

Service Engineering

Class 13

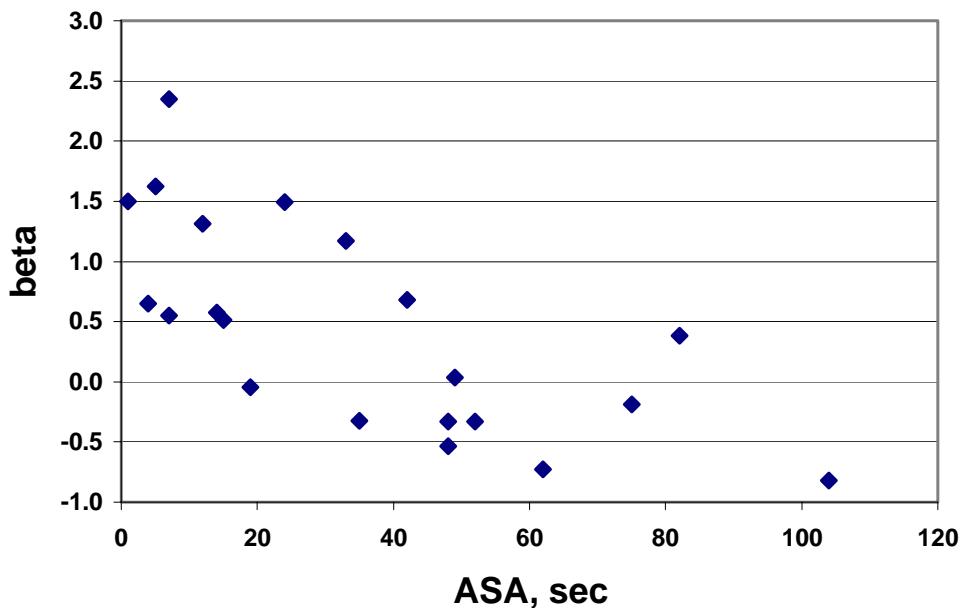
QED (QD, ED) Queues

Erlang-A (M/M/n+G) in the QED & ED Regime

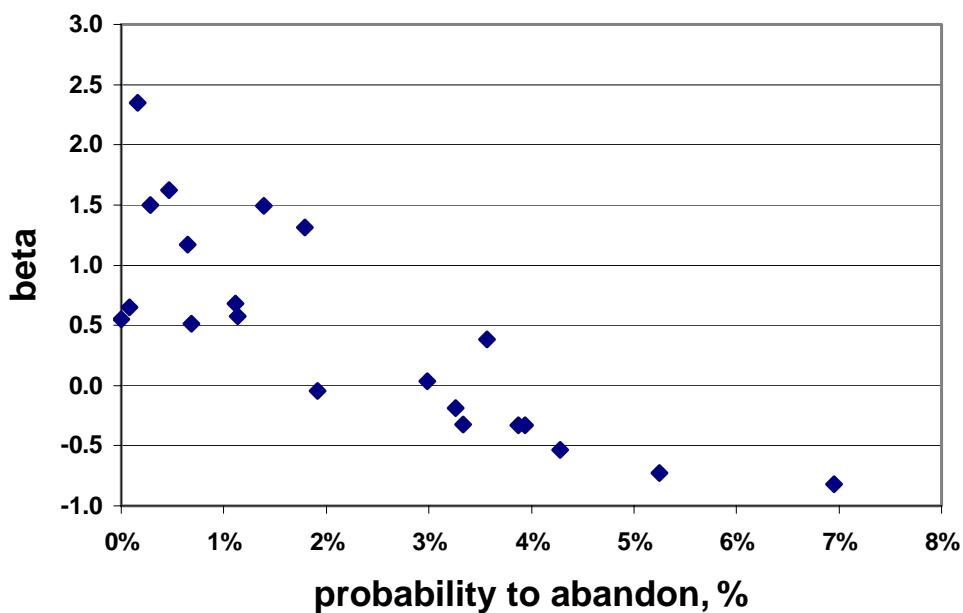
- Motivation, via Data & Infinite-Servers;
- QED Erlang-A: Garnett's Theorem;
- The right answer for the wrong reasons - revisited;
- M/M/n+G: Zeltyn's Approximations (QD, ED);
- Rules of Thumb;
- Cost Minimization for Erlang-A (with Zeltyn);
- Constraint-Satisfaction; The 80-20 Rule.

QED Erlang-A: Practical Motivation

American data. Beta vs ASA



American data. Beta vs $P\{Ab\}$



QED Erlang-A: Theoretical Motivation

QED staffing: $n \approx R + \beta\sqrt{R}$.

Assume $\theta = \mu$, namely “average service-time” = “average (im)patience”.

Recall and Note:

- If $\theta = \mu$, the number-in-system of $M/M/n+M$ has the same distribution of a corresponding $M/M/\infty$ (both are the same Birth&Death process). Formally, in steady-state:
$$L(M/M/n+M) \stackrel{d}{=} L(M/M/\infty).$$
- The steady-state distribution of $M/M/\infty$ with parameters λ and μ is **Poisson(R)**, where $R = \lambda/\mu$ (offered-load).
- For R not too small, Poisson(R) is approximately Normal(R,R). Formally:
$$L(M/M/\infty) \stackrel{d}{\approx} R + Z\sqrt{R}$$
, where Z is standard normal.

We now use these facts to estimate the delay-probability for Erlang-A, in which $\theta = \mu$:

$$\begin{aligned} P\{W_q(M/M/n+M) > 0\} &\stackrel{\text{PASTA}}{=} P\{L(M/M/n+M) \geq n\} \\ &\stackrel{\theta=\mu}{=} P\{L(M/M/\infty) \geq n\} \end{aligned}$$

Standardizing $L \approx R + Z\sqrt{R}$ reveals the QED regime, specifically how square-root staffing yields a non-degenerate delay-probability:

$$P\{W_q > 0\} \approx P\left\{Z \geq \frac{n - R}{\sqrt{R}}\right\} \approx 1 - \Phi(\beta).$$

The Erlang-A Queue in the QED-Regime

Theorem (with Garnett & Reiman, 2002)

The following **points of view** are equivalent:

0. **QED:** $P\{W_q > 0\} \approx \alpha$, for some $0 < \alpha < 1$;
1. **Manager:** $n \approx R + \beta\sqrt{R}$, for some $-\infty < \beta < \infty$;
2. **Servers:** Occupancy $\approx 1 - \frac{\beta + \gamma}{\sqrt{n}}$;
3. **Customers:** $P\{Ab\} \approx \frac{\gamma}{\sqrt{n}}$, for some $0 < \gamma < \infty$;

in which case

$$\alpha = \alpha(\beta, \frac{\mu}{\theta}) = \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)} \right]^{-1},$$

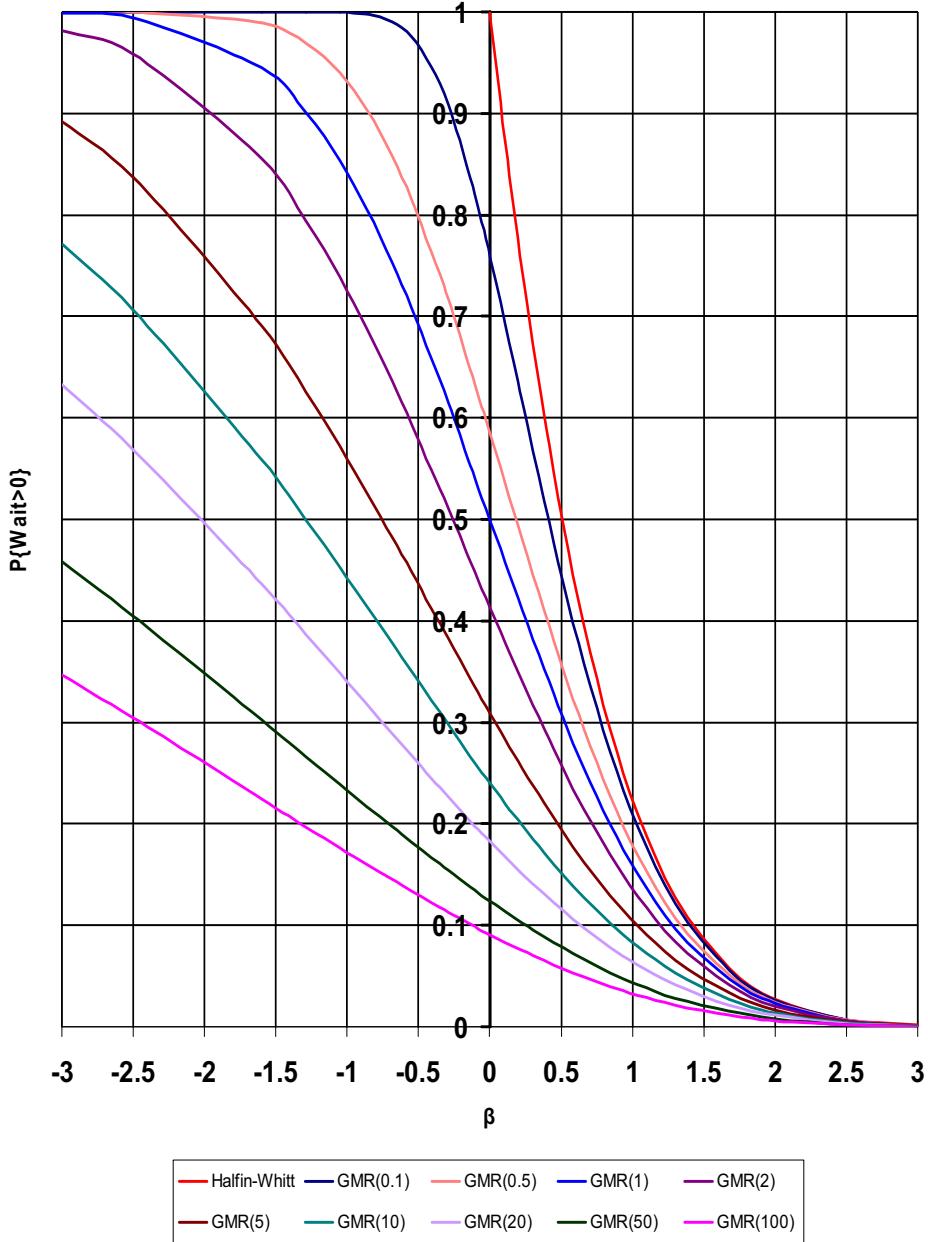
which we call the **Garnett Delay-Function(s)**;

here $\hat{\beta} \triangleq \beta\sqrt{\frac{\mu}{\theta}}$, and

$$\gamma = \alpha \cdot \sqrt{\frac{\theta}{\mu}} \cdot [h(\hat{\beta}) - \hat{\beta}].$$

Erlang-A: The Garnett Delay-Functions

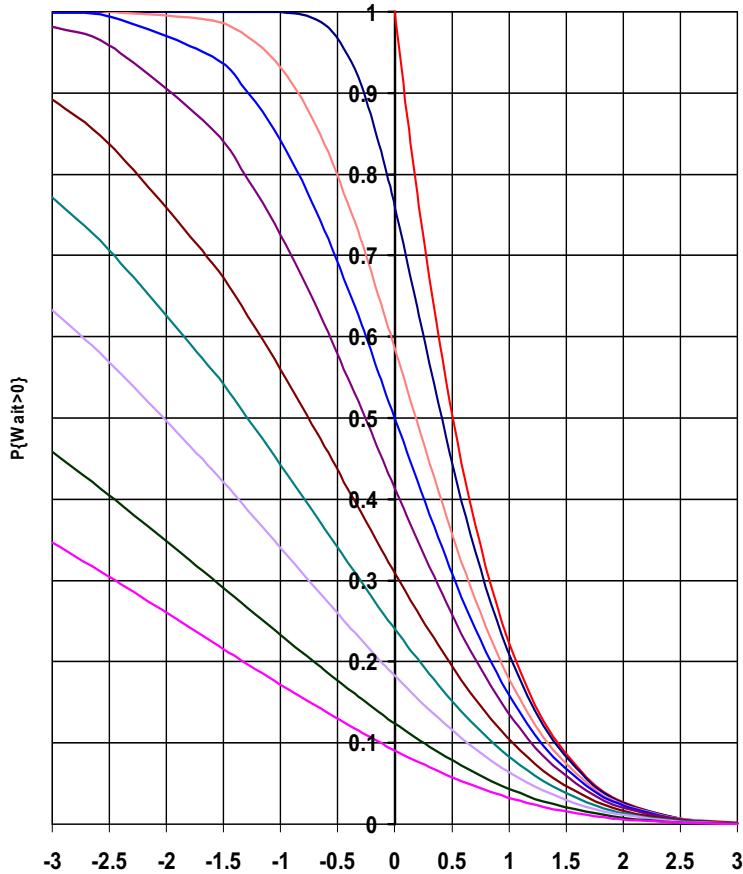
$P\{W_q > 0\}$ vs. the QOS parameter β , for varying patience θ/μ .



GMR(x) describes the asymptotic probability of delay as a function of β when $\theta/\mu = x$. Here, θ and μ are the abandonment and service rate, respectively.

Note: **Erlang-C** = limit of **Erlang-A**, as patience \uparrow indefinitely.

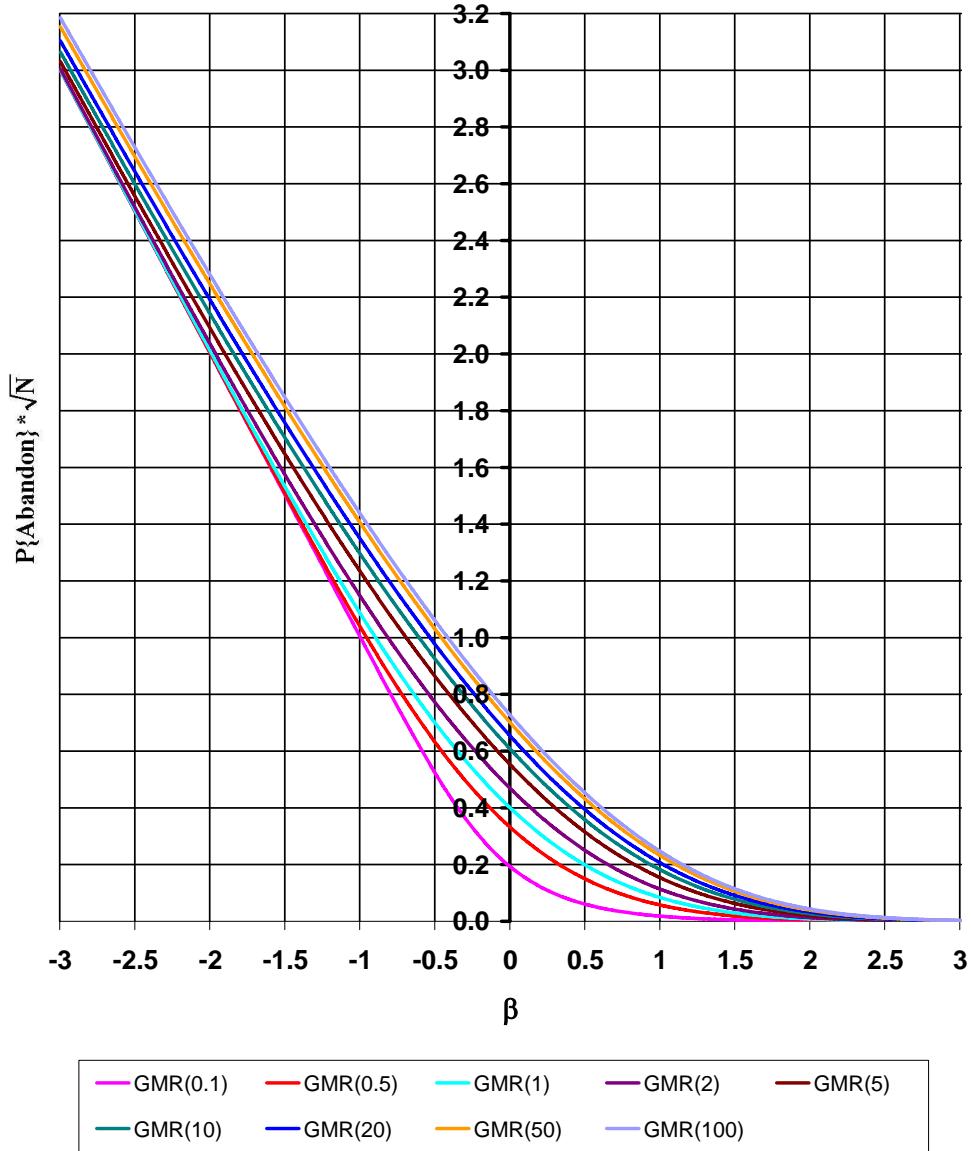
Understanding the Garnett Functions



- Fix a **staffing-level** (service-grade) and let patience \uparrow : then delays \uparrow ; in particular, the Garnett functions \uparrow to the Halfin-Whitt function (infinite-patience).
- Fix a **target delay-probability** (service level): then, as impatience \uparrow , less servers (smaller service-grade) are required to achieve the target (convincing managers to use Erlang-A).
- With $\beta = 0$ ($n = R$) and $\mu = \theta$, 50% are served immediately. Compare with Erlang-C in which $n = R + 0.5\sqrt{R}$ was required. But there is **no free lunch**: **2%** abandon! (under $n = 400$) see next page.

Erlang-A: % Abandonment

$\%Ab \times \sqrt{n}$ vs. β , for varying (im)patience (θ/μ):



Note the behavior: slope $-\beta$, for (relatively) large negative β and over all (im)patience levels. For an explanation, think **ED**: $n = R + \beta\sqrt{R} = R - \gamma R$; hence $\gamma \approx -\beta/\sqrt{R} \approx -\beta/\sqrt{n}$, and γ is $P\{Ab\}$ in the ED-Regime.

“The Right Answer for the Wrong Reason” - Revisited

If $\beta = 0$, the QED staffing level $n \approx R + \beta\sqrt{R}$ becomes

$$n = R = \frac{\lambda}{\mu} = \lambda \cdot E[S],$$

which is equivalent to the following **deterministic** rule:

Assign a number of agents that equals the offered load.
(Common in stochastic-ignorant operations.)

Erlang-C: queue “explodes”.

Erlang-A: Assume $\mu = \theta$. Then $P\{W_q = 0\} \approx 50\%$.

If $n = 100$, $P\{Ab\} \approx 4\%$ (twice the value 2% in the graph - why?), and $E[W_q] \approx 0.04 \cdot E[S]$ (why?).

Overall, reasonable (good?) service level, which will in fact improve with scale. For example, with $n = 400$, both $P\{Ab\}$ and $E[W_q]$ reduce to half their value under $n = 100$ (why?).

(Note: Changes in n go hand in hand with same changes in λ , assuming μ remains fixed.)

The Effect of Patience:

Suppose now $\mu = 0.1 \cdot \theta$ (highly impatient customers).

Via the Garnett Functions, suffices $n = R - \sqrt{R}$ to achieve $P\{W_q = 0\} \approx 50\%$, but this comes at the cost of somewhat over 10% abandoning, with $n = 100$ (and 5% with $n = 400$); though $E[W_q]$ decreases to one fourth of the above, assuming μ remains unchanged.

Erlang-A in the QED Regime: Operational Performance Measures

$$P\{W_q > 0\} \approx \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)} \right]^{-1}, \quad \hat{\beta} = \beta \sqrt{\frac{\mu}{\theta}}$$

$$E[W_q | W_q > 0] \approx \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{1}{\theta\mu}} \cdot [h(\hat{\beta}) - \hat{\beta}]$$

$$P\{\text{Ab}\} \approx \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\theta}{\mu}} \cdot [h(\hat{\beta}) - \hat{\beta}] \cdot \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)} \right]^{-1}$$

$$P\{Ab | W_q > 0\} \approx \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\theta}{\mu}} \cdot [h(\hat{\beta}) - \hat{\beta}]$$

$$P\left\{ \frac{W_q}{E[S]} > \frac{t}{\sqrt{n}} \middle| W_q > 0 \right\} \approx \frac{\bar{\Phi}\left(\hat{\beta} + \sqrt{\frac{\theta}{\mu}} \cdot t\right)}{\bar{\Phi}(\hat{\beta})}$$

$$P\left\{ \text{Ab} \middle| \frac{W_q}{E[S]} > \frac{t}{\sqrt{n}} \right\} \approx \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{\theta}{\mu}} \cdot \left[h\left(\hat{\beta} + t\sqrt{\frac{\theta}{\mu}}\right) - \hat{\beta} \right]$$

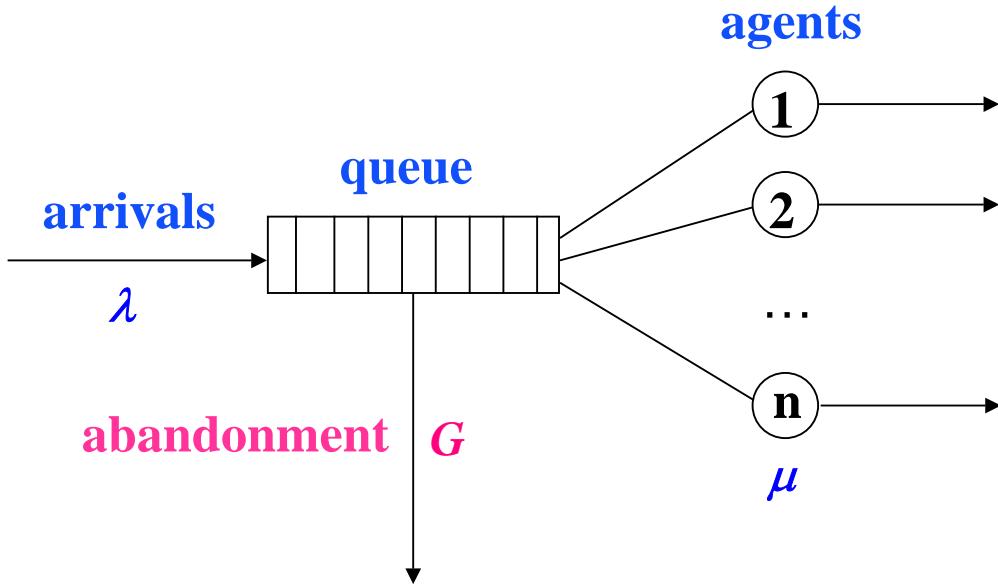
$$E\left[\frac{W_q}{E[S]} \middle| Ab \right] \approx \frac{1}{\sqrt{n}} \cdot \frac{1}{2} \sqrt{\frac{\mu}{\theta}} \cdot \left[\frac{1}{h(\hat{\beta}) - \hat{\beta}} - \hat{\beta} \right]$$

Here

$$\bar{\Phi}(x) = 1 - \Phi(x),$$

$$h(x) = \phi(x)/\bar{\Phi}(x), \text{ hazard rate of } N(0, 1).$$

M/M/n+G in the QED Regime



Density of (im)patience G : $g = \{g(x), x \geq 0\}$.

Assume $g_0 \triangleq g(0) > 0$.

QED regime: $n \approx R + \beta\sqrt{R}$.

QED approximations: Use the Erlang-A formulae (from the previous page), substituting g_0 instead of θ .

How to estimate g_0 ? As $\hat{\theta}$ in Erlang-A!

Why? Recall **Erlang-A**: $P\{\text{Ab}\} = \theta \cdot E[W_q]$ used for estimating θ (either via $\hat{\theta} = [\#\text{Abandoning}] / [\text{Total Waiting Time}]$; or by regression of half-hours' [%Abandoning] over [Expected-Waits]).

M/M/n+G: It turns out that, in the QED regime:

$$P\{\text{Ab}\} \approx g_0 \cdot E[W_q] .$$

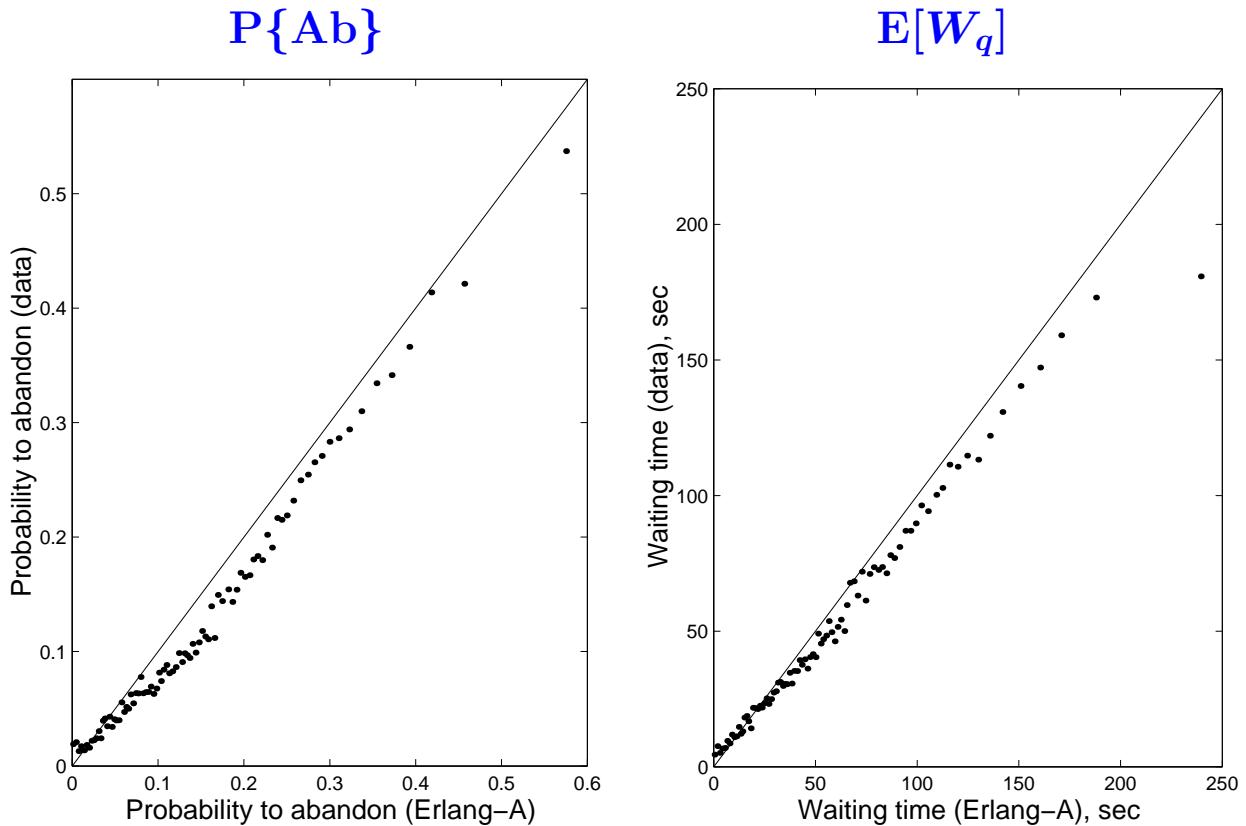
Hence, one estimates g_0 exactly as $\hat{\theta}$ in Erlang-A.

Erlang-A: Fitting a Simple Model to a Complex Reality

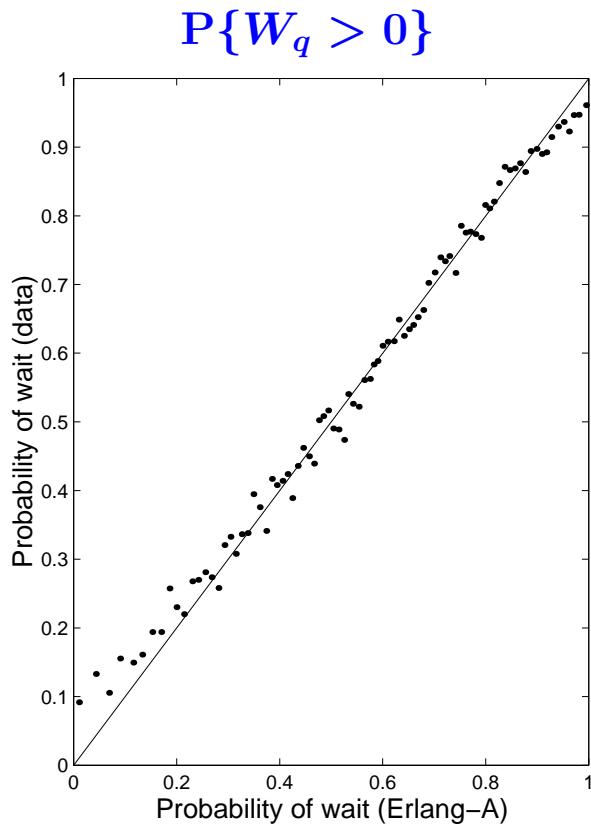
Question: Can one **usefully** apply the Erlang-A model to systems with **non-exponential** patience?

YES!

Erlang-A Formulae vs. Data Averages (Israeli Bank)



Erlang-A: Fitting a Simple Model to a Complex Reality II

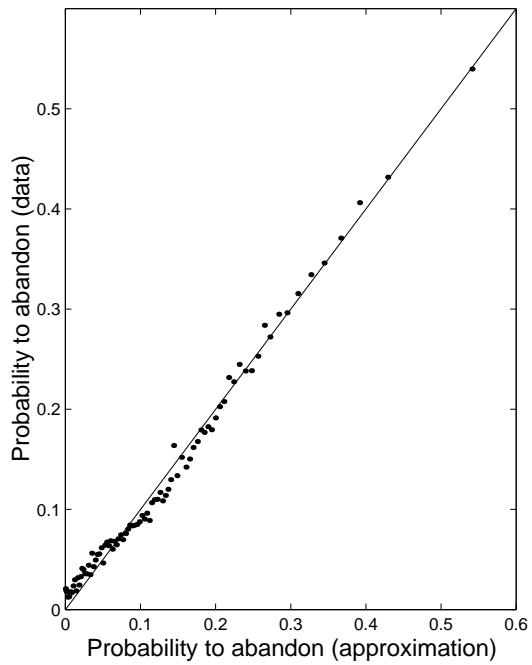


Summary:

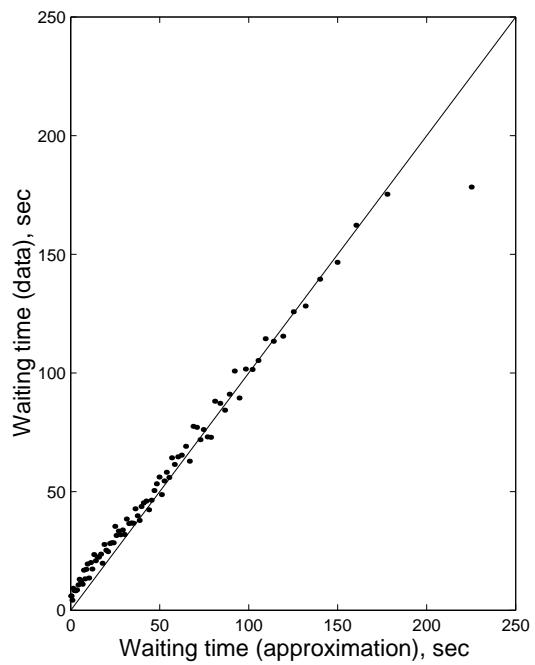
- Points: Hourly data (averages) vs. Erlang-A predictions;
- Formulae with continuous n (special-functions) used to account for non-integer n ;
- **Patience estimated via $P\{Ab\}/E[W_q]$;**
- **Erlang-A estimates provide close upper bounds.**

Fitting Erlang-A Approximations

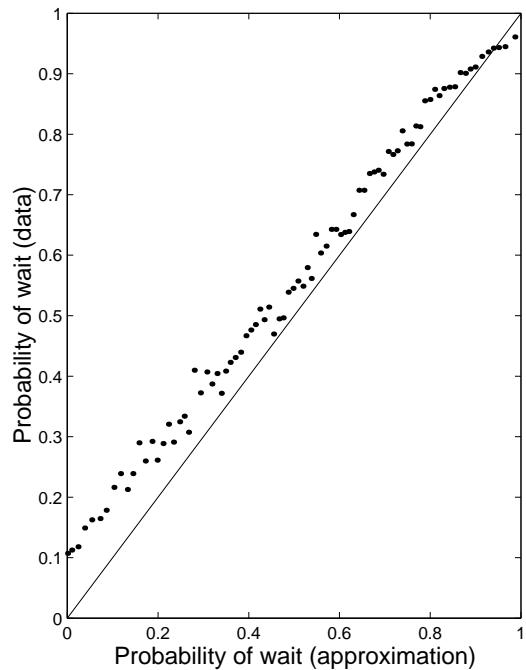
$P\{Ab\}$



$E[W_q]$



$P\{W_q > 0\}$



Quality-Driven $M/M/n+G$ (QD)

Density of patience time at the origin: $g_0 > 0$.

Staffing level:

$$n \approx R \cdot (1 + \delta), \quad \delta > 0.$$

- $P\{W_q > 0\}$ decreases exponentially in n .
- Probability to abandon of delayed customers:

$$P\{\text{Ab} | W_q > 0\} = \frac{1}{n} \cdot \frac{1 + \delta}{\delta} \cdot \frac{g_0}{\mu} + o\left(\frac{1}{n}\right).$$

- Average wait of delayed customers:

$$E[W_q | W_q > 0] = \frac{1}{n} \cdot \frac{1 + \delta}{\delta} \cdot \frac{1}{\mu} + o\left(\frac{1}{n}\right).$$

- Linear relation between $P\{\text{Ab}\}$ and $E[W_q]$:

$$\frac{P\{\text{Ab}\}}{E[W_q]} \sim g_0$$

- Asymptotic distribution of wait:

$$P\left\{ \frac{W_q}{E(S)} > \frac{t}{n} \mid W_q > 0 \right\} \sim e^{-(1-\rho)t}, \quad \rho = \frac{\lambda}{n\mu}.$$

Comparison with QED: Simpler here, hence worth having. Often, order $1/n$ replaces $1/\sqrt{n}$ (though, note conditioning).

Efficiency-Driven M/M/n+G (ED)

Let γ be a QOS parameter, $0 < \gamma < 1$.

Assume $G(x) = \gamma$ has a unique solution $x^* = G^{-1}(\gamma)$, at which $g(x^*) > 0$.

Staffing level:

$$n \approx R \cdot (1 - \gamma), \quad \gamma > 0.$$

- $P\{W_q > 0\} \approx 1$.
- Abandonment-Probability converges to:

$$P\{\text{Ab}\} \approx \gamma \approx 1 - \frac{1}{\rho}.$$

- Offered-Wait converges to x^* :

$$E[V] \approx x^*, \quad V \xrightarrow{p} x^*.$$

- Waiting distribution (asymptotically):

$$W_q \xrightarrow{w} G^*, \quad E[W_q] \rightarrow E[\min(x^*, \tau)],$$

where G^* is the distribution of $\min(x^*, \tau)$, namely

$$G^*(x) = \begin{cases} G(x), & x \leq x^*; \\ 1, & x > x^*. \end{cases}$$

Operational Regimes: Rules-of-Thumb

Assume that the **Offered-Load** R is not too small (more than several 10's for QED, more than 100 for ED and QD).

$$\text{ED regime: } n \approx R - \delta R, \quad 0.1 \leq \delta \leq 0.25.$$

- Essentially **all** customers are delayed;
- %Abandoned $\approx \delta$ (10-25%);
- Average-wait ≈ 30 seconds - 2 minutes.

$$\text{QD regime: } n \approx R + \gamma R, \quad 0.1 \leq \gamma \leq 0.25.$$

Essentially **no** delays.

$$\text{QED regime: } n \approx R + \beta \sqrt{R}, \quad -1 \leq \beta \leq 1.$$

- %Delayed between 25% and 75%;
- %Abandoned is 1-5%;
- Average wait is one-order less than average service-time (eg. seconds vs. minutes).

Operational Regimes: Performance

Assume that **offered load** R is not small (more than several 10's for QED, more than 100 for ED and QD).

$$\text{ED regime: } n \approx R - \delta R, \quad 0.1 \leq \delta \leq 0.25.$$

- Essentially **all** customers are delayed;
- %Abandoned $\approx \delta$ (10-25%);
- Average wait ≈ 30 seconds - 2 minutes.

$$\text{QD regime: } n \approx R + \gamma R, \quad 0.1 \leq \gamma \leq 0.25.$$

Essentially **no** delays.

$$\text{QED regime: } n \approx R + \beta \sqrt{R}, \quad -1 \leq \beta \leq 1.$$

- %Delayed between 25% and 75%;
- %Abandoned is 1-5%;
- Average wait is one-order less than average service time (seconds vs. minutes).

Economies of Scale (EOS)

For our purpose:

Economies of Scale (EOS) prevail if load-increase by a factor m “requires” staffing-increase by **less** than m .

In what sense “**Requires**” ?

- **Achieve** management goal(s) (**constraint satisfaction**),
or
- **Optimize** management goal(s) (**optimize cost / profit**).

Constraint Satisfaction **easier to formulate** (simpler data) and **solve** (hence more prevalent); but, as we saw (recall the 80:20 rule), Performance Optimization is easier to **grasp**.

Pooling QD Erlang-A's

Pool m identical service operations (call centers) with parameters $(\lambda, \mu, n, \theta)$.

Sustain the same QD operational regime, namely staffing levels:

$n \approx R + \delta R$, $\delta = 0.25$, for concreteness.

Use 4CallCenters to calculate the following:

E[S]=6 min, E[τ]=9 min

λ/hr	n	Occupancy	$\text{P}\{\text{Ab}\}$	$\text{E}[W_q]$	$\text{P}\{W_q > 0\}$
8	1	57.6%	28.0%	2:31	57.6%
32	4	71.5%	10.6%	0:58	42.5%
128	16	78.0%	2.5%	0:14	23.4%
512	64	79.8%	0.2%	0:01	4.9%
2,048	256	80.0%	0.0%	0:00	0.0%
↓	↓	↓	↓	↓	↓
∞	∞	80%	0%	0:00	0%

Occupancy converges to $1/(1 + \delta)$; here $1/1.25 = 80\%$.

EOS: Performance Measures improve at an exponential rate.

Pooling ED Erlang-A's

$$n \approx R - \gamma R, \quad \gamma = 1/6.$$

$\mathbf{E}[S]=6$ min, $\mathbf{E}[\tau]=9$ min

λ/hr	n	Occupancy	$\mathbf{P}\{\text{Ab}\}$	$\mathbf{E}[W_q]$	$\mathbf{P}\{W_q > 0\}$
12	1	73.4%	38.8%	3:29	73.4%
48	4	89.8%	25.2%	2:16	75.6%
192	16	97.5%	18.7%	1:41	85.4%
768	64	99.8%	16.8%	1:31	97.2%
3,072	256	100.0%	16.7%	1:30	100.0%
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
∞	∞	100%	16.7%	1:30	100%

$\mathbf{P}\{\text{Ab}\}$ and $\mathbf{E}[W_q]$ converge as is:

$$\mathbf{P}\{\text{Ab}\} \rightarrow \gamma; \quad \mathbf{E}[W_q] \rightarrow \gamma \cdot \mathbf{E}[\tau].$$

Thus, in the ED-Regime, there is **no EOS** for large n .

Pooling QED Erlang-A's

$$n \approx R + \beta\sqrt{R}, \quad \beta = 0.$$

E[S]=6 min, E[τ]=9 min

λ/hr	n	Occupancy	$\text{P}\{\text{Ab}\}$	$\text{E}[W_q]$	$\text{P}\{W_q > 0\}$
10	1	66.4%	33.6%	3:02	66.4%
40	4	82.4%	17.6%	1:35	60.9%
160	16	91.1%	8.9%	0:48	58.0%
640	64	95.5%	4.5%	0:24	56.5%
2,560	256	97.8%	2.2%	0:12	55.8%
↓	↓	↓	↓	↓	↓
∞	∞	100%	0%	0:00	55.1%

Delay probability converges to the appropriate Garnett function:

$$\text{P}\{W_q > 0\} \rightarrow \left[1 + \sqrt{\frac{\theta}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)} \right]^{-1} = \left[1 + \sqrt{\frac{2}{3}} \right]^{-1} \approx 0.551.$$

EOS: $\text{P}\{\text{Ab}\}$ and $\text{E}[W_q]$ improve at the rate of $1/\sqrt{n}$.

EOS and Constraint Satisfaction

Assume service and abandonment rates are as in the previous example: $E[S] = 6$ min; $E[\tau] = 9$ min. Playing with 4CC yields:

ED regime:

“Loose” constraint: $P\{Ab\} \leq 10\%$.

$$R = 100 \Rightarrow n = 91; \quad R = 400 \Rightarrow n = 361.$$

Almost no EOS! Use $n \approx 90\% \cdot R$ ($= (1-\gamma) \cdot R$, $\gamma \approx P\{Ab\}$).

QED regime:

“Moderate” constraint: $P\{Ab\} \leq 2\%$.

$$R = 100 \Rightarrow n = 105; \quad R = 400 \Rightarrow n = 399.$$

Saved more than 20 agents: 399 instead of $420 = 4 \times 105$.

$\beta = 0.5$ for $R = 100$, $\beta = -0.05$ for $R = 400$.

Why EOS? With β fixed, $P\{Ab\} \approx c(\beta)/\sqrt{n}$. Thus, $n \uparrow$ implies $P\{Ab\} \downarrow$. Consequently, with $n \uparrow$, $\beta \downarrow$ in order to achieve a given $P\{Ab\}$

QD regime:

“Strict” constraint: $P\{Ab\} \leq 0.1\%$.

$$R = 100 \Rightarrow n = 119; \quad R = 400 \Rightarrow n = 432.$$

More than 45 agents saved: 432 vs. $4 \times 119 = 476$.

$\delta = 0.19$ for $R = 100$, $\delta = 0.08$ for $R = 400$.

Why EOS? With δ fixed, $P\{Ab\}$ decreases exponentially in n , etc.

Recall: Cost Minimization in Erlang-C

(With Borst and Reiman, 2004.)

(Equivalently, Profit Maximization, if Revenues proportional to λ .)

$$\text{Cost} = c \cdot n + d \cdot \lambda \mathbf{E}[W_q],$$

c – cost of staffing;

d – cost of delay.

Erlang-C: Optimal staffing level:

$$n^* \approx R + \beta^*(r)\sqrt{R}, \quad r = d/c = \text{delay cost/staffing cost}.$$

$\beta^*(r)$ = optimal service grade (QOS), independent of λ :

$$\beta^*(r) = \arg \min_{0 < y < \infty} \left\{ y + \frac{r \cdot P_w(y)}{y} \right\},$$

where (recall the Halfin-Whitt function)

$$P_w(y) = \left[1 + \frac{y}{h(-y)} \right]^{-1}.$$

Very good approximation:

$$\begin{aligned} \beta^*(r) &\approx \left(\frac{r}{1 + r(\sqrt{\pi/2} - 1)} \right)^{1/2}, \quad 0 < r < 10, \\ &\approx \left(2 \ln \frac{r}{\sqrt{2\pi}} \right)^{1/2}, \quad r \geq 10. \end{aligned}$$

Erlang-A: Staffing via Optimization

(with Zeltyn, 2006)

We study “Minimize **Costs (Staffing + Waiting)**”. Why?

- Comparison easy against Erlang-C;
- W.L.O.G.: $P\{Ab\} = \theta \cdot E[W_q]$ reduces profit- to cost-optimization. Specifically, find n^* that max. average profit per time-unit:

$$R_s \cdot \lambda \cdot [1 - P_n\{Ab\}] - [C_s \cdot n + C_w \cdot E_n[W_q] \cdot \lambda + C_a \cdot P_n\{Ab\} \cdot \lambda] ,$$

where R_s is the **revenue** from a single service. This reduces to $c = C_s$ and $d = (R_s \cdot \theta + C_w + C_a \cdot \theta)$ in the following:

Minimize **Cost** = $c \cdot n + d \cdot \lambda E[W_q]$; here, as before,

c – Staffing Cost;

d – Delay Cost;

$r = d/c$.

Erlang-A. Optimal staffing level:

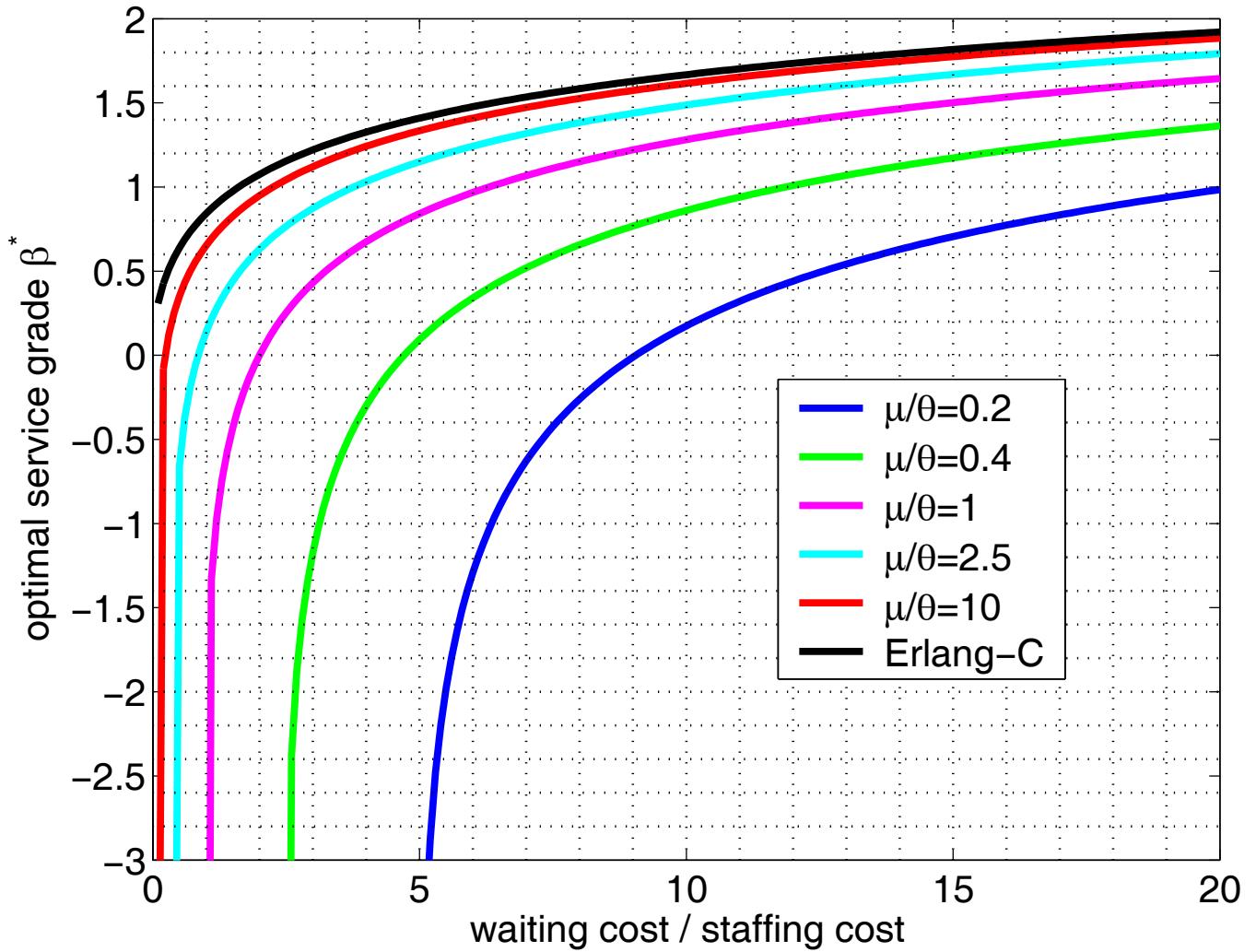
$$n^* \approx R + \beta^*(r; s)\sqrt{R}, \quad s = \sqrt{\mu/\theta} ,$$

$$\beta^*(r; s) = \arg \min_{-\infty \leq y < \infty} \{y + r \cdot P_w(y; s) \cdot s \cdot [h(ys) - ys]\} ,$$

where (recall the Garnett functions)

$$P_w(y; s) = \left[1 + \frac{h(ys)}{sh(-y)} \right]^{-1} .$$

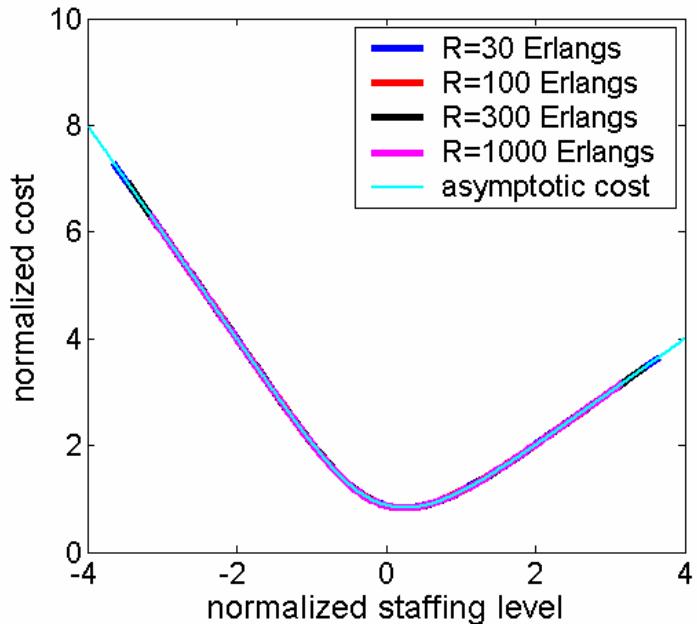
Erlang-A: Optimal Service Grade β^* (QOS)



- As $\theta \downarrow 0$, $\beta^*(r; \sqrt{\mu/\theta})$ increases to $\beta^*(r)$ (Erlang-C = M/M/n).
- $r < \theta/\mu$ implies that “no-service” ($n = 0$) is optimal. Why?
 $d \cdot E[\tau] < c \cdot E[S]$: cheaper to let abandon than to serve!
- $r \leq 20 \Rightarrow \beta^* < 2$; $r \leq 500 \Rightarrow \beta^* < 3$, as in Erlang-C.
- Numerical tests exhibit **remarkable** accuracy & robustness.

Erlang-A: Actual Cost vs. Asymptotic Cost

$$\mu = 1, \theta = 1/3$$



$$\text{Normalized staffing level} = (n - R)/\sqrt{R};$$

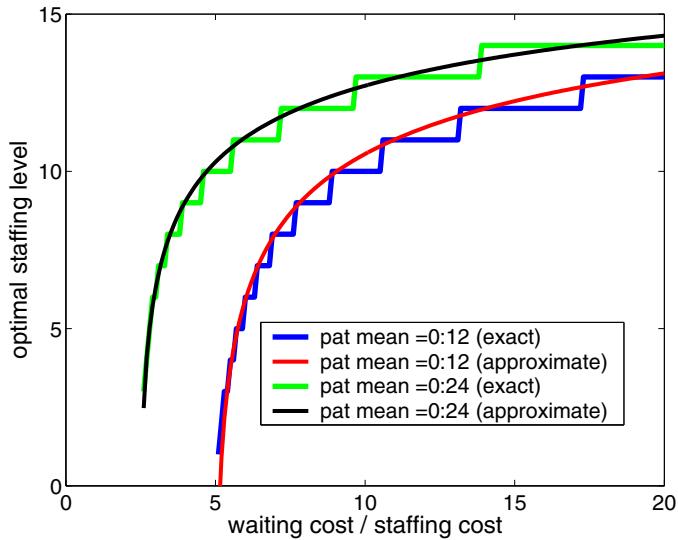
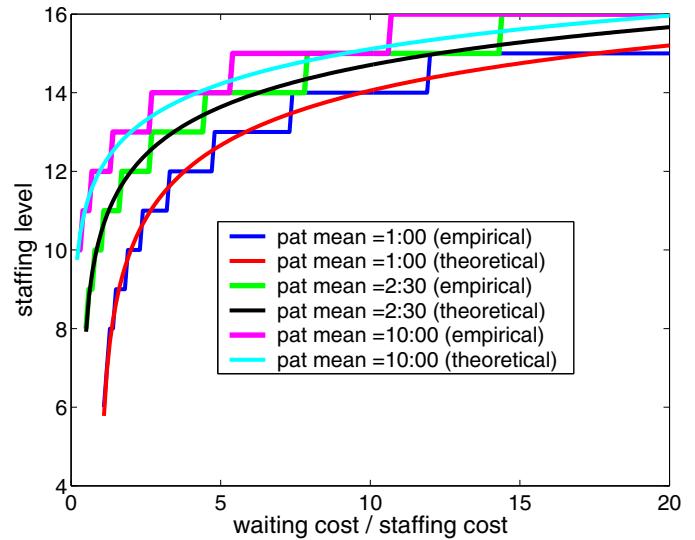
$$\text{Normalized cost} = (\text{cost} - cR)/\sqrt{R};$$

$$\text{Asymptotic cost} = c \cdot y + d \cdot P_w(y; s) \cdot s \cdot [h(ys) - ys],$$

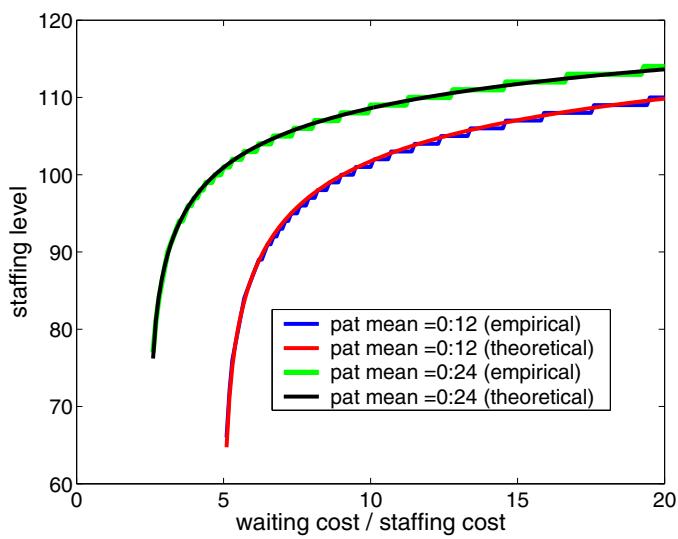
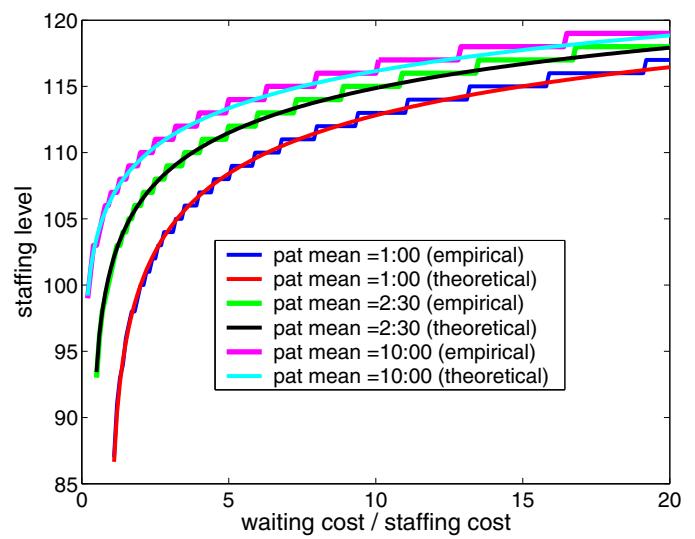
where y = QED service grade.

Erlang-A: Optimal Staffing

$\lambda = 10, \mu = 1$



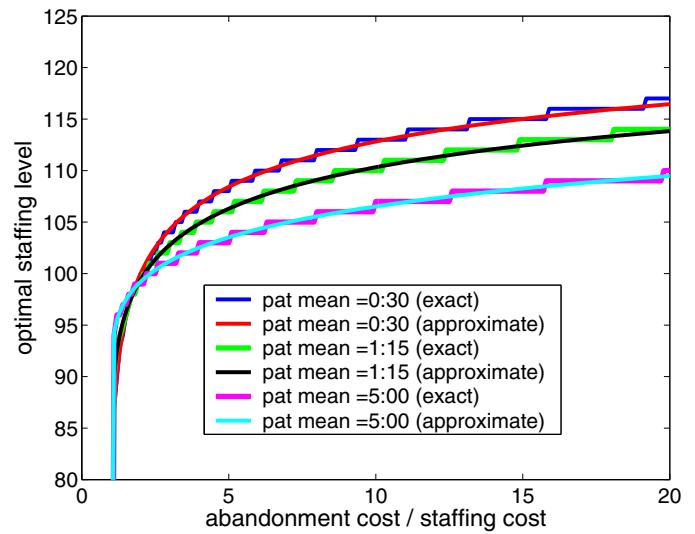
$\lambda = 100, \mu = 1$



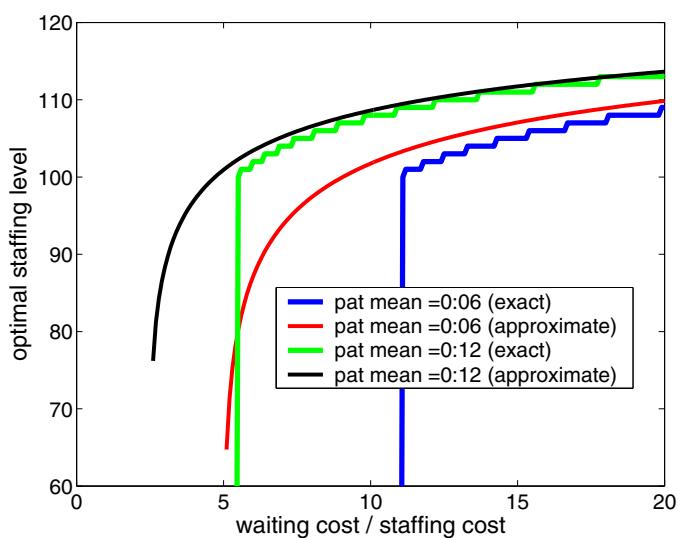
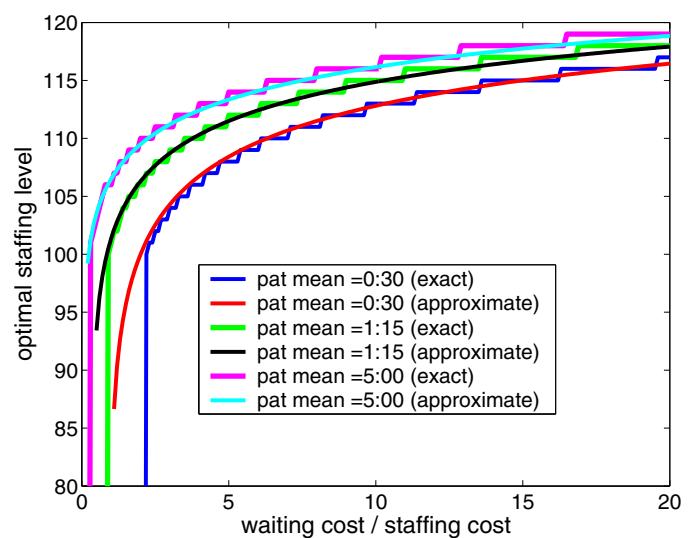
M/M/ $n+G$: Optimal Staffing

Uniformly Distributed Patience.

$$\text{Cost} = c \cdot n + d \cdot \lambda P\{\text{Ab}\}$$



$$\text{Cost} = c \cdot n + d \cdot \lambda E[W_q]$$



The 80-20 Rule: Cost Optimization and Constraint Satisfaction

Prevalent standard:

at least 80% of customers are served within 20 seconds.

Call center: $\lambda = 6000/\text{hr}$, $E[S]=4 \text{ min}$ ($R=400$); $E[\tau]=6 \text{ min}$.

4CallCenters: $n = 394$ agents required $\Rightarrow \beta^* = -0.3$.

According to the graph, $d/c \approx 1$: costs of customers' time and servers' time are nearly equal.

What if $d/c = 5$? $\beta^* = 1 \Rightarrow n^* = 420$;

82.3% served immediately; 98.9% within 20 seconds.

(Comparable Erlang-C: $n^* = 428$, corresponding to $d/c = 10$.)

$$\theta/\mu = 2/3$$

