
Service Engineering

Class 12

QED (QD, ED) Queues

Erlang-B/C: Some Proofs, Facts and Analysis

• Erlang-B in the QED-Regime (Jagerman);

• Erlang-C in the QED-Regime (Halfin & Whitt);

• QED Erlang-C: Some Intuition;

• Erlang-C in the ED-Regime;

• Conceptual Framework;

• Pooling;

• Cost Optimization for Erlang-C (with Borst & Reiman);

• Constraint-Satisfaction; The 80-20 Rule.
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The Erlang-B Queue in the QED-Regime

Recall the Erlang-B Formula:

E1,n
∆= P{Blocked} =

Rn

n!

/ n∑

j=0

Rj

j!

Consider a sequence of M/M/n/n queues,

indexed by the number of servers n = 1, 2, . . ..

• λn = arrival-rate, varies with n;

• µ = service-rate, fixed (independent of n).

• Rn = λn/µ (Offered Load) ; ρn = Rn/n (Load per Server);

We shall use R and ρ, without the subscript n, for simplicity.

Theorem (QED Erlang-B; Jagerman, 1974)

As n→∞, the following 3 statements are equivalent:

1. Customers: E1,n ≈ γ√
n, for some γ > 0;

2. Servers: ρ ≈ 1− β√
n, for some −∞ < β <∞ ;

3. Manager: n ≈ R + β
√
R (square-root “staffing”);

in which case

γ = h(−β) =
φ(−β)

Φ̄(−β)
=

φ(β)

Φ(β)
,

where φ,Φ, Φ̄ and h are the density, cdf, survival function and

hazard rate of N(0, 1) (standard-normal), respectively.

Note: Servers’ Occupancy≈ 1− β+γ√
n , accounting for blocking.
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QED Erlang-B: Proof

Proof:

2 ⇐⇒ 3 is straightforward algebra from the definitions.

3 ⇒ 1. Assume n = R + β
√
R. The key observation is a

Poisson-Representation of the Erlang-B Formula:

E1,n =
P{XR = n}
P{XR ≤ n}

,

where XR
d= Poisson(R).

P{XR ≤ n} = P




XR −R√

R
≤ n−R√

R





CLT,3≈ P{N(0, 1) ≤ β} = Φ(β) .

P{XR = n} = P{n− 1 < XR ≤ n}

= P




n−R− 1√

R
<
XR −R√

R
≤ n−R√

R





≈ P{β − 1√
R
≤ N(0, 1) ≤ β}

≈ 1√
R
· φ(β) ≈ 1√

n
· φ(β) .

Finally, φ(β)
Φ(β) = φ(−β)

1−Φ(−β) = h(−β), by the symmetry of N(0, 1).
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QED Erlang-B: Proof (Continued)

1⇒ 3. n = R + β
√
R + o(

√
R) iff

∀ε > 0, R+ (β− ε)
√
R ≤ n ≤ R+ (β+ ε)

√
R for large enough

n.

Assume 3 does not hold. This implies that along some subse-

quence:

n > R + (β + ε)
√
R .

E1,n decreasing in n ⇒ lim sup
√
nE1,n < h(−β − ε).

h(·) increasing function ⇒ h(−β − ε) < h(−β)

⇒ Contradicting 1. q.e.d.
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Erlang-C: Previously Known Facts

Recall:

1. The Erlang-C Formula:

E2,n
∆= P{Wq > 0} =

∑

i≥n
πi =

Rn

n!

1

1− ρ
· π0 ,

where

π0 =



n−1∑

j=0

Rj

j!
+

Rn

n!(1− ρ)




−1

.

2. Palm’s Relation between Erlang-C and Erlang-B:

E2,n =
E1,n

(1− ρ) + ρE1,n
.

3. The Waiting-Time distribution:

Wq

1/µ
=





0 wp 1− E2,n

exp
(
mean = 1

n ·
1

1−ρ

)
wp E2,n
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The Erlang-C Queue in the QED-Regime

Theorem (QED Erlang-C; Halfin & Whitt, 1981)

As n→∞, the following 4 statements are equivalent:

0. QED: E2,n ≈ α, for some 0 < α < 1;

1. Manager: n ≈ R + β
√
R , for some 0 <β <∞;

2. Servers: ρ ≈ 1− β√
n;

3. Customers: E[Wq|Wq > 0] ≈ 1√
n
· 1

µβ
;

in which case

α = α(β) =


1 +

β

h(−β)




−1

,

which we call the Halfin-Whitt Delay-Function.

Note: β
√
R = Safety-Staffing, in analogy to Safety-Stock.

Proof:

1 ⇐⇒ 2 as in Erlang-B.

0 ⇐⇒ 2 is a consequence of Palm’s relation and QED Erlang-B:

E2,n =
E1,n

(1− ρ) + ρE1,n

≈ h(−β)/
√
n

β/
√
n + h(−β)/

√
n

=


1 +

β

h(−β)




−1

.

Finally, 3 ⇐⇒ 2 by the Waiting-Time distribution of Erlang-C.

q.e.d.
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The Halfin-Whitt Delay-Function

E2,n
∆
= P{Wq > 0} ≈


1 +

β

h(−β)




−1
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 - β = 0.5 (safety-staffing = 0.5 ·
√
R) ⇒ P{Wq > 0} ≈ 0.5;

- β = 2 (safety-staffing = 2 ·
√
R) ⇒ P{Wq > 0} ≈ 0.02;

- β = 3 ⇒ P{Wq > 0} ≈ 0, QD Regime;

For example, with offered-loads

• R = 100: 100+5=105 and 100+20=120;

• R = 1000: 1000+16=1016, and 1000+63=1063.
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QED Erlang-C: Exact Performance

 25

          ⋅ Safety-Staffing: Performance 
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QED Erlang-C: Intuition via Waiting-Time

• Recall: The Waiting-Time distribution is given by

Wq

E(S)
=





0 wp 1− E2,n ;

exp
(
mean = 1

n ·
1

1−ρ

)
wp E2,n .

- Given {Wq > 0}, the distribution of Wq is thus Exponential,

with mean

E(S)
1

n

1

1− ρ
.

- In the QED-Regime:
√
n · (1− ρ) ≈ β.

- Hence, given {Wq > 0}, the distribution of Wq is

approximately Exponential, with mean

E(S)
1√
n

1

β
.

- In particular, with say n=100’s, average waiting time is one

order of magnitude less than average service time.

Still unclear:

In the QED-Regime, why is the delay probability α strictly

between 0 and 1? Answer via Busy- and Idle-Period analysis.
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Excursions: Busy- & Idle-PeriodsUp/Down Crossings

Busy Period Idle Period 

N+1(N-1)µ

0 1 N-1 N

µ 2µ Nµ

N+1

µ

Define: Idle Period

TN−1,N = E
[
1st hitting time of N |Q(0) = N − 1

]
.

Then TN−1,N =

∑N−1
i=0 πi

λN−1πN−1
=

1

λπ−(N − 1)
,

where π− is the distribution of the restricted Q−.

Similarly: Busy Period

TN,N−1 = E
[
1st hitting time of N − 1|Q(0) = N

]
.

Proof :

Number of Idle Excursions
d
= Geometric≥0(

λN−1

λN−1 + µN−1
)

TN−1,N =
1

π−(N − 1)µN−1︸ ︷︷ ︸
E(Idle Excursion)

× µN−1

λN−1︸ ︷︷ ︸
E(# of Excursions)

6
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QED Erlang-C: Why 0 < α < 1?
Intuition via Busy-Idle PeriodsM/M/N (Erlang-C) with Many Servers: N ↑ ∞
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Q(0) = N : all servers busy, no queue.

Recall E2,N =

[
1 +

TN−1,N

TN,N−1

]−1

=

[
1 +

1− ρN

ρNE1,N−1

]−1

.

Here TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√

N
∼ 1/µ

h(−β)
√

N

which applies as
√

N (1− ρN) → β, −∞ < β < ∞.

Also TN,N−1 =
1

Nµ(1− ρN)
∼ 1/µ

β
√

N

which applies as above, but for 0 < β < ∞.

Hence, E2,N ∼
[
1 +

β

h(−β)

]−1

, assuming β > 0.

QED: N ∼ R + β
√

R for some β, 0 < β < ∞
⇔ λN ∼ µN − βµ

√
N

⇔ ρN ∼ 1− β√
N

, namely lim
N→∞

√
N (1− ρN) = β.

Theorem (Halfin-Whitt, 1981) QED ⇔ lim
N→∞

E2,N =
[
1 + β

h(−β)

]−1
.

6
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Erlang-C in the ED-Regime

Assume “stingy” safety-staffing: n = R+ γ, γ > 0.

Then

1. n · (1− ρ) = γ,

2. P{Wq > 0} ≈ 1,

3. Wq
d≈ exp(γµ) ( ⇒ E[Wq]

E[S] = 1
γ : think γ = 1, 2, . . . , 10, . . .)

Example (via 4CallCenters)

E[S] = 6 min (µ = 10), γ=1.

λ/hr n ρ P{Wq > 0} E[Wq]

10 2 50% 33.3% 2:00

50 6 83.3% 58.8% 3:32

250 26 96.2% 78.2% 4:42

1000 101 99% 88.3% 5:18

9000 901 99.9% 95.9% 5:45

↓ ↓ ↓ ↓ ↓
∞ ∞ 1 1 6:00

Note:

- E[Wq|Wq > 0] remains constant (6:00).

- Very sensitive: decrease n by merely 1 ⇒ queue “explodes”.
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A Conceptual Framework

How to determine the Regime?

Strategy, accounting for tradeoff between efficiency and ser-

vice quality; or for union-constraints; or for managerial con-

straints; or,...

How to determine the parameters?

Analysis, via Constraint Satisfaction or Cost/Profit

Optimization.

In principle, can do an analysis with 4CallCenters.

One then gets the answers but typically these lack insight.

Ideally, combine 4CallCenters with ED/QD/QED guidelines.

We shall now demonstrate all this through examples.

• Strategy: via Pooling

• Constraint Satisfaction (easy, prevalent)

minn s.t. Pn{Wq > T} ≤ a

En[Wq] ≤ b

Pn{Ab} ≤ c

• Cost / Profit Optimization
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QED Erlang-C: Pooling (y ↔ β)

 27

Strategy: Sustain Regime under Pooling 
 

Base: λ = 300/hr, AHT = 5 min, N = 30 agents 

  R = 25
60
5300 =× , OCC = 83.3% ASA = 15 sec 

  125/)2530(RR)/(Ny =−=−= , P(1) = 22% 
 
 
4 CC: λ = 1200, AHT = 5, R = 100;  N=? 

Quality-Driven:  maintain  OCC  at  83.3%. 

N = 120,         ASA = .5 sec,     y = (120 – 100)/10 = 2 

Efficiency-Driven: maintain  ASA  at  15 sec. 

N = 107,         OCC = 95%, y = 0.8 

QED:    maintain  %{Wait>0}) at 22%  (y  at  1). 

N = 100 + 1001⋅  = 110,   OCC = 91%,   ASA = 7 sec 
 
 

9 CC: λ = 2700, AHT = 5, R = 225 

     Q: N = 270 

     E: N = 233 

QED: N = 225 + 2251⋅  = 240,  OCC = 94%,  ASA = 4.7 sec 
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QED Erlang-C: Pooling
Theoretical Support
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Erlang-C: Cost- or Profit-Optimization

Suppose that revenues depend only on the number of served cus-

tomers (eg. linearly, or fixed per call). Now observe that, for

Erlang-C in steady-state, all customers are eventually served. It

follows that staffing levels do not effect revenues. Hence,

profit-maximization is equivalent to cost-minimization.

Conceptual Framework:

  Economics: Quality vs. Efficiency

(Dimensioning: with S. Borst and M. Reiman) 

Quality D(t) delay cost (t = delay time) 

Efficiency C(N) staffing cost (N = # agents) 

Optimization: N*  minimizes Total Costs 

C >> D : Efficiency-driven

C << D : Quality-driven

C   D : Rationalized - QED

Satisfization:  N*  minimal s.t. Service Constraint 

                Eg.   %Delayed <  . 

1   : Efficiency-driven

0   : Quality-driven

0 <  < 1 : Rationalized - QED

Framework: Asymptotic theory of M/M/N, N

Mathematical Framework:

Asymptotic Analysis, as the number-of-servers n ↑ ∞.

(Reference: with Borst & Reiman, 2004)
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Erlang-C: Cost Minimization

(Reference: Borst, M., Reiman, 2004)

Cost = c · n+ d · λE[Wq] ,

c = Staffing cost;

d = Delay cost.

Optimal staffing level:

n∗ ≈ R + β∗(r)
√
R, r = delay-cost / staffing-cost .

β∗(r) = optimal service-grade, independent of λ:

β∗(r) = arg min
0<y<∞



y +

r · Pw(y)

y



 ,

where

Pw(y) =


1 +

y

h(−y)




−1

.

Very good approximation:

β∗(r) ≈



r

1 + r(
√
π/2− 1)




1/2

, 0 < r < 10,

≈

2 ln

r√
2π




1/2

, r ≥ 10 .

Final comment: r small (large) ⇒ ED (QD).
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Erlang-C: Optimal Square-Root Staffing

n = R + β∗(r)
√
R (β∗ ↔ y∗)

r = cost-of-delay / cost-of-staffing

 35

Square-Root Safety Staffing: RryRN )(*+=  
         r = cost of delay / cost of staffing 
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Erlang-C: Optimal Square-Root Staffing

n = R + β∗(r)
√
R

r = cost-of-delay / cost-of-staffing

 36

               ),(* ry    r = cost of delay / cost of staffing  
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Erlang-C: “The 80-20 Rule”

Prevalent: At least 80% customers served within 20 seconds;

Formally, %({Wait ≤ 20 sec.} ≥ 80%.

Call center: λ = 6000/hr, E[S]=4 min ⇒ R=400 Erlangs.

4CallCenters: n = 411 agents needed.

The above is a solution to the staffing-problem via Constraint

Satisfaction.

But how does one “understand” (internalize) the 80-20 rule?

n = 411 ⇒ β∗ = (411− 400)/20 = 0.55.

According to cost-graph (or formula), r = d/c ≈ 0.32. Yet:

Congestion-Index = E[Wait/E[S]] ≈ P{Wait>0}
411−400 ≈

1
33 . We observe:

The 80-20 Rule: Low valuation of customers’ time, at 1/3

agents’ time, yet very-good performance? enabled by scale!

What if d/c = 5? β∗ = 1.4:

• n∗ = 428 (vs. 411 before);

• Agents’ accessibility (idleness) = 7% (vs. 3% before);

• 1 out of 100 wait over 20 seconds (vs. 1 out of 5).

Conclude: Constraint-Satisfaction is easier to formulate

but Optimization is easier to internalize.
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