp Ea,, .
- Given {W, > 0}, the distribution of W, is thus Exponential,
with mean
1 1
E(S)——
nl—p

- In the QED-Regime: /n- (1 —p) ~ .

- Hence, given {W, > 0}, the distribution of W/ is
approximately Exponential, with mean

Ll
Vg

- In particular, with say n=100’s, average waiting time is one

E(S)

order of magnitude less than average service time.

Still unclear:
In the QED-Regime, why is the delay probability a strictly
between 0 and 17 Answer via Busy- and Idle-Period analysis.



Excursions: Busy- & Idle-Periods

n
n 2p (N-Dp Np N+1
Idle Period ‘ Busy Period

Define: Idle Period
Tn-1,n = E | 1% hitting time of N|Q(0) = N — 1].

N—-1
AP 1
Then Th_ 1Ny = ZZ_O i = )
’ AN-1TN—1  Am_(N —1)
where m_ IS the distribution of the restricted @) _.

Similarly: Busy Period
Ty,n—1 = E [ 1¢ hitting time of N — 1|Q(0) = N].

Proof :
. d . AN-1
Number of Idle Excursions = Geometric>o( )
AN-1+ pN-1
1 HN-1
In_1N = X
7 (N — 1Dun_1 AN-1
- -~ e N— e’
E(Idle Excursion) E(# of Excursions)
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QED Erlang-C: Why 0 < a < 17
Intuition via Busy-Idle Periods

xx . A A A
OIEIONONONN
v 2u 3n Np  Nup Np

Q_ . l Q.

< >

Q(0) = N: all servers busy, no queue.

T ! 1-— !
Recall — Epy = [1 + N‘l’N] = {1 + —pN] .
TNN-1 pNE1N-1
1 1 1
Here TN—l,N = /,LL

ANE1 N1 - Ny x h(=8) VN - h(—BWN
which appliesas VN (1 —py) — 3, —o0 < 8 < oo.

L
Nu(l—-pn)  BYN

which applies as above, but for 0 < 8 < oc.

Also TN,N—l =

B
h(—5)

~1
Hence, E> N ~ {1 + ] , assuming g > 0.

QED: N ~ R+ BVR forsome 3, 0< < o0
& Ay ~ pN —BuvV'N
& prl—i, namely ]\I[im\/ﬁ(l—pN)zﬁ.

VN

1
Theorem (Halfin-Whitt, 1981) QED < lim 5 v = [1 + ﬁ} |
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Erlang-C in the ED-Regime

Assume “stingy” safety-staffing: n = R + ~, ~ > 0.
Then

1'n<1—p):77
2. P{W, >0} = 1,

3. quexp(fy,u) (:>EE[,KZ‘]J] :}y . think vy =1,2,...,10,...)

Example (via 4CallCenters)
E[S] =6 min (u =10), ~=1.

Ahr| n p | P{W, >0} | EW,]
10 | 2 | 50% 33.3% 2:00
50 | 6 |83.3% 58.8% 3:32
250 | 26 |96.2% 78.2% 4:42
1000 | 101 | 99% 88.3% 5:18

9000 | 901 | 99.9% 95.9% 5:45

Lol ! ! !
o0 | 00 1 1 6:00

Note:
- E[W,|W, > 0] remains constant (6:00).

- Very sensitive: decrease n by merely 1 = queue “explodes”.
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A Conceptual Framework

How to determine the Regime?
Strategy, accounting for tradeoff between efficiency and ser-
vice quality; or for union-constraints; or for managerial con-
straints; or,...

How to determine the parameters?
Analysis, via Constraint Satisfaction or Cost /Profit
Optimization.

In principle, can do an analysis with 4CallCenters.
One then gets the answers but typically these lack insight.

Ideally, combine 4CallCenters with ED/QD/QED guidelines.

We shall now demonstrate all this through examples.

e Strategy: via Pooling

e Constraint Satisfaction (easy, prevalent)
minn s.t. BAW,>T} <a
B, W, <
P.{Ab} < ¢

e Cost / Profit Optimization
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QED Erlang-C: Pooling (y < ()

Base: A =300/hr, AHT =5min, N =30 agents

R:300><650225, OCC=833% ASA=15sec

y=(N-R)/~R =(30-25)/+/25=1, P(1)=22%

4 CC: A=1200, AHT=5  R=100; N=?

Quality-Driven: maintain OCC at 83.3%.
N =120, ASA = 5sec, y=(120-100)/10=2

Efficiency-Driven:  maintain ASA at 15 sec.

N =107, OCC =95%, y=0.8

QED: maintain %{Wait>0}) at 22% (y at 1).
N =100+ 1-+100 =110, OCC =91%, ASA =7 sec

9cc: A=2700, AHT=5 R=225
Q: N=270
E: N=233
QED: N =225+ 1-4/225 =240, OCC =94%, ASA = 4.7 sec
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QED Erlang-C: Pooling
Theoretical Support

Base case: M/M/N with parameters A, u, WV

Scenario: A — mA (R — mA)

Base Case | Efficiency-driven | Quality-driven Rationalized
Offered load = % mR mhA mR
Rafety staffing A A m vmA
Number of agents N=R+A mR+ A mR+ mA mR +.,/mA
Service grade A= % % 3m
Erlang-C = P{Wait>0} P(8) P (ﬁ) B P(By/m) | 0
Oecupancy p=Rfﬂ Rf%lll p=Rfﬂ Hji% T1
ASA=E [% Wit > D] % % = ASA ml = A,f 1ﬂ1’a = = j;
TSF =P {% ST ‘ Wait > o} e-TA e TA ZTSF| | e=™TA = (TSFy™ | e~V™TA — (TSF)V™
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Erlang-C: Cost- or Profit-Optimization

Suppose that revenues depend only on the number of served cus-
tomers (eg. linearly, or fixed per call). Now observe that, for
Erlang-C in steady-state, all customers are eventually served. It
follows that staffing levels do not effect revenues. Hence,

profit-maximization is equivalent to cost-minimization.

Conceptual Framework:
Quality D(t) delay cost  (t = delay time)
Efficiency C(N) staffing cost (N = # agents)

Optimization: N* minimizes Total Costs

e C>>D: Efficiency-driven
e C<<D: Quality-driven
e C ~D: Rationalized - QED

Mathematical Framework:
Asymptotic Analysis, as the number-of-servers n | oo.
(Reference: with Borst & Reiman, 2004)
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Erlang-C: Cost Minimization

(Reference: Borst, M., Reiman, 2004)

Cost = c-n+d- AE[W,],

c = Staffing cost;
d = Delay cost.

Optimal staffing level:
n* ~ R+ 3" (r)VR, r = delay-cost / staffing-cost .
3*(r) = optimal service-grade, independent of \:

22014

B*(r) = arg min {y+ y

O<y<oo

where

Pu(y) = {H ! ]1.

Very good approximation:

1/2
r
*(r) ~ ., 0<r<10,
F(r) L+r(/r/2 — 1))
o\ 1/2
~ (21 : > 10 .
n\/27r) h=

Final comment: r small (large) = ED (QD).
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Erlang-C: Optimal Square-Root Staffing
n=R+[ VR (8 <y)

r = cost-of-delay / cost-of-staffing
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Erlang-C: Optimal Square-Root Staffing
n=R+ 3 (r)VR

r = cost-of-delay / cost-of-staffing
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Erlang-C: “The 80-20 Rule”

Prevalent: At least 80% customers served within 20 seconds;

Formally, %({Wait < 20 sec.} > 80%.

Call center: A = 6000/hr, E[S]=4 min = R=400 Erlangs.
4CallCenters: n = 411 agents needed.

The above is a solution to the staffing-problem via Constraint
Satisfaction.
But how does one “understand” (internalize) the 80-20 rule?

n=411 = [ = (411 — 400)/20 = 0.55.
According to cost-graph (or formula), r = d/c =~ 0.32. Yet:

Congestion-Index = E[Wait/E[S]] & }m ~ g5 . We observe:

The 80-20 Rule: Low valuation of customers’ time, at 1/3
agents’ time, yet very-good performance? enabled by scale!

What if d/c = 57 (*=1.4:
o n* = 428 (vs. 411 before);
e Agents’ accessibility (idleness) = 7% (vs. 3% before);

e 1 out of 100 wait over 20 seconds (vs. 1 out of 5).

Conclude: Constraint-Satisfaction is easier to formulate
but Optimization is easier to internalize.
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