

Service Engineering

Class 12

QED (QD, ED) Queues

Erlang-B/C: Some Proofs, Facts and Analysis

- Erlang-B in the QED-Regime (Jagerman);
- Erlang-C in the QED-Regime (Halfin & Whitt);
- QED Erlang-C: Some Intuition;
- Erlang-C in the ED-Regime;
- Conceptual Framework;
- Pooling;
- Cost Optimization for Erlang-C (with Borst & Reiman);
- Constraint-Satisfaction; The 80-20 Rule.

The Erlang-B Queue in the QED-Regime

Recall the **Erlang-B Formula**:

$$E_{1,n} \triangleq P\{\text{Blocked}\} = \frac{R^n}{n!} \Big/ \sum_{j=0}^n \frac{R^j}{j!}$$

Consider a sequence of **M/M/n/n** queues,
indexed by **the number of servers $n = 1, 2, \dots$**

- λ_n = arrival-rate, varies with n ;
- μ = service-rate, fixed (independent of n).
- $R_n = \lambda_n/\mu$ (Offered Load) ; $\rho_n = R_n/n$ (Load per Server);
We shall use R and ρ , without the subscript n , for simplicity.

Theorem (QED Erlang-B); Jagerman, 1974)

As $n \rightarrow \infty$, the following 3 statements are equivalent:

1. **Customers:** $E_{1,n} \approx \frac{\gamma}{\sqrt{n}}$, for some $\gamma > 0$;
2. **Servers:** $\rho \approx 1 - \frac{\beta}{\sqrt{n}}$, for some $-\infty < \beta < \infty$;
3. **Manager:** $n \approx R + \beta\sqrt{R}$ (square-root “staffing”);

in which case

$$\gamma = h(-\beta) = \frac{\phi(-\beta)}{\bar{\Phi}(-\beta)} = \frac{\phi(\beta)}{\Phi(\beta)},$$

where $\phi, \Phi, \bar{\Phi}$ and h are the density, cdf, survival function and hazard rate of $N(0, 1)$ (standard-normal), respectively.

Note: **Servers' Occupancy** $\approx 1 - \frac{\beta + \gamma}{\sqrt{n}}$, accounting for blocking.

QED Erlang-B: Proof

Proof:

2 \iff 3 is straightforward algebra from the definitions.

3 \Rightarrow 1. Assume $n = R + \beta\sqrt{R}$. The key observation is a **Poisson-Representation** of the Erlang-B Formula:

$$E_{1,n} = \frac{P\{X_R = n\}}{P\{X_R \leq n\}},$$

where $X_R \stackrel{d}{=} \text{Poisson}(R)$.

$$\begin{aligned} P\{X_R \leq n\} &= P\left\{\frac{X_R - R}{\sqrt{R}} \leq \frac{n - R}{\sqrt{R}}\right\} \\ &\stackrel{CLT,3}{\approx} P\{N(0, 1) \leq \beta\} = \Phi(\beta). \end{aligned}$$

$$\begin{aligned} P\{X_R = n\} &= P\{n - 1 < X_R \leq n\} \\ &= P\left\{\frac{n - R - 1}{\sqrt{R}} < \frac{X_R - R}{\sqrt{R}} \leq \frac{n - R}{\sqrt{R}}\right\} \\ &\approx P\left\{\beta - \frac{1}{\sqrt{R}} \leq N(0, 1) \leq \beta\right\} \\ &\approx \frac{1}{\sqrt{R}} \cdot \phi(\beta) \approx \frac{1}{\sqrt{n}} \cdot \phi(\beta). \end{aligned}$$

Finally, $\frac{\phi(\beta)}{\Phi(\beta)} = \frac{\phi(-\beta)}{1 - \Phi(-\beta)} = h(-\beta)$, by the symmetry of $N(0, 1)$.

QED Erlang-B: Proof (Continued)

1 \Rightarrow 3. $n = R + \beta\sqrt{R} + o(\sqrt{R})$ iff

$\forall \epsilon > 0, R + (\beta - \epsilon)\sqrt{R} \leq n \leq R + (\beta + \epsilon)\sqrt{R}$ for large enough n .

Assume **3** does not hold. This implies that along some subsequence:

$$n > R + (\beta + \epsilon)\sqrt{R}.$$

$E_{1,n}$ decreasing in $n \Rightarrow \limsup \sqrt{n}E_{1,n} < h(-\beta - \epsilon)$.

$h(\cdot)$ increasing function $\Rightarrow h(-\beta - \epsilon) < h(-\beta)$

\Rightarrow Contradicting **1**. **q.e.d.**

Erlang-C: Previously Known Facts

Recall:

1. The **Erlang-C Formula**:

$$E_{2,n} \triangleq P\{W_q > 0\} = \sum_{i \geq n} \pi_i = \frac{R^n}{n!} \frac{1}{1 - \rho} \cdot \pi_0,$$

where

$$\pi_0 = \left[\sum_{j=0}^{n-1} \frac{R^j}{j!} + \frac{R^n}{n!(1 - \rho)} \right]^{-1}.$$

2. **Palm's Relation** between Erlang-C and Erlang-B:

$$E_{2,n} = \frac{E_{1,n}}{(1 - \rho) + \rho E_{1,n}}.$$

3. The **Waiting-Time** distribution:

$$\frac{W_q}{1/\mu} = \begin{cases} 0 & \text{wp } 1 - E_{2,n} \\ \exp \left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1-\rho} \right) & \text{wp } E_{2,n} \end{cases}$$

The Erlang-C Queue in the QED-Regime

Theorem (QED Erlang-C; Halfin & Whitt, 1981)

As $n \rightarrow \infty$, the following 4 statements are equivalent:

0. **QED:** $E_{2,n} \approx \alpha$, for some $0 < \alpha < 1$;
1. **Manager:** $n \approx R + \beta\sqrt{R}$, for some $0 < \beta < \infty$;
2. **Servers:** $\rho \approx 1 - \frac{\beta}{\sqrt{n}}$;
3. **Customers:** $E[W_q | W_q > 0] \approx \frac{1}{\sqrt{n}} \cdot \frac{1}{\mu\beta}$;

in which case

$$\alpha = \alpha(\beta) = \left[1 + \frac{\beta}{h(-\beta)} \right]^{-1},$$

which we call the **Halfin-Whitt Delay-Function**.

Note: $\beta\sqrt{R} = \text{Safety-Staffing}$, in analogy to Safety-Stock.

Proof:

1 \iff 2 as in Erlang-B.

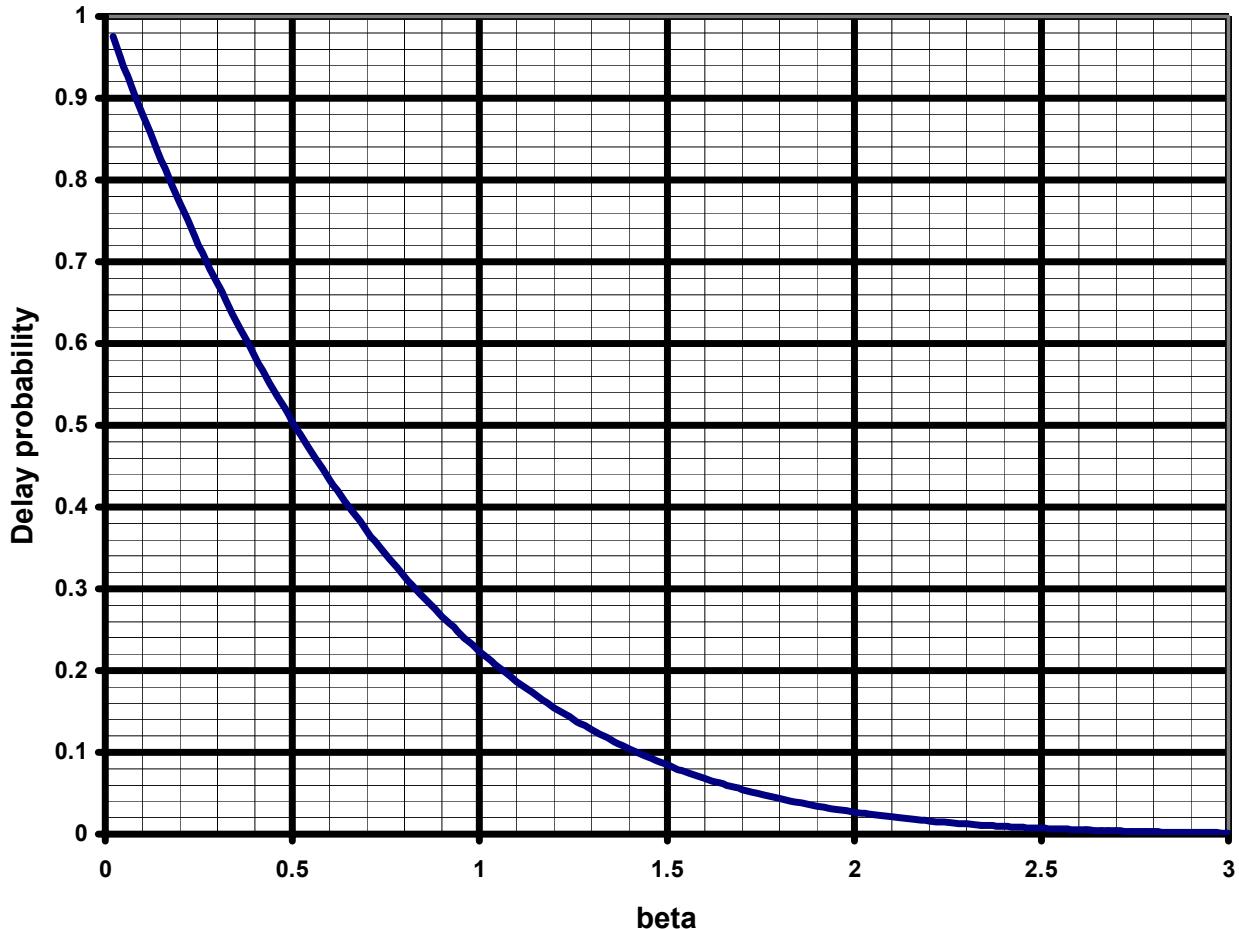
0 \iff 2 is a consequence of Palm's relation and QED Erlang-B:

$$\begin{aligned} E_{2,n} &= \frac{E_{1,n}}{(1 - \rho) + \rho E_{1,n}} \\ &\approx \frac{h(-\beta)/\sqrt{n}}{\beta/\sqrt{n} + h(-\beta)/\sqrt{n}} = \left[1 + \frac{\beta}{h(-\beta)} \right]^{-1}. \end{aligned}$$

Finally, 3 \iff 2 by the Waiting-Time distribution of Erlang-C.
q.e.d.

The Halfin-Whitt Delay-Function

$$E_{2,n} \triangleq P\{W_q > 0\} \approx \left[1 + \frac{\beta}{h(-\beta)}\right]^{-1}$$



- $\beta = 0.5$ (safety-staffing = $0.5 \cdot \sqrt{R}$) $\Rightarrow P\{W_q > 0\} \approx 0.5$;
- $\beta = 2$ (safety-staffing = $2 \cdot \sqrt{R}$) $\Rightarrow P\{W_q > 0\} \approx 0.02$;
- $\beta = 3$ $\Rightarrow P\{W_q > 0\} \approx 0$, QD Regime;

For example, with offered-loads

- $R = 100$: $100+5=105$ and $100+20=120$;
- $R = 1000$: $1000+16=1016$, and $1000+63=1063$.

QED Erlang-C: Exact Performance

$$R = \lambda \times E(S) \quad \text{Offered load (Erlangs)}$$

$$N = R + \underbrace{\beta \sqrt{R}}_{\Delta} \quad \beta = \text{“service-grade”} > 0$$

$$= R + \Delta \quad \sqrt{\cdot} \quad \text{safety-staffing}$$

Expected Performance:

$$\% \text{ Delayed} \approx P(\beta) = \left[1 + \frac{\beta \phi(\beta)}{\varphi(\beta)} \right]^{-1}, \quad \beta > 0$$

Erlang-C

$$\text{Congestion index} = E \left[\frac{\text{Wait}}{E(S)} \middle| \text{Wait} > 0 \right] = \frac{1}{\Delta}$$

ASA

$$\% \left\{ \frac{\text{Wait}}{E(S)} > T \middle| \text{Wait} > 0 \right\} = e^{-T\Delta}$$

TSF

$$\text{Servers' Utilization} = \frac{R}{N} \approx 1 - \frac{\beta}{\sqrt{N}}$$

Occupancy

QED Erlang-C: Intuition via Waiting-Time

- Recall: The **Waiting-Time** distribution is given by

$$\frac{W_q}{E(S)} = \begin{cases} 0 & \text{wp } 1 - E_{2,n} ; \\ \exp\left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1-\rho}\right) & \text{wp } E_{2,n} . \end{cases}$$

- **Given** $\{W_q > 0\}$, the distribution of W_q is thus Exponential, with mean

$$E(S) \frac{1}{n} \frac{1}{1-\rho}$$

- In the **QED-Regime**: $\sqrt{n} \cdot (1 - \rho) \approx \beta$.

- Hence, given $\{W_q > 0\}$, the distribution of W_q is approximately Exponential, with mean

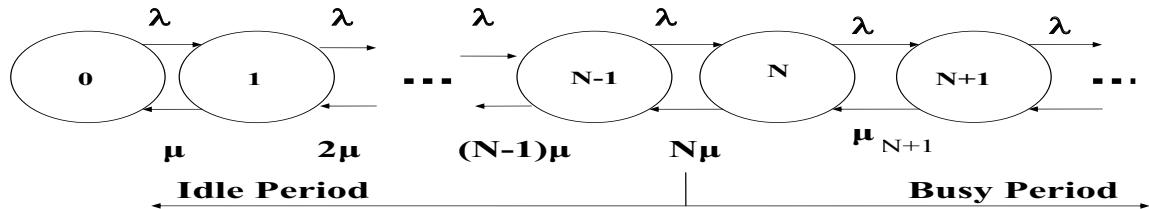
$$E(S) \frac{1}{\sqrt{n}} \frac{1}{\beta}.$$

- In particular, with say $n=100$'s, average waiting time is one order of magnitude less than average service time.

Still unclear:

In the QED-Regime, why is the delay probability α **strictly** between 0 and 1? Answer via Busy- and Idle-Period analysis.

Excursions: Busy- & Idle-Periods



Define: Idle Period

$$T_{N-1, N} = E [\text{1}^{\text{st}} \text{ hitting time of } N | Q(0) = N - 1].$$

Then

$$T_{N-1, N} = \frac{\sum_{i=0}^{N-1} \pi_i}{\lambda_{N-1} \pi_{N-1}} = \frac{1}{\lambda \pi_-(N-1)},$$

where π_- is the distribution of the restricted Q_- .

Similarly: Busy Period

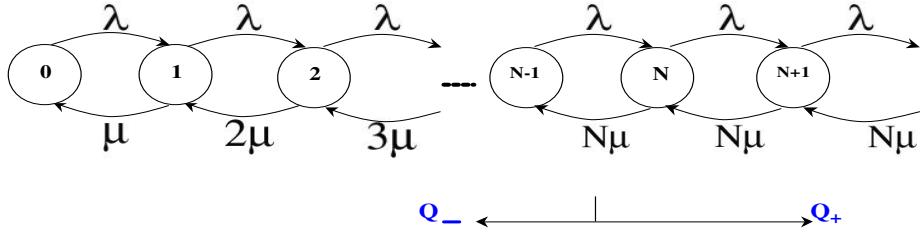
$$T_{N, N-1} = E [\text{1}^{\text{st}} \text{ hitting time of } N - 1 | Q(0) = N].$$

Proof:

$$\text{Number of Idle Excursions} \stackrel{d}{=} \text{Geometric}_{\geq 0} \left(\frac{\lambda_{N-1}}{\lambda_{N-1} + \mu_{N-1}} \right)$$

$$T_{N-1, N} = \underbrace{\frac{1}{\pi_-(N-1) \mu_{N-1}}}_{E(\text{Idle Excursion})} \times \underbrace{\frac{\mu_{N-1}}{\lambda_{N-1}}}_{E(\# \text{ of Excursions})}$$

QED Erlang-C: Why $0 < \alpha < 1$? Intuition via Busy-Idle Periods



$Q(0) = N$: all servers busy, no queue.

Recall
$$E_{2,N} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}} \right]^{-1} = \left[1 + \frac{1 - \rho_N}{\rho_N E_{1,N-1}} \right]^{-1}.$$

Here
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1/\mu}{h(-\beta)\sqrt{N}}$$

which applies as $\sqrt{N}(1 - \rho_N) \rightarrow \beta$, $-\infty < \beta < \infty$.

Also
$$T_{N,N-1} = \frac{1}{N\mu(1 - \rho_N)} \sim \frac{1/\mu}{\beta\sqrt{N}}$$

which applies as above, but for $0 < \beta < \infty$.

Hence,
$$E_{2,N} \sim \left[1 + \frac{\beta}{h(-\beta)} \right]^{-1}$$
, assuming $\beta > 0$.

QED: $N \sim R + \beta\sqrt{R}$ for some β , $0 < \beta < \infty$

$$\Leftrightarrow \lambda_N \sim \mu N - \beta\mu\sqrt{N}$$

$$\Leftrightarrow \rho_N \sim 1 - \frac{\beta}{\sqrt{N}}, \text{ namely } \lim_{N \rightarrow \infty} \sqrt{N}(1 - \rho_N) = \beta.$$

Theorem (Halfin-Whitt, 1981) **QED** $\Leftrightarrow \lim_{N \rightarrow \infty} E_{2,N} = \left[1 + \frac{\beta}{h(-\beta)} \right]^{-1}$.

Erlang-C in the ED-Regime

Assume “stingy” safety-staffing: $\mathbf{n = R + \gamma, \gamma > 0.}$

Then

1. $n \cdot (1 - \rho) = \gamma,$
2. $P\{W_q > 0\} \approx 1,$
3. $W_q \stackrel{d}{\approx} \exp(\gamma\mu) \quad (\Rightarrow \frac{E[W_q]}{E[S]} = \frac{1}{\gamma} : \text{think } \gamma = 1, 2, \dots, 10, \dots)$

Example (via 4CallCenters)

$E[S] = 6 \text{ min } (\mu = 10), \quad \gamma = 1.$

λ/hr	n	ρ	$P\{W_q > 0\}$	$E[W_q]$
10	2	50%	33.3%	2:00
50	6	83.3%	58.8%	3:32
250	26	96.2%	78.2%	4:42
1000	101	99%	88.3%	5:18
9000	901	99.9%	95.9%	5:45
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
∞	∞	1	1	6:00

Note:

- $E[W_q | W_q > 0]$ remains **constant** (6:00).
- Very **sensitive**: decrease n by merely **1** \Rightarrow queue “explodes”.

A Conceptual Framework

How to determine the Regime?

Strategy, accounting for tradeoff between efficiency and service quality; or for union-constraints; or for managerial constraints; or,...

How to determine the parameters?

Analysis, via **Constraint Satisfaction** or **Cost/Profit Optimization**.

In principle, can do an analysis with **4CallCenters**.

One then gets the answers but typically these **lack insight**.

Ideally, combine 4CallCenters with ED/QD/QED guidelines.

We shall now demonstrate all this through **examples**.

- Strategy: via Pooling
- Constraint Satisfaction (easy, prevalent)

$$\min n \text{ s.t. } P_n\{W_q > T\} \leq a$$

$$E_n[W_q] \leq b$$

$$P_n\{Ab\} \leq c$$

- Cost / Profit Optimization

QED Erlang-C: Pooling ($y \leftrightarrow \beta$)

Base: $\lambda = 300/\text{hr}$, $\text{AHT} = 5 \text{ min}$, $N = 30$ agents

$$R = 300 \times \frac{5}{60} = 25, \quad \text{OCC} = 83.3\% \quad \text{ASA} = 15 \text{ sec}$$

$$y = (N - R) / \sqrt{R} = (30 - 25) / \sqrt{25} = 1, \quad P(1) = 22\%$$

4 CC: $\lambda = 1200$, $\text{AHT} = 5$, $R = 100$; **N=?**

Quality-Driven: maintain OCC at 83.3%.

$$N = 120, \quad \text{ASA} = .5 \text{ sec}, \quad y = (120 - 100)/10 = 2$$

Efficiency-Driven: maintain ASA at 15 sec.

$$N = 107, \quad \text{OCC} = 95\%, \quad y = 0.8$$

QED: maintain % {Wait>0} at 22% (y at 1).

$$N = 100 + 1 \cdot \sqrt{100} = 110, \quad \text{OCC} = 91\%, \quad \text{ASA} = 7 \text{ sec}$$

9 CC: $\lambda = 2700$, $\text{AHT} = 5$, $R = 225$

Q: $N = 270$

E: $N = 233$

QED: $N = 225 + 1 \cdot \sqrt{225} = 240$, $\text{OCC} = 94\%$, $\text{ASA} = 4.7 \text{ sec}$

QED Erlang-C: Pooling Theoretical Support

Base case: M/M/N with parameters λ, μ, N

Scenario: $\lambda \rightarrow m\lambda$ ($R \rightarrow mR$)

	Base Case	Efficiency-driven	Quality-driven	Rationalized
Offered load	$R = \frac{\lambda}{\mu}$	mR	mR	mR
Safety staffing	Δ	Δ	$m\Delta$	$\sqrt{m}\Delta$
Number of agents	$N = R + \Delta$	$mR + \Delta$	$mR + m\Delta$	$mR + \sqrt{m}\Delta$
Service grade	$\beta = \frac{\Delta}{\sqrt{R}}$	$\frac{\beta}{\sqrt{m}}$	$\beta\sqrt{m}$	$\boxed{\beta}$
Erlang-C = $P\{\text{Wait}>0\}$	$P(\beta)$	$P\left(\frac{\beta}{\sqrt{m}}\right) \uparrow 1$	$P(\beta\sqrt{m}) \downarrow 0$	$\boxed{P(\beta)}$
Occupancy	$\rho = \frac{R}{R + \Delta}$	$\frac{R}{R + \frac{\Delta}{m}} \uparrow 1$	$\boxed{\rho = \frac{R}{R + \Delta}}$	$\frac{R}{R + \frac{\Delta}{\sqrt{m}}} \uparrow 1$
ASA = $E\left[\frac{\text{Wait}}{E(S)} \mid \text{Wait} > 0\right]$	$\frac{1}{\Delta}$	$\boxed{\frac{1}{\Delta} = \text{ASA}}$	$\frac{1}{m\Delta} = \frac{\text{ASA}}{m}$	$\frac{1}{\sqrt{m}\Delta} = \frac{\text{ASA}}{\sqrt{m}}$
TSF = $P\left\{\frac{\text{Wait}}{E(S)} > T \mid \text{Wait} > 0\right\}$	$e^{-T\Delta}$	$\boxed{e^{-T\Delta} = \text{TSF}}$	$e^{-mT\Delta} = (\text{TSF})^m$	$e^{-\sqrt{m}T\Delta} = (\text{TSF})^{\sqrt{m}}$

Erlang-C: Cost- or Profit-Optimization

Suppose that revenues depend only on the number of served customers (eg. linearly, or fixed per call). Now observe that, for Erlang-C in steady-state, all customers are eventually served. It follows that staffing levels do not effect revenues. Hence, **profit-maximization is equivalent to cost-minimization.**

Conceptual Framework:

Quality $D(t)$ delay cost (t = delay time)

Efficiency $C(N)$ staffing cost (N = # agents)

Optimization: N^* minimizes Total Costs

- $C \gg D$: Efficiency-driven
- $C \ll D$: Quality-driven
- $C \approx D$: Rationalized - QED

Mathematical Framework:

Asymptotic Analysis, as the number-of-servers $n \uparrow \infty$.

(Reference: with Borst & Reiman, 2004)

Erlang-C: Cost Minimization

(Reference: Borst, M., Reiman, 2004)

$$\text{Cost} = c \cdot n + d \cdot \lambda \mathbb{E}[W_q],$$

c = Staffing cost;

d = Delay cost.

Optimal staffing level:

$$n^* \approx R + \beta^*(r)\sqrt{R}, \quad r = \text{delay-cost / staffing-cost}.$$

$\beta^*(r)$ = optimal service-grade, independent of λ :

$$\beta^*(r) = \arg \min_{0 < y < \infty} \left\{ y + \frac{r \cdot P_w(y)}{y} \right\},$$

where

$$P_w(y) = \left[1 + \frac{y}{h(-y)} \right]^{-1}.$$

Very good approximation:

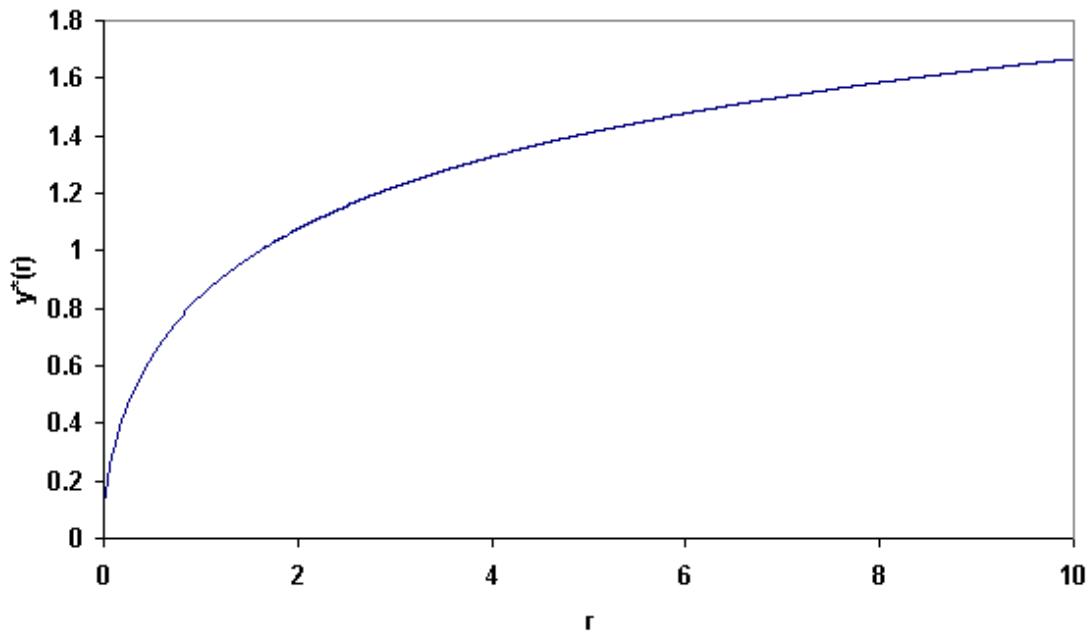
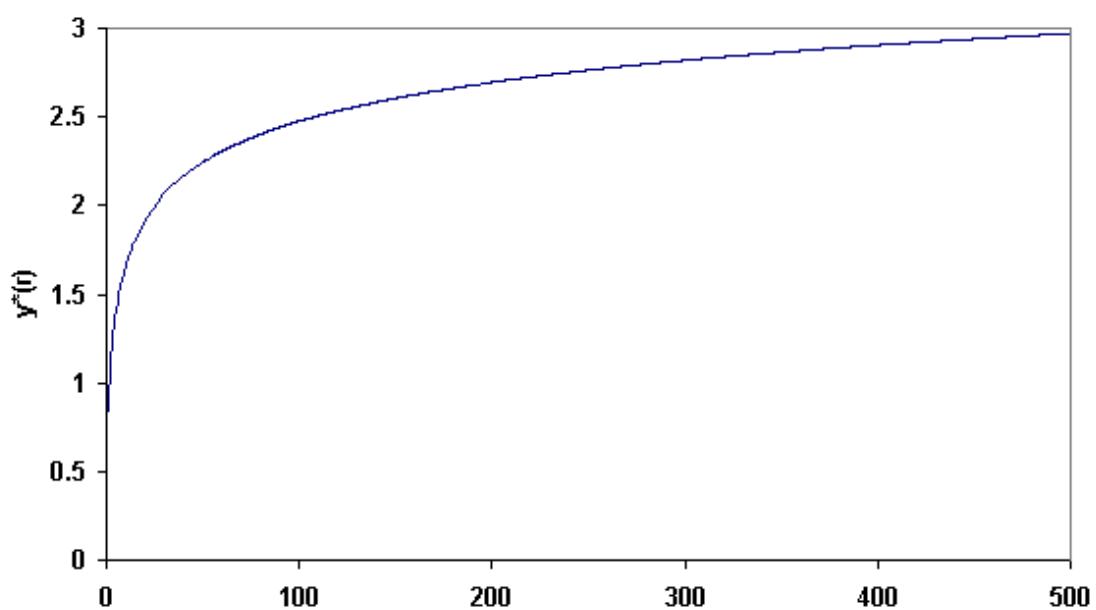
$$\begin{aligned} \beta^*(r) &\approx \left(\frac{r}{1 + r(\sqrt{\pi/2} - 1)} \right)^{1/2}, \quad 0 < r < 10, \\ &\approx \left(2 \ln \frac{r}{\sqrt{2\pi}} \right)^{1/2}, \quad r \geq 10. \end{aligned}$$

Final comment: r small (large) \Rightarrow ED (QD).

Erlang-C: Optimal Square-Root Staffing

$$n = R + \beta^*(r)\sqrt{R} \quad (\beta^* \leftrightarrow y^*)$$

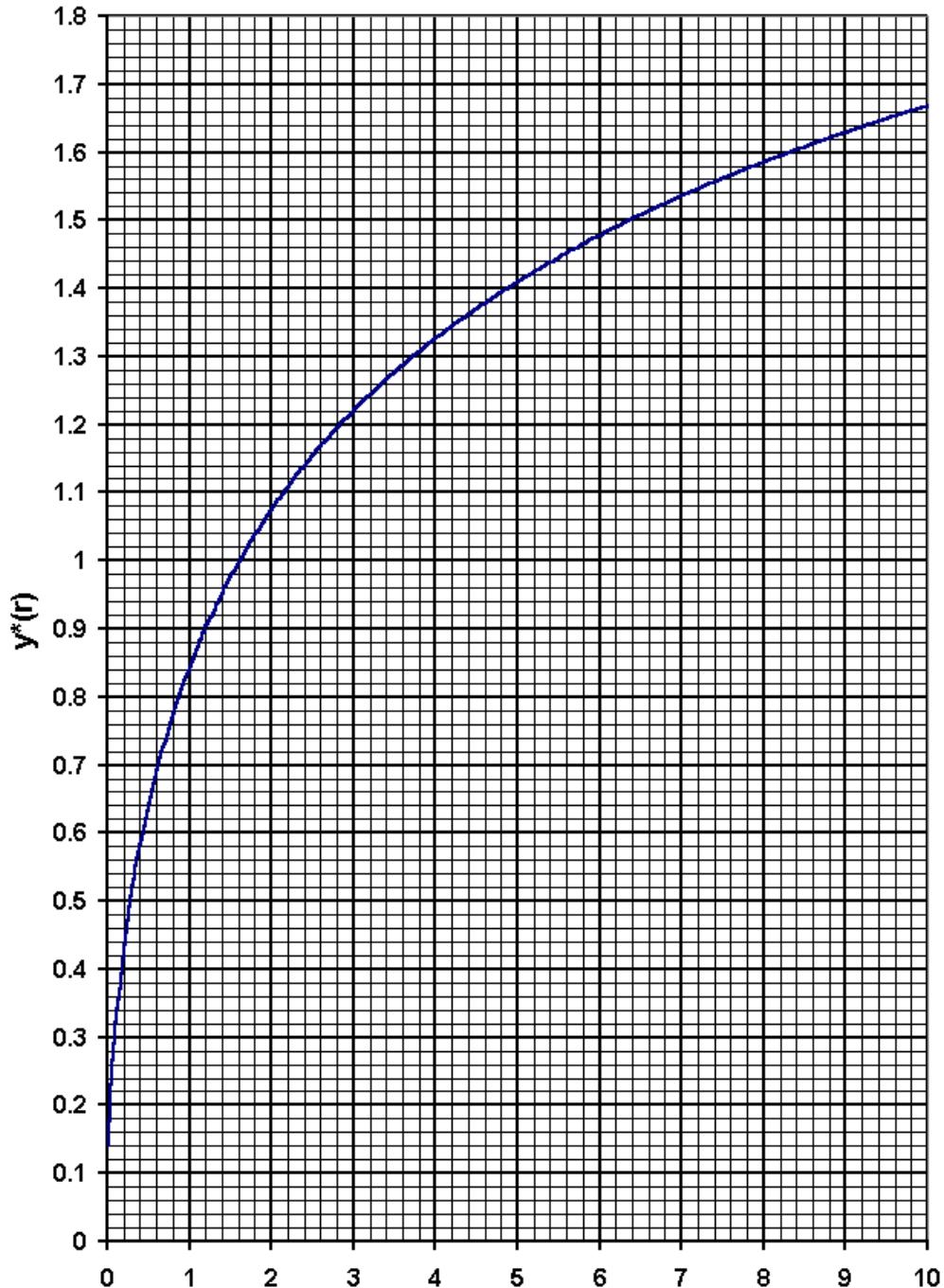
$r = \text{cost-of-delay} / \text{cost-of-staffing}$



Erlang-C: Optimal Square-Root Staffing

$$n = R + \beta^*(r)\sqrt{R}$$

$r = \text{cost-of-delay} / \text{cost-of-staffing}$



Erlang-C: “The 80-20 Rule”

Prevalent: At least 80% customers served within 20 seconds;

Formally, $\%(\{\text{Wait} \leq 20 \text{ sec.}\}) \geq 80\%$.

Call center: $\lambda = 6000/\text{hr}$, $E[S] = 4 \text{ min} \Rightarrow R = 400 \text{ Erlangs}$.

4 Call Centers: $n = 411$ agents needed.

The above is a solution to the staffing-problem via **Constraint Satisfaction**.

But how does one “understand” (internalize) the 80-20 rule?

$$n = 411 \Rightarrow \beta^* = (411 - 400)/20 = 0.55.$$

According to cost-graph (or formula), $r = d/c \approx 0.32$. Yet:

Congestion-Index = $E[\text{Wait}/E[S]] \approx \frac{P\{\text{Wait} > 0\}}{411-400} \approx \frac{1}{33}$. We observe:

The 80-20 Rule: Low valuation of customers’ time, at 1/3 agents’ time, yet very-good performance? enabled by scale!

What if $d/c = 5$? $\beta^* = 1.4$:

- $n^* = 428$ (vs. 411 before);
- Agents’ accessibility (idleness) = 7% (vs. 3% before);
- 1 out of 100 wait over 20 seconds (vs. 1 out of 5).

Conclude: **Constraint-Satisfaction is easier to formulate but Optimization is easier to internalize.**