
Service Engineering

Class 13

QED (QD, ED) Queues

Erlang-A (M/M/n+G) in the QED & ED Regime

• Motivation, via Data & Infinite-Servers;

• QED Erlang-A: Garnett’s Theorem;

• The right answer for the wrong reasons - revisited;

• M/M/n+G: Zeltyn’s Approximations (QD, ED);

• Rules of Thumb;

• Cost Minimization for Erlang-A (with Zeltyn);

• Constraint-Satisfaction; The 80-20 Rule.
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QED Erlang-A: Practical Motivation
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QED Erlang-A: Theoretical Motivation

QED staffing: n ≈ R + β
√
R.

Assume θ = µ, namely “average service-time” = “average (im)patience”.

Recall and Note:

• If θ = µ, the number-in-system of M/M/n+M has the same

distribution of a corresponding M/M/∞ (both are the same

Birth&Death process). Formally, in steady-state:

L(M/M/n+M)
d
= L(M/M/∞).

• The steady-state distribution of M/M/∞ with parameters λ

and µ is Poisson(R), where R = λ/µ (offered-load).

• ForR not too small, Poisson(R) is approximately Normal(R,R).

Formally: L(M/M/∞)
d≈ R+Z

√
R, whereZ is standard

normal.

We now use these facts to estimate the delay-probability for Erlang-

A, in which θ = µ:

P{Wq(M/M/n+M) > 0} PASTA= P{L(M/M/n+M) ≥ n}
θ=µ
= P{L(M/M/∞) ≥ n}

Standardizing L ≈ R+Z
√
R reveals the QED regime, specifically

how square-root staffing yields a non-degenerate delay-probability:

P{Wq > 0} ≈ P

Z ≥ n−R√
R

 ≈ 1− Φ(β) .
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The Erlang-A Queue in the QED-Regime

Theorem (with Garnett & Reiman, 2002)

The following points of view are equivalent:

0. QED: P{Wq > 0} ≈ α, for some 0 < α < 1;

1. Manager: n ≈ R+β
√
R, for some−∞ < β <∞;

2. Servers: Occupancy ≈ 1− β + γ√
n

;

3. Customers: P{Ab} ≈ γ√
n

, for some 0 < γ <∞;

in which case

α = α(β,
µ

θ
) =

1 +

√√√√√θ
µ
· h(β̂)

h(−β)


−1

,

which we call the Garnett Delay-Function(s);

here β̂ ∆= β

√√√√µ
θ

, and

γ = α ·
√√√√√θ
µ
·
[
h(β̂)− β̂

]
.
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Erlang-A: The Garnett Delay-Functions

P{Wq > 0} vs. the QOS parameter β, for varying patience θ/µ.Erlang-A: P{Wait>0}=  vs.    (N=R+ R)
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Note: Erlang-C = limit of Erlang-A, as patience ↑ indefinitely.
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Understanding the Garnett Functions
Erlang-A: P{Wait>0}=  vs.    (N=R+ R)
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GMR(x) describes the asymptotic probability of delay as a function of  when

x . Here,  and µ are the abandonment and service rate, respectively. 

• Fix a staffing-level (service-grade) and let patience ↑: then

delays ↑; in particular, the Garnett functions ↑ to the Halfin-

Whitt function (infinite-patience).

• Fix a target delay-probability (service level): then, as

impatience ↑, less servers (smaller service-grade) are required

to achieve the target ( convincing managers to use Erlang-A ).

• With β = 0 (n = R) and µ = θ, 50% are served immediately.

Compare with Erlang-C in which n = R+0.5
√
R was required.

But there is no free lunch: 2% abandon! (under n = 400)

see next page.
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Erlang-A: % Abandonment

%Ab×
√
n vs. β, for varying (im)patience (θ/µ):
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Note the behavior: slope −β, for (relatively) large negative β and

over all (im)patience levels. For an explanation, think ED:

n = R+ β
√
R = R− γR; hence γ ≈ −β/

√
R ≈ −β/

√
n, and γ

is P{Ab} in the ED-Regime.
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“The Right Answer for the Wrong Reason”
- Revisited

If β = 0, the QED staffing level n ≈ R + β
√
R becomes

n = R =
λ

µ
= λ · E[S],

which is equivalent to the following deterministic rule:

Assign a number of agents that equals the offered load.

(Common in stochastic-ignorant operations.)

Erlang-C: queue “explodes”.

Erlang-A: Assume µ = θ. Then P{Wq = 0} ≈ 50%.

If n = 100, P{Ab} ≈ 4% (twice the value 2% in the graph -

why?), and E[Wq] ≈ 0.04 · E[S] (why?).

Overall, reasonable (good?) service level, which will in fact improve

with scale. For example, with n = 400, both P{Ab} and E[Wq]

reduce to half their value under n = 100 (why?).

(Note: Changes in n go hand in hand with same changes in λ,

assuming µ remains fixed.)

The Effect of Patience:

Suppose now µ = 0.1 · θ (highly impatient customers).

Via the Garnett Functions, suffices n = R −
√
R to achieve

P{Wq = 0} ≈ 50%, but this comes at the cost of somewhat over

10% abandoning, with n = 100 (and 5% with n = 400); though

E[Wq] decreases to one fourth of the above, assuming µ remains

unchanged.
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Erlang-A in the QED Regime:
Operational Performance Measures

P{Wq > 0} ≈
1 +

√√√√√θ
µ
· h(β̂)

h(−β)


−1

, β̂ = β

√√√√µ
θ

E [Wq|Wq > 0] ≈ 1√
n
·
√√√√√ 1

θµ
·
[
h(β̂)− β̂

]

P{Ab} ≈ 1√
n
·
√√√√√θ
µ
·
[
h(β̂)− β̂

]
·
1 +

√√√√√θ
µ
· h(β̂)

h(−β)


−1

P{Ab|Wq > 0} ≈ 1√
n
·
√√√√√θ
µ
·
[
h(β̂)− β̂

]

P


Wq

E[S]
>

t√
n

∣∣∣∣∣∣∣ Wq > 0

 ≈
Φ̄
(
β̂ +

√
θ
µ · t

)

Φ̄(β̂)

P

Ab

∣∣∣∣∣∣∣
Wq

E[S]
>

t√
n

 ≈
1√
n
·
√√√√√θ
µ
·
h

β̂ + t

√√√√√θ
µ

− β̂


E

 Wq

E[S]

∣∣∣∣∣∣∣ Ab
 ≈ 1√

n
· 1

2

√√√√µ
θ
·
 1

h(β̂)− β̂
− β̂


Here

Φ̄(x) = 1− Φ(x) ,

h(x) = φ(x)/Φ̄(x) , hazard rate of N(0, 1).
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M/M/n+G in the QED Regime

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

G

Density of (im)patience G: g = {g(x), x ≥ 0}.

Assume g0
∆= g(0) > 0.

QED regime: n ≈ R + β
√
R.

QED approximations: Use the Erlang-A formulae (from

the previous page), substituting g0 instead of θ.

How to estimate g0? As θ̂ in Erlang-A!

Why? Recall Erlang-A: P{Ab} = θ ·E[Wq] used for estimating

θ (either via θ̂ = [#Abandoning] / [Total Waiting Time]; or by

regression of half-hours’ [%Abandoning] over [Expected-Waits]).

M/M/n+G: It turns out that, in the QED regime:

P{Ab} ≈ g0 · E[Wq] .

Hence, one estimates g0 exactly as θ̂ in Erlang-A.
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Erlang-A: Fitting a Simple Model
to a Complex Reality

Question: Can one usefully apply the Erlang-A model to sys-

tems with non-exponential patience?

YES!

Erlang-A Formulae vs. Data Averages (Israeli Bank)

P{Ab} E[Wq]
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Erlang-A: Fitting a Simple Model
to a Complex Reality II

P{Wq > 0}
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Summary:

• Points: Hourly data (averages) vs. Erlang-A predictions;

• Formulae with continuous n (special-functions) used to ac-

count for non-integer n;

• Patience estimated via P{Ab}/E[Wq];

• Erlang-A estimates provide close upper bounds.
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Fitting Erlang-A Approximations

P{Ab} E[Wq]
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Quality-Driven M/M/n+G (QD)

Density of patience time at the origin: g0 > 0.

Staffing level:

n ≈ R · (1 + δ) , δ > 0 .

• P{Wq > 0} decreases exponentially in n.

• Probability to abandon of delayed customers:

P{Ab|Wq > 0} =
1

n
· 1 + δ

δ
· g0

µ
+ o

1

n

 .
• Average wait of delayed customers:

E[Wq | Wq > 0] =
1

n
· 1 + δ

δ
· 1

µ
+ o

1

n

 .
• Linear relation between P{Ab} and E[Wq]:

P{Ab}
E[Wq]

∼ g0

• Asymptotic distribution of wait:

P


Wq

E(S)
>
t

n

∣∣∣∣∣∣∣ Wq > 0

 ∼ e−(1−ρ)t , ρ =
λ

nµ
.

Comparison with QED: Simpler here, hence worth having.

Often, order 1/n replaces 1/
√
n (though, note conditioning).
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Efficiency-Driven M/M/n+G (ED)

Let γ be a QOS parameter, 0 < γ < 1.

Assume G(x) = γ has a unique solution x∗ = G−1(γ), at which

g(x∗) > 0.

Staffing level:

n ≈ R · (1− γ) , γ > 0 .

• P{Wq > 0} ≈ 1.

• Abandonment-Probability converges to:

P{Ab} ≈ γ ≈ 1− 1
ρ .

• Offered-Wait converges to x∗:

E[V ] ≈ x∗ , V
p→ x∗ .

• Waiting distribution (asymptotically):

Wq
w→ G∗ , E[Wq] → E[min(x∗, τ )] ,

where G∗ is the distribution of min(x∗, τ ), namely

G∗(x) =

 G(x), x ≤ x∗ ;

1, x > x∗ .
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Operational Regimes: Rules-of-Thumb

Assume that the Offered-Load R is not too small (more than

several 10’s for QED, more than 100 for ED and QD).

ED regime: n ≈ R− δR , 0.1 ≤ δ ≤ 0.25 .

• Essentially all customers are delayed;

• %Abandoned ≈ δ (10-25%);

• Average-wait ≈ 30 seconds - 2 minutes.

QD regime: n ≈ R + γR , 0.1 ≤ γ ≤ 0.25 .

Essentially no delays.

QED regime: n ≈ R + β
√
R, −1 ≤ β ≤ 1 .

• %Delayed between 25% and 75%;

• %Abandoned is 1-5%;

• Average wait is one-order less than average service-time (eg.

seconds vs. minutes).
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Operational Regimes: Performance

Assume that offered load R is not small (more than several 10’s

for QED, more than 100 for ED and QD).

ED regime: n ≈ R− δR , 0.1 ≤ δ ≤ 0.25 .

• Essentially all customers are delayed;

• %Abandoned ≈ δ (10-25%);

• Average wait ≈ 30 seconds - 2 minutes.

QD regime: n ≈ R + γR , 0.1 ≤ γ ≤ 0.25 .

Essentially no delays.

QED regime: n ≈ R + β
√
R, −1 ≤ β ≤ 1 .

• %Delayed between 25% and 75%;

• %Abandoned is 1-5%;

• Average wait is one-order less than average service time (sec-

onds vs. minutes).
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Economies of Scale (EOS)

For our purpose:

Economies of Scale (EOS) prevail if load-increase by a factor

m “requires” staffing-increase by less than m.

In what sense “Requires” ?

• Achieve management goal(s) (constraint satisfaction),

or

• Optimize management goal(s) (optimize cost / profit).

Constraint Satisfaction easier to formulate (simpler data) and

solve (hence more prevalent); but, as we saw (recall the 80:20

rule), Performance Optimization is easier to grasp.
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Pooling QD Erlang-A’s

Pool m identical service operations (call centers) with parameters

(λ, µ, n, θ).

Sustain the same QD operational regime, namely staffing levels:

n ≈ R + δR , δ = 0.25 , for concreteness.

Use 4CallCenters to calculate the following:

E[S]=6 min, E[τ ]=9 min

λ/hr n Occupancy P{Ab} E[Wq] P{Wq > 0}
8 1 57.6% 28.0% 2:31 57.6%

32 4 71.5% 10.6% 0:58 42.5%

128 16 78.0% 2.5% 0:14 23.4%

512 64 79.8% 0.2% 0:01 4.9%

2,048 256 80.0% 0.0% 0:00 0.0%

↓ ↓ ↓ ↓ ↓ ↓
∞ ∞ 80% 0% 0:00 0%

Occupancy converges to 1/(1 + δ); here 1/1.25 = 80%.

EOS: Performance Measures improve at an exponential rate.
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Pooling ED Erlang-A’s

n ≈ R− γR , γ = 1/6 .

E[S]=6 min, E[τ ]=9 min

λ/hr n Occupancy P{Ab} E[Wq] P{Wq > 0}
12 1 73.4% 38.8% 3:29 73.4%

48 4 89.8% 25.2% 2:16 75.6%

192 16 97.5% 18.7% 1:41 85.4%

768 64 99.8% 16.8% 1:31 97.2%

3,072 256 100.0% 16.7% 1:30 100.0%

↓ ↓ ↓ ↓ ↓ ↓
∞ ∞ 100% 16.7% 1:30 100%

P{Ab} and E[Wq] converge as is:

P{Ab} → γ; E[Wq]→ γ · E[τ ] .

Thus, in the ED-Regime, there is no EOS for large n.
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Pooling QED Erlang-A’s

n ≈ R + β
√
R , β = 0 .

E[S]=6 min, E[τ ]=9 min

λ/hr n Occupancy P{Ab} E[Wq] P{Wq > 0}
10 1 66.4% 33.6% 3:02 66.4%

40 4 82.4% 17.6% 1:35 60.9%

160 16 91.1% 8.9% 0:48 58.0%

640 64 95.5% 4.5% 0:24 56.5%

2,560 256 97.8% 2.2% 0:12 55.8%

↓ ↓ ↓ ↓ ↓ ↓
∞ ∞ 100% 0% 0:00 55.1%

Delay probability converges to the appropriate Garnett func-

tion:

P{Wq > 0} →
1 +

√√√√√θ
µ
· h(β̂)

h(−β)


−1

=

1 +

√√√√√2

3


−1

≈ 0.551 .

EOS: P{Ab} and E[Wq] improve at the rate of 1/
√
n.
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EOS and Constraint Satisfaction

Assume service and abandonment rates are as in the previous ex-

ample: E[S] = 6 min; E[τ ] = 9 min. Playing with 4CC yields:

ED regime:

“Loose” constraint: P{Ab} ≤ 10%.

R = 100⇒ n = 91; R = 400⇒ n = 361.

Almost no EOS! Use n ≈ 90% ·R (= (1−γ)·R, γ ≈ P{Ab}).

QED regime:

“Moderate” constraint: P{Ab} ≤ 2%.

R = 100⇒ n = 105; R = 400⇒ n = 399.

Saved more than 20 agents: 399 instead of 420 = 4× 105.

β = 0.5 for R = 100, β = −0.05 for R = 400.

Why EOS? With β fixed, P{Ab} ≈ c(β)/
√
n . Thus, n ↑ im-

plies P{Ab} ↓. Consequently, with n ↑, β ↓ in order to achieve a

given P{Ab}

QD regime:

“Strict” constraint: P{Ab} ≤ 0.1%.

R = 100⇒ n = 119; R = 400⇒ n = 432.

More than 45 agents saved: 432 vs. 4×119 = 476.

δ = 0.19 for R = 100, δ = 0.08 for R = 400.

Why EOS? With δ fixed, P{Ab} decreases exponentially in n ,

etc.
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Recall: Cost Minimization in Erlang-C

(With Borst and Reiman, 2004.)

(Equivalently, Profit Maximization, if Revenues proportional to λ.)

Cost = c · n+ d · λE[Wq] ,

c – cost of staffing;

d – cost of delay.

Erlang-C: Optimal staffing level:

n∗ ≈ R + β∗(r)
√
R, r = d/c = delay cost/staffing cost .

β∗(r) = optimal service grade (QOS), independent of λ:

β∗(r) = arg min
0<y<∞

y +
r · Pw(y)

y

 ,
where (recall the Halfin-Whitt function)

Pw(y) =

1 +
y

h(−y)


−1

.

Very good approximation:

β∗(r) ≈
 r

1 + r(
√
π/2− 1)


1/2

, 0 < r < 10,

≈
2 ln

r√
2π

1/2

, r ≥ 10.
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Erlang-A: Staffing via Optimization

(with Zeltyn, 2006)

We study “Minimize Costs (Staffing + Waiting)”. Why?

• Comparison easy against Erlang-C;

• W.L.O.G.: P{Ab} = θ·E[Wq] reduces profit- to cost-optimization.

Specifically, find n∗ that max. average profit per time-unit:

Rs ·λ· [1−Pn{Ab}]− [Cs ·n+Cw ·En[Wq]·λ+Ca ·Pn{Ab}·λ] ,

where Rs is the revenue from a single service. This reduces

to c = Cs and d = (Rs · θ + Cw + Ca · θ) in the following:

Minimize Cost = c · n+ d · λE[Wq] ; here, as before,

c – Staffing Cost ;

d – Delay Cost ;

r = d/c .

Erlang-A. Optimal staffing level:

n∗ ≈ R + β∗(r; s)
√
R, s =

√
µ/θ ,

β∗(r; s) = arg min
−∞≤y<∞

{y + r · Pw(y; s) · s · [h(ys)− ys]} ,

where (recall the Garnnett functions)

Pw(y; s) =

1 +
h(ys)

sh(−y)


−1

.
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Erlang-A: Optimal Service Grade β∗ (QOS)
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• As θ ↓ 0, β∗(r;
√
µ/θ) increases to β∗(r) (Erlang-C = M/M/n).

• r < θ/µ implies that “no-service” (n = 0) is optimal. Why?

d · E[τ ] < c · E[S]: cheaper to let abandon than to serve!

• r ≤ 20 ⇒ β∗ < 2; r ≤ 500 ⇒ β∗ < 3, as in Erlang-C.

• Numerical tests exhibit remarkable accuracy & robustness.
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Erlang-A: Actual Cost vs. Asymptotic Cost

µ = 1, θ = 1/3

 10

    Economics: ⋅  Safety-Staffing 
Cost  = qEWdNc λ⋅+⋅     (costs: c-staffing, d-delay). 
Optimal staffing level: 

( ) RsryRN ⋅+≈ ;** ,              
c
dr =  ,  

θ
µ

=s  . 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−⋅⋅⋅+⋅=
∞<<∞−

ysyshys
y

syP
dycy

y
)(

);(
minarg* .    

 

Numerical tests exhibit remarkable accuracy: 
Actual cost function “coincides” with asymptotic cost. 

 
Normalized staffing level = RRN /)( −  ,   
 

Normalized cost  =  (Cost RcR /)− . 
 

Asymptotic cost:  ])([
);(

ysyshys
y

syP
dyc −⋅⋅⋅+⋅ . 

Normalized staffing level = (n−R)/
√
R;

Normalized cost = (cost− cR)/
√
R;

Asymptotic cost = c · y + d · Pw(y; s) · s · [h(ys)− ys],

where y = QED service grade.
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Erlang-A: Optimal Staffing

λ = 10, µ = 1
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λ = 100, µ = 1
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M/M/n+G: Optimal Staffing

Uniformly Distributed Patience.

Cost = c · n+ d · λP{Ab}
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Cost = c · n+ d · λE[Wq]
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The 80-20 Rule: Cost Optimization and
Constraint Satisfaction

Prevalent standard:

at least 80% of customers are served within 20 seconds.

Call center: λ = 6000/hr, E[S]=4 min (R=400); E[τ ]=6 min.

4CallCenters: n = 394 agents required ⇒ β∗ = −0.3.

According to the graph, d/c ≈ 1: costs of customers’ time and

servers’ time are nearly equal.

What if d/c = 5? β∗ = 1⇒ n∗ = 420;

82.3% served immediately; 98.9% within 20 seconds.

(Comparable Erlang-C: n∗ = 428, corresponding to d/c = 10.)
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