Service Engineering

Class 13

QED (QD, ED) Queues
Erlang-A (M/M/n+G) in the QED & ED Regime

e Motivation, via Data & Infinite-Servers;

e QED Erlang-A: Garnett’s Theorem:;

e The right answer for the wrong reasons - revisited;
e M/M/n+G: Zeltyn’s Approximations (QD, ED);
e Rules of Thumb;

e Cost Minimization for Erlang-A (with Zeltyn);

e Constraint-Satisfaction; The 80-20 Rule.



QED Erlang-A: Practical Motivation

beta

beta

3.0

American data. Beta vs ASA

2.5

2.0 1

15

1.0

0.5

0.0

-0.5 -

-1.0

3.0

60 100

ASA, sec

20 40 80

American data. Beta vs P{ADb}

120

2.5

2.0 1

1.5

1.0

o5 ¢

0.0

.3

-0.5 -

-1.0

¢ IS

0%

1% 2% 3% 4% 5% 6% 7%

probability to abandon, %

8%



QED Erlang-A: Theoretical Motivation

QED staffing: n ~ R+ 8V R.

)

Assume 6 = p, namely “average service-time” = “average (im)patience” .
Recall and Note:

o If 0 = p, the number-in-system of M/M/n+M has the same
distribution of a corresponding M/M /oo (both are the same
Birth&Death process). Formally, in steady-state:
L(M/M/n+M) £ L(M/M/0).

e The steady-state distribution of M/M /oo with parameters A
and p is Poisson(R), where R = A/ (offered-load).

e For R not too small, Poisson(R) is approximately Normal(R,R).
Formally: L(M /M /oo) < R+ Z+/R, where Z is standard

normal.

We now use these facts to estimate the delay-probability for Erlang-
A, in which 8 = u:

PLW,(M/M/nM) > 0} PASTA prooi/nM/miM) > n)

2 P{L(M/M/o0) > n}
Standardizing L ~ R+ Z+v/R reveals the QED regime, specifically
how square-root staffing yields a non-degenerate delay-probability:
n — R}
VR

P{Wq>0}zP{ZZ ~ 1—3(3).



The Erlang-A Queue in the QED -Regime

Theorem (with Garnett & Reiman, 2002)

The following points of view are equivalent:

0. QED: P{W, > 0} = a, for some 0 < o < 1;
1. Manager: n ~ R+5VR, for some —oo < 3 < o0;
2. Servers: Occupancy ~ 1 — g+ 7;
Vn
3. Customers: P{Ab} ~ \;ﬁ’ for some 0 < v < o0;

in which case
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which we call the Garnett Delay-Function(s);
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Erlang-A: The Garnett Delay-Functions

P{W, > 0} vs. the QOS parameter (3, for varying patience 6/ .
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—GMR(5) — GMR(10) GMR(20) —GMR(50) —— GMR(100)

GMR(x) describes the asymptotic probability of delay as a function of f when
0

= X. Here, 0 and p are the abandonment and service rate, respectively.

Note: Erlang-C = limit of Erlang-A . as patience T indefinitely.
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Understanding the (GGarnett Functions
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e Fix a staffing-level (service-grade) and let patience T: then
delays T; in particular, the Garnett functions T to the Halfin-
Whitt function (infinite-patience).

e Fix a target delay-probability (service level): then, as
impatience T, less servers (smaller service-grade) are required
to achieve the target ( convincing managers to use Erlang-A ).

e With =0 (n = R) and p = 6, 50% are served immediately.
Compare with Erlang-C in which n = R+0.5v/R was required.
But there is no free lunch: 2% abandon! (under n = 400)
see next page.



Erlang-A: % Abandonment

% Ab x /n vs. (, for varying (im)patience (6/pu):

P{Abandon} * N
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Note the behavior: slope —(, for (relatively) large negative 5 and
over all (im)patience levels. For an explanation, think ED:
n=R+ VR =R—~R; hence y ~ —f3/VR ~ —3//n, and v
is P{Ab} in the ED-Regime.



“The Right Answer for the Wrong Reason”
- Revisited

If 3 =0, the QED staffing level n ~ R+ 3v/R becomes

n=R=— =\ EY],
[

which is equivalent to the following deterministic rule:
Assign a number of agents that equals the offered load.
(Common in stochastic-ignorant operations.)

Erlang-C: queue “explodes”.

Erlang-A: Assume p = 6. Then P{IW, = 0} ~ 50%.

If n = 100, P{Ab} ~ 4% (twice the value 2% in the graph -
why?), and E[W,] ~ 0.04 - E[S] (why?).

Overall, reasonable (good?) service level, which will in fact improve
with scale. For example, with n = 400, both P{Ab} and E[W,]
reduce to half their value under n = 100 (why?).

(Note: Changes in m go hand in hand with same changes in A,
assuming g remains fixed.)

The Effect of Patience:

Suppose now g = 0.1-6 (highly impatient customers).

Via the Garnett Functions, suffices n = R — V'R to achieve
P{W, = 0} ~ 50%, but this comes at the cost of somewhat over
10% abandoning, with n = 100 (and 5% with n = 400); though
E[W,] decreases to one fourth of the above, assuming p remains
unchanged.



Erlang-A in the QED Regime:
Operational Performance Measures

P{W, > 0} ~ 1+@-h]z(_ﬁﬁ>)] , B:ﬁ@
E[W,|W,> 0] ~ \/15 Hlu-[h@)—ﬁ}
o L[ s 6 hp) |
)~ ol b0 =y
P{Ab|W, > 0} ~ \/1% Z-[h([?)—ﬁ}
W, (Y
P{E[S]>ﬁ Wq>0} 3%

o = e = oo
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M/M/n+G in the QED Regime
agents

_ queue
arrivals /@—>

s N0
abandonment | G

Y7,

A 4

Density of (im)patience G: g = {g(x),z > 0}.
Assume gy £ g(0) > 0.
QED regime: n ~ R+ 5VR.

QED approximations: Use the Erlang-A formulae (from
the previous page), substituting gy instead of 6.

How to estimate go? As 6 in Erlang-A!

Why? Recall Erlang-A: P{Ab} = 0 - E[W,] used for estimating
0 (either via § = [#Abandoning] / [Total Waiting Time]; or by
regression of half-hours’ [Y%0Abandoning] over [Expected-Waits]).

M/M /n+G: It turns out that, in the QED regime:
P{Ab} =~ gy - E[W,] .

Hence, one estimates g exactly as 6 in Erlang-A.
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Erlang-A: Fitting a Simple Model
to a Complex Reality

Question: Can one usefully apply the Erlang-A model to sys-
tems with non-exponential patience?

YES!

Erlang-A Formulae vs. Data Averages (Israeli Bank)
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Erlang-A: Fitting a Simple Model
to a Complex Reality II

P{W, > 0}

=

Probability of wait (data)
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Summary:

e Points: Hourly data (averages) vs. Erlang-A predictions;

e Formulae with continuous n (special-functions) used to ac-
count for non-integer n;

e Patience estimated via P{Ab}/E[W,];

e Erlang-A estimates provide close upper bounds.
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Fitting Erlang-A Approximations
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Quality-Driven M/M/n+G (QD)

Density of patience time at the origin: g9 > 0.
Staffing level:
n=R-(1+6), §>0.

e P{W, > 0} decreases exponentially in n.

e Probability to abandon of delayed customers:

1 146 1
P{ADb[W, > 0} = n'g'iﬁ)”(n)‘

e Average wait of delayed customers:

1 1+0 1 1
E[W, | W, > 0] = n-5.u+o(n).

e Linear relation between P{Ab} and E[W]:

P{Ab}
EW,]

90

e Asymptotic distribution of wait:

P{EVX;P;L

W, > O} ~ et = T

Comparison with QED: Simpler here, hence worth having.
Often, order 1/n replaces 1/4/n (though, note conditioning).
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Efficiency-Driven M/M/n+G (ED)

Let v be a QOS parameter, 0 <~y < 1.
Assume G(z) = v has a unique solution z* = G~1(v), at which
g(x*) > 0.

Staffing level:

n=R-(1-7v), ~v>0.

e P{W, >0} = 1.
e Abandonment-Probability converges to:

P{Ab} ~ v ~ 1-—

L
P
e Offered-Wait converges to z*:
EV] =~ z*, vV Loz,
e Waiting distribution (asymptotically):
w, = G*, EW,] — E[min(z*,7)|,
where G* is the distribution of min(z*, 7), namely

. G(x), x <x*;
G(x) = {1() x>xr.

15



Operational Regimes: Rules-of-Thumb

Assume that the Offered-Load R is not too small (more than
several 10’s for QED, more than 100 for ED and QD).

ED regime: n = R—0R, 0.1 <6<0.25.

e [ssentially all customers are delayed;
e %Abandoned &~ § (10-25%);

e Average-wait ~~ 30 seconds - 2 minutes.

QD regime: n = R+ YR, 0.1 <~ <0.25.
Essentially no delays.
QED regime: n ~ R+ BVR, —1<8<1.

e %Delayed between 25% and 75%;
e %Abandoned is 1-5%:;

e Average wait is one-order less than average service-time (eg.
seconds vs. minutes).
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Operational Regimes: Performance

Assume that offered load R is not small (more than several 10’s
for QED, more than 100 for ED and QD).

ED regime: n = R—0R, 0.1 <6<0.25.

e [ssentially all customers are delayed;
e %Abandoned &~ § (10-25%);

e Average wait ~ 30 seconds - 2 minutes.

QD regime: n = R+ YR, 0.1 <~ <0.25.
Essentially no delays.
QED regime: n ~ R+ BVR, —1<8<1.

e %Delayed between 25% and 75%;
e %Abandoned is 1-5%:;

e Average wait is one-order less than average service time (sec-
onds vs. minutes).
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Economies of Scale (EOS)

For our purpose:

Economies of Scale (EOS) prevail if load-increase by a factor
m “requires’ staffing-increase by less than m.

In what sense “Requires” 7

e Achieve management goal(s) (constraint satisfaction),
or

e Optimize management goal(s) (optimize cost / profit).

Constraint Satisfaction easier to formulate (simpler data) and
solve (hence more prevalent); but, as we saw (recall the 80:20
rule), Performance Optimization is easier to grasp.
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Pooling QD Erlang-A’s

Pool m identical service operations (call centers) with parameters

(A, g, m, 0).
Sustain the same QD operational regime, namely staffing levels:
n ~ R+0R, 0 = 0.25, for concreteness.

Use 4CallCenters to calculate the following:

E[S]=6 min, E[T]=9 min

Ahr | n | Occupancy | P{Ab} | E[W,] | P{W, > 0}
8 1 57.6% 28.0% | 2:31 57.6%
32 4 71.5% 10.6% | 0:58 42.5%
128 | 16 78.0% 2.5% | 0:14 23.4%
512 | 64 79.8% 0.2% | 0:01 4.9%

2,048 1256 |  80.0% 0.0% | 0:00 0.0%
Lol l l l l
00 | 00 80% 0% | 0:00 0%

Occupancy converges to 1/(1+d); here 1/1.25 = 80%.

EOS: Performance Measures improve at an exponential rate.
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Pooling ED Erlang-A’s

n ~ R—vR,

vy=1/6.

E[S]=6 min, E[T]=9 min

Ahr | no | Occupancy | P{Ab} | E[W,] | P{W, > 0}
12 1 73.4% 38.8% | 3:29 73.4%
48 4 89.8% 25.2% | 2:16 75.6%
192 | 16 97.5% 18.7% | 1:41 85.4%
768 | 64 99.8% 16.8% | 1:31 97.2%
3,072 1256 | 100.0% 16.7% | 1:30 100.0%
Lol l l l !
o0 | 00 100% |16.7% | 1:30 100%

P{Ab} and E[W,] converge as is:
EW,] — - Elr].

P{Ab} — 7;

Thus, in the ED-Regime, there is no EOS for large n.
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Pooling QED Erlang-A’s

n~ R+8VR, [=0.

E[S]=6 min, E[T]=9 min

Ahr | n | Occupancy | P{Ab} | E[W,] | P{W, > 0}
10 1 66.4% 33.6% | 3:02 66.4%
40 4 82.4% 17.6% | 1:35 60.9%
160 | 16 91.1% 8.9% | 0:48 58.0%
640 | 64 95.5% 4.5% | 0:24 56.5%

2,560 | 256 | 97.8% 2.2% | 0:12 55.8%

Lol l l l l
oo | oo | 100% 0% | 0:00 | 55.1%

Delay probability converges to the appropriate Garnett func-

o hp | o]
1+\J;h(_ﬁ)] = 1—|—\J;] ~ (0.551.

EOS: P{Ab} and E[W,| improve at the rate of 1//n.

tion:

P{W, >0} —

21



EOS and Constraint Satisfaction

Assume service and abandonment rates are as in the previous ex-
ample: E[S] = 6 min; E[r] = 9 min. Playing with 4CC yields:

ED regime:

“Loose” constraint: P{Ab} < 10%.

R =100 = n = 91; R =400 = n = 361.

Almost no EOS! Use n = 90% - R (= (1—7)-R, v~ P{Ab}).
QED regime:

“Moderate” constraint: P{Ab} < 2%.

R =100 = n = 105; R =400 = n = 399.

Saved more than 20 agents: 399 instead of 420 = 4 x 105.
B=0.5for R=100, 8= —0.05for R = 400.

Why EOS? With § fixed, P{Ab} ~ ¢(8)/+/n. Thus, n T im-
plies P{Ab} |. Consequently, with n T, 8 | in order to achieve a
given P{Ab}

QD regime:
“Strict” constraint: P{Ab} < 0.1%.
R=100= n = 119: R =400 = n = 432.

More than 45 agents saved: 432 vs. 4x119 = 476.

0 = 0.19 for R =100, ¢ = 0.08 for R = 400.

Why EOS? With ¢ fixed, P{Ab} decreases exponentially in n
ete.
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Recall: Cost Minimization in Erlang-C

(With Borst and Reiman, 2004.)

(Equivalently, Profit Maximization, if Revenues proportional to \.)

Cost = c-n+d-AE[W,],
c — cost of staffing;
d — cost of delay.

Erlang-C: Optimal staffing level:
n* ~ R+ (*(r)VR, r = d/c = delay cost/staffing cost .

3*(r) = optimal service grade (QOS), independent of A:

<y<oo

* : TPw<y>
() = arg i fy+ T

where (recall the Halfin-Whitt function)

Pu(y) = {H J ]1.

Very good approximation:

1/2
-
“(r) =~ ., 0<r<10,
Frir) L+r(/r/2 — 1))
o\ 1/2
~ (2Iln ) : r > 10.
V2o o
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Erlang-A: Staffing via Optimization

(with Zeltyn, 2006)

We study “Minimize Costs (Staffing + Waiting)”. Why?

e Comparison easy against Erlang-C;

o W.L.O.G.: P{Ab} = 0-E[W,] reduces profit- to cost-optimization.
Specifically, find n* that max. average profit per time-unit:

Ry A-[L—Po{AbY] — [Cy-n+Coy - En[W,]- A+ Cy-Po{Ab}- ]

where R is the revenue from a single service. This reduces

to c=Cs and d= (Rs-0+ Cy+ C,-0) in the following:
Minimize Cost = c-n + d - AE[W,]; here, as before,
c — Staffing Cost ;
d — Delay Cost ;
r=djc.

Erlang-A. Optimal staffing level:
n* ~ R+ (*(r;s)VR, s=\u/l

B(r;s) = arg min {y+r- Py(y;s)-s-[h(ys) —ys|},

—00<y<0o0

where (recall the Garnnett functions)

il

Pu(y:s) = {1 +

24



Erlang-A: Optimal Service Grade 3* (QOS)

*

optimal service grade 8

waiting cost / staffing cost

o Asf | 0, B*(r; m) increases to 3*(r) (Erlang-C=M/M/n).

e 1 < 6/p implies that “no-service” (n = 0) is optimal. ~ Why?
d- E|r] < c¢- E|[S]: cheaper to let abandon than to serve!

o r <20 = [*<2; r<500 = B*<3 asin Erlang-C.

e Numerical tests exhibit remarkable accuracy & robustness.
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Erlang-A: Actual Cost vs. Asymptotic Cost

p=16=1/3

10 ; .
= R=30 Erlangs
= R=100 Erlangs
8 = R=300 Erlangs ||
= R=1000 Erlangs
k7 asymptotic cost
e
O
O
N
£ 4f
o
-
2_
% 2 0 2 4

normalized staffing level

Normalized staffing level = (n — R)/V/R;
Normalized cost = (cost — cR)/vV/'R;
Asymptotic cost = ¢ -y +d - Py(y;s) - s - [h(ys) — ys],

where y = QED service grade.
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optimal staffing level

staffing level

Erlang-A: Optimal Staffing
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staffing level
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optimal staffing level

optimal staffing level

M/M/n+G: Optimal Staffing

Uniformly Distributed Patience.
Cost = c-n+d-AP{Ab}
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The 80-20 Rule: Cost Optimization and
Constraint Satisfaction

Prevalent standard:

at least 80% of customers are served within 20 seconds.

Call center: A\ = 6000/hr, E[S]=4 min (R=400); E[7]=6 min.
4CallCenters: n = 394 agents required = * = —0.3.

According to the graph, d/c = 1: costs of customers’ time and
servers’ time are nearly equal.

What if d/c = 57 (* =1 = n* = 420;
82.3% served immediately; 98.9% within 20 seconds.
(Comparable Erlang-C: n* = 428, corresponding to d/c = 10.)

0/n=2/3

TWo———— 71— T

optimal Quality—of-Service B*

waiting cost / staffing cost
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