
Course Review: Introductory Part.

• Introduction to Services and Queues (Service Nets = Queueing Nets)

Our Service Economy.

Tele-Services (Telephone, Internet, email, Fax, Chat).

Queues in service systems are here to stay (at least for a while).

Operational Queues: Perpetual, Predictable, Stochastic.

• Measurements: The First Prerequisite

Transaction-based (time-based) measurements.

Face-to-Face, Telephone, Transportation, Internet, Administrative Services.

Scenario Analysis (vs. Simulation or Analytical Models): very typical or rare event.

• Models: The Second Prerequisite

Empirical Models: data-based; simple yet possibly far-reaching.

The Skeptic (Flanders).

vs. The Believer/Practitioner (Larson, our class).

• The Fluid View; A Deterministic Service-Station

Averaging over many (similar enough) scenarios.

Capacity/Bottleneck analysis (via spreadsheet,LP).

Utilization Profiles for resources.

Inventory Buildup Diagrams (via “National Cranberry” HBS case).

• The Processing Network Paradigm

TQM (80’s), continued by BPR (90’) = Business Process ReEngineering.

Dynamic Stochastic Project/Processing Networks (DSP-nets = DS-PERTs).

Applications: Arrest-to-Arraignment, Israeli Electric Company, Multi-Project Manage-
ment;

Y Operational Q’s: scarce resources; synchronization/coordination gaps, design con-
straints.

Q1: Can we do it? via Bottleneck Analysis ↔ the fluid view.

Q2: How long will it take? typically via stochastic networks.

Q3: Can we do better? via parametric/sensitivity/what-if analysis.

Q4: How much better? via optimality/approximation analysis.

• Towards modelling a Stochastic Service Station: the main building blocks

Arrivals’ epochs: Poisson = the model for completely random arrivals.

Service durations: within the Phase-type framework.

Customers’ patience
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Service Engineering

Class 6 (04/03/2008)

Modeling Arrivals to a Service Station:

The Poisson Process, and Relatives.

• Empirical Introduction, via DataMOCCA.

• The Poisson Process: 4 Definitions, Properties.

– PASTA = Poisson Arrivals See Time Averages.

– Biased Sampling.

• Animation: from Bernoulli to Poisson, or

The Law of Rare Events.

• Non-homogeneous Poisson Processes.

• Testing: Poisson or not Poisson.

• Modeling Arrivals to a Service Station.

• Forecasting of the Arrival Rate.

• Poisson Alternatives: eg. Internet Applications (Heavy

Tails, Long-Range Dependence).

• On Limits Theorems in Probability: SLLN, CLT,

Rare Events.
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Arrivals to a Call Center (Israel, 1999): Time Scales
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Arrivals to a Call Center (U.S., 1976): Queueing ScienceQueueing Science:
Arrival to a Call Center in 1976

 

Arrival Process, in 1976 
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Queueing Science:
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Monthly Arrivals to Service

U.S. Bank: Daily Arrival-Rates, over a Month, 2002
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Daily Arrivals to Service: Time-Inhomogeneous (Poisson?)

Intraday Arrival-Rates (per hour) to Call Centers

December 1995 (700 U.S. Helpdesks)

Dec 1995!

(Help Desk Institute)

Time
24 hrs

% Arrivals

May 1959 (England)

May 1959!

Arrival
Rate

Time
24 hrs

November 1999 (Israel)

Arrival Process: Time Scales 
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Arrivals to queue
 September 2001
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Arrivals to queue
 September 2001
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USBank Arrivals to queue
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USBank Arrivals to queue
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USBank Arrivals to queue
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Arrivals to queue
 September 2001
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Arrivals to queue
 September 2001
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Arrivals to an Emergency Department (ED)

Large Israeli ED, 2006

HomeHospital Patients Arrivals to ED Department
Week days
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Second peak at 19:00 (vs. 15:00 in call centers).

How much stochastic variability ?
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Arrivals to ED: Environment Dependence

Large Israeli ED, 2005-6

HomeHospital Patients Arrivals to ED Department
Week days

0.00

2.50

5.00

7.50

10.00

12.50

15.00

17.50

20.00

22.50

25.00

27.50

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time (Resolution 60 min.)

A
ve

ra
ge

 n
um

be
r o

f c
as

es

Apr-05 May-05 Jun-05 Jul-05 Aug-05 Sep-05 Oct-05 Nov-05 Dec-05

Jan-06 Feb-06 Mar-06 Apr-06 May-06 Jun-06 Jul-06 Aug-06 Sep-06

45



Arrivals to ED: Environment Dependence

Number of Arrivals

7

HomeHospital Patients Arrivals to ED Department
All days
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Predicting Emergency Department Status
Houyuan Jiang‡, Lam Phuong Lam†, Bowie Owens†, David Sier† and Mark Westcott†

† CSIRO Mathematical and Information Sciences, Private Bag 10,
South Clayton MDC, Victoria 3169, Australia

‡ The Judge Institute of Management, University of Cambridge,
Trumpington Street, Cambridge CB2 1AG, UK

Abstract
Many acute hospitals in Australia experience frequent episodes of ambulance bypass.
An important part of managing bypass is the ability to determine the likelihood of it
occurring in the near future.

We describe the implementation of a computer program designed to forecast the
likelihood of bypass. The forecasting system is designed to be used in an Emergency
Department. In such an operational environment, the focus of the clinicians is on
treating patients, there is no time carry out any analysis of the historical data to be used
for forecasting, or to determine and apply an appropriate smoothing method.

The method is designed to automate the short term prediction of patient arrivals. It
uses a multi-stage data aggregation scheme to deal with problems that may arise from
limited arrival observations, an analysis phase to determine the existence of trends and
seasonality, and an optimisation phase to determine the most appropriate smoothing
method and the optimal parameters for this method.

The arrival forecasts for future time periods are used in conjunction with a simple
demand modelling method based on a revised stationary independent period by period
approximation queueing algorithm to determine the staff levels needed to service the
likely arrivals and then determines a probability of bypass based on a comparison of
required and available resources.

1 Introduction
This paper describes a system designed to be part of the process for managing Emergency Depart-
ment (ED) bypass. An ED is on bypass when it has to turn away ambulances, typically because all
cubicles are full and there is no opportunity to move patients to other beds in the hospital, or because
the clinicians on duty are fully occupied dealing with critical patients who require individual care.

Bypass management is part of the more general bed management and admission–discharge
procedures in a hospital. However, a very important part of determining the likelihood of bypass
occurring in the near future, typically the next 1, 4 or 8 hours, is the ability to predict the probable
patient arrivals, and then, given the current workload and staff levels, the probability that there will
be sufficient resources to deal with these arrivals.

Here, we consider the implementation of a multi-stage forecasting method [1] to predict patient
arrivals, and a demand management queueing method [2], to assess the likelihood of ED bypass.

The prototype computer program implementing the method has been designed to run on a hospital
intranet and to extract patient arrival data from hospital patient admission and ED databases.
The program incorporates a range of exponential smoothing procedures. A user can specify the
particular smoothing procedure for a data set or to configure the program to automatically determine
the best procedure from those available and then use that method.

For the results presented here, we configured the program to automatically find the best smoothing
method since this is the way it is likely to be used in an ED where the staff are more concerned
with treating patients than configuring forecast smoothing parameters.
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Figure 1: Hourly patient arrivals, June 2001 to July 2002

For the optimisation we assume no a priori knowledge of the patient arrival patterns. The process
involves simply fitting each of the nine different methods listed in Table 1 to the data, using the mean
square fitting error, calculated using (3), as the objective function. The smoothing parameters for
each method are all in (0, 1) and the parameter solution space is defined by a set of values obtained
from an appropriately fine uniform discretization of this interval. The optimal values for each
method are then obtained from a search of all possible combinations of the parameter values.



From the data aggregated at a daily level, repeat the procedure to extract data for each
hour of the day to form 24 time series (12am–1am, 1am–2am, . . ., 11pm–12am). Apply the
selected smoothing method, or the optimisation algorithm, to each time series and generate
forecasting data for those future times of day within the requested forecast horizon. The
forecast data generated for each time of day are scaled uniformly in each day in order to
match the forecasts generated from the previously scaled daily data.

Output: Display the historical and forecasted data for each of the sets of aggregated observations
constructed during the initialisation phase.

The generalisation of these stages is straightforward. For example, if the data was aggregated to a
four-weekly (monthly) level, then the first scaling step would be to extract the observations from
the weekly data to form four time series, corresponding to the first, second, third and fourth week
of each month. Historical data at timescales of less than one day are scaled to the daily forecasts.
For example, observations at a half-hourly timescale are used to form 48 time series for scaling to
the day forecasts.

4.3 Output from the multi-stage method
Figures 2 and 3 show some of the results obtained from using the multi-stage forecasting method to
predict ED arrivals using the 60 weeks of patient arrival data described in Section3. The forecasted
data were generated from an optimisation that used the multi-stage forecasting method to minimise
the residuals of (3) across all the smoothing methods in Table 1.
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Figure 2: Hourly historical and forecasted data 25/7/2002–31/7/2002
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Arrival Patterns, Israeli Telecom, 2005 
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Mondays (Busiest) and Thursdays (Lightest), 2005 
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Mondays, 2004-5 (Averages) 
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Mondays, 2005 (Individual Days) 
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Forecast Performance: Example

US Bank: Forecast Performance

(Weinberg, Brown, Stroud, 2005)
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Figure 5: Forecast performance for the week of August 8, 2003. Left: One-day-ahead forecast

means and 95% intervals for the rates and counts. Points denote the observed counts. Center:

Forecast residuals (observed counts minus forecast mean). Right: Probability integral transform

for the observed counts based on the Monte Carlo samples.
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Figure 5: Forecast performance for the week of August 8, 2003. Left: One-day-ahead forecast

means and 95% intervals for the rates and counts. Points denote the observed counts. Center:

Forecast residuals (observed counts minus forecast mean). Right: Probability integral transform

for the observed counts based on the Monte Carlo samples.
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Wider confidence intervals for number of calls.

Narrower confidence intervals for arrival rate

(Poisson parameter).

Note: staffing models require an arrival rate as

input.
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Within-Day Updating

Comparison between Day-Ahead and

Within-Day Predictions

(Weinberg, Brown, Stroud, 2005)

Predicted Rates for Tuesday 09/02/03
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Figure 7: Forecasts of the Poisson rates and call volumes on September 2 using three different

information sets. Top Left: Forecast mean and 95% intervals for the Poisson rates between 12:05pm

and 9:05pm. Top Right: Forecast mean and 95% intervals for the call volumes between 12:05pm and

9:05pm. Bottom Left: Forecast densities for the Poisson rate at 2:00pm. Bottom Right: Forecast

densities for the call volume at 2:00pm. Arrow indicates the actual observation.
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Conclusion: Morning information is important but

no significant difference between 10am and 12am.
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THE BEST LINEAR UNBIASED ESTIMATOR FOR
CONTINUATION OF A FUNCTION

By Yair Goldberg∗, Ya’acov Ritov∗ and Avishai Mandelbaum†

The Hebrew University∗ and Technion-Israel Institute of Technology†

We show how to construct the best linear unbiased predictor (BLUP)
for the continuation of a curve in a spline-function model. We assume
that the entire curve is drawn from some smooth random process and
that the curve is given up to some cut point. We demonstrate how
to compute the BLUP efficiently. Confidence bands for the BLUP
are discussed. Finally, we apply the proposed BLUP to real-world
call center data. Specifically, we forecast the continuation of both the
call arrival counts and the workload process at the call center of a
commercial bank.

1. Introduction. Many data sets consist of a finite number of multi-
dimensional observations, where each of these observations is sampled from
some underlying smoothed curve. In such cases it can be advantageous to
address the observations as functional data rather than as multiple series of
data points. This approach was found useful, for example, in noise reduction,
missing data handling, and in producing robust estimations (see the books
Ramsay and Silverman, 2002, 2005, for a comprehensive treatment of func-
tional data analysis). In this work we consider the problem of forecasting
the continuation of a curve using functional data techniques.

The problem we consider here is relevant to longitudinal data sets, in
which each observation consists of a series of measurements over time that
describe an underlying curve. Examples of such curves are growth curves of
different individuals and arrival rates of calls to a call center or of patients
to an emergency room during different days. We assume that such curves,
or measurement series that approximate these curves, were collected previ-
ously. We would like to estimate the continuation of a new curve given its
beginning, using the behavior of the previously collected curves.

Although each observation consists of a finite number of points, the ob-
servation can be thought of as a smooth function. This dual representation
leads to two different approaches when attempting to solve the prediction
problem. In the discrete approach, each observation is a longitudinal vector
of length p+ q. We are interested in the prediction of the last q-length part

Keywords and phrases: functional data analysis, best linear unbiased predictor, call
center data, B-splines
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16 GOLDBERG ET AL.

Fig 1. Arrival count in five-minutes resolution for six successive weeks, grouped according
to weekday (Friday was omitted due to space constraints). There is a clear difference
between workdays, Saturdays, and Sundays. For the working days, it seems that there is
some common pattern. Between 7 AM and 10 AM the call count rises sharply to its peak.
Then it decreases gradually until 4 PM. From 4 PM to 5 PM there is a rapid decrease
followed by a more gradual decrease from 5 PM until 12 AM. The call counts are smaller
for Saturday and much smaller for Sunday. Note also that the main activity hours for
weekends are 8 AM to 5 PM, as expected.

compare our results to the mean of the preceding days, from 12 PM on.
For a detailed description of the first example’s data, the reader is referred

to Weinberg, Brown and Stroud (2007), Section 2. For an explanation of
how the second example’s workload process was computed, the reader is
referred to Reich (2010). The data for the third example was extracted
using SEEStat, which is a software written at the Technion SEELab1. We
refer the reader to Donin et al. (2006) for a detailed description of the U.S.
commercial bank call-center data from which the data for all three examples
was extracted. The U.S. bank call-center data is publicly downloaded from
SEESLab server1.

5.3. Forecast implementation. The forecast was performed by Matlab
implementation of the BLUP algorithm from Section 3, where we enable
regularization as in (9). For the implementation we used the functional data

1SEELab: The Technion Laboratory for Service Enterprise Engineering. Webpage:
http://ie.technion.ac.il/Labs/Serveng
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THE BLUP FOR CONTINUATION OF A FUNCTION 19

Note that the direct workload forecast results are slightly better than the
indirect workload forecast in most of the categories. Also note that in almost
all categories, there is an improvement in the 10 AM and 12 PM forecasts
over the forecast based solely on past days. The RMSE mean decreases by
about 11% (9%) for the 10 AM forecast, and by 15% (12%) for the 12 PM
forecast for the direct (indirect) forecast. Figure 3 presents a visual com-
parison between the direct and the indirect forecast methods on a specific
day. The two forecasts look roughly the same, which is also true for all other
days in this data set.

While in this example there is no significant difference between the direct
and indirect workload forecasts, we expect these methods to obtain different
forecasts when the arrival rate changes during an average service time. This

Fig 2. Forecasting results for the week following Labor Day (Sept. 2-5, 2003) for the
call arrival process of the first example. Labor Day itself (Monday) does not appear since
holiday data is not included in the data set. The black dots represent the true call counts
in five-minutes resolution. The forecasts based on previous days, 10 AM data, and 12 PM
data are represented by the blue, red, and green lines, respectively.
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THE BLUP FOR CONTINUATION OF A FUNCTION 21

Fig 3. Workload forecasting for Friday, September 5, 2003, using both the direct and the
indirect methods. The black curve represents the workload process estimated after observing
the data gathered throughout the day. The blue and red curves represents the workload
forecasts for the indirect and direct forecasts, respectively, given data up to 12 PM.

variance does not change drastically (see Figure 1).

5.7. Confidence bands. Following Weinberg, Brown and Stroud (2007),
we introduce the 95% confidence band coverage (COVER) and the average
95% confidence band width (WIDTH). Specifically, for each day j, let

COV ERj =
1
K

K∑
k=1

I (FL,jk < Njk < FU,jk) ; WIDTHj =
1
K

K∑
k=1

(FU,jk − FL,jk) ,

Example 3 RMSE APE
Day ahead 10 AM 12 PM Day ahead 10 AM 12 PM

Minimum 3.66 3.62 3.92 4.47 4.33 4.60
Q1 5.37 5.63 5.05 5.57 5.41 5.64

Median 6.80 7.01 6.87 6.71 6.84 6.31
Mean 7.64 7.19 6.97 7.23 7.10 6.97

Q3 9.01 8.97 8.59 8.83 8.16 7.44
Maximum 16.12 11.84 11.13 12.17 11.80 12.46

Table 3. Summary of statistics (minimum, lower quartile (Q1), median, mean, upper
quartile (Q3), maximum) of RMSE and APE for the forecast based on the mean of the
previous days and the BLUP, using 10 AM and 12 PM cuts for the weekends data set.
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22 GOLDBERG ET AL.

where (FL,jk, FU,jk) is the confidence band of day j, evaluated at the begin-
ning of the k-th interval (see (16)). The mean coverage and mean width, for
all three examples, are presented in Table 4. First, note that for all three
examples, the width of the confidence band narrows down as more informa-
tion is revealed. In other words, the width of the confidence band for the
12 PM forecast is narrower than the width for the 10 AM forecast which,
in turn, is narrower than the width for the pervious days’ mean. We also
see that the mean coverage becomes more accurate as more information is
revealed. Figure 4 depicts the confidence bands for the arrival process on
a particular Sunday. Note that the confidence bands for the previous days’
forecast and the 10 AM forecast almost coincide. However, at 12 PM, when
enough information on this particular day becomes available, the confidence
band narrows down and does capture the underlying behavior.

Fig 4. Confidence bands for Sunday, August 10, 2003. The black dots represent the true call
counts in fifteen-minutes resolution. The confidence bands based on previous days, 10 AM
data, and 12 PM data are represented by the blue, red, and green lines, respectively.

Coverage Width
Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

Mean 93.19% 91.69% 98.15% 79.73 62.80 40.15
10 AM 94.14% 92.27% 98.64% 74.99 56.45 39.53
12 PM 94.86% 93.08% 96.49% 73.07 55.95 31.40

Table 4. The mean confidence band coverage and the mean width for the forecasts based
on the previous days’ mean, the 10 AM cut and the 12 PM cut for the arrival process on
the working days data set (Example 1), the workload process on the working days data set
(Example 2) and the arrival process on the weekends data set (Example 3).
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Recall: 4 Constructions
of the Poisson Process

Interarrival times: Exponential iid; for Simulations.

Probability-of-arrival during small intervals:

Counting & Levy (stationary independent increments),

with the properties:

P{ A(t + dt)− A(t) = 1} = λdt + o(dt),
{ = 0} = 1− λdt + o(dt),
{ ≥ 2} = o(dt).

Axiomatic: Counting & Levy suffices!

(But up to λ).

Intuitive: from Bernoulli to Poisson

(The Law of Rare Events).
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Intuitive Construction (Animation):
from Bernoulli to Poisson

Model for “completely random” arrivals, over the time

interval [0, T ], at rate λ:

- Large number of customers n, each one calling during

[0, T ], with a small probability pn ≈ λT
n (rate λ).

- Times of calls uniformly distributed over [0, T ].

- Then: number of calls A(T ) d= Bin(n, pn).

- Note: npn → λT , as n →∞.

- By Law of Rare Events: A(T ) ⇒ Poiss(λT ).

Simulation Examples (Mathlab)

n = 10000, pn = 0.01 n = 100000, pn = 0.001
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Hall, Chapter 3: The Arrival Process N = {N(t), t ≥ 0}
§3.1 Definition 3.2 requires too much. As discussed, Levy + counting ⇒

∃λ > 0 3 N(t)−N(s) ∼ Poisson [λ(t− s)].

In particular,

P{ N(t + dt)−N(t) = 1} = λdt + o(t)
{ = 0} = 1− λdt + o(t).
{ > 1} = o(t)

§3.2 Derivation of the Poisson distribution from Bernoulli.

§3.3 Properties of the Poisson Process.

1. Poisson marginals; number of events in any interval is Poisson;

ENt = λt , Var Nt = λt

⇒ C =
σ

E
=

√
λt

λt
=

1√
λt

small for t large.

2. Interarrival times which are iid exp (λ).

Beginning of proof: P (T1 ≥ t) = P (Nt = 0) = e−λt, t ≥ 0.

This is a characterizing property that is practical for simulation.

Extensions to T2, T3, . . . , and their independence, if rigorous, requires more
than the “it should be apparent” in Hall, pg. 58.

3. Memoryless property: time till next event does not depend on the elapsed time
since the last event.

4. Sn = T1 + · · ·+ Tn ∼ Gamma (n, λ) = Erlang.

5. Order-statistics property: Given N(t) = n, the unordered event times are
distributed as n iid r.v., uniformly distributed on [0, t].

⇒ simulation over [0, t] : N(t) ∼ Poisson (λt); U1, U2, . . . , UN(t) iid U [0, t] .

§3.4 Goodness of Fit

How well does a Poisson model fit our arrival process?

Qualitative assessments:

Airplanes landing times at a single runway, during an hour: no
Airplanes landing times at a large airport, during an hour: plausible
Job candidates that arrive at their appointments during an hour: no
Visits to a zoo, most of which arrive in groups, during an hour: no
Arrival times at a bank ATM = Automatic Teller Machine,

during an hour: plausible
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§3.5 Quantitative Tests

Graphical Tests:

cumulative arrivals vs. a straight line (Fig. 3.2)

paired successive interarrivals (Fig. 3.4)

exponential interarrivals
(How do you identify exp (·) when you see one? Use Histograms!)

§3.6 Parameter Estimation

Estimate λ = arrival rate.

MLE (Max. Likelihood Estimator), given A(t), t ≤ T : λ̂ = A(T )
T

.

Confidence intervals for 1
λ

: T
A(T )

± zα
T

A(T )3/2 (3.34)

Sample-size: for (1− α)-confidence interval of width w, N ≥ [2zα

wλ
]2.

Thus, for w = ε · 1
λ
, we need N ≥ [2zα

ε
]2.

(Eg.: 95%-confidence interval of width = 10% of mean, requires N ≥ [2×1.96
0.1

]2 ≈
1500!)
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Time-Inhomogeneous
Poisson Process

Counting process with independent increments:

P{ A(t + dt)− A(t) = 1} = λ(t)dt + o(dt),
{ = 0} = 1− λ(t)dt + o(dt),
{ > 1} = o(dt).

Main Property:

Poisson number of arrivals over intervals:

A(T2)− A(T1)
d= Poiss

(∫ T2
T1

λ(s)ds
)

.

Construction from time-homogeneous:

(Time-Change in Stochastic Processes; Thinning here)

Data: Arrival rate λ(t), 0 ≤ t ≤ T .

Let λmax = maxt∈[0,T ] λ(t).

1. Simulate a homogeneous Poisson(λmax) process.

2.Thinning. For each arrival Si generate Ui
d= U(0, 1).

Let pi = λ(Si)/λmax.

Ui ≤ pi, accept arrival;
Ui > pi, reject arrival.
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Arrivals to a Call Center:
How to Model?

Arrivals to call center 
 July 2005
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31.07.2005 Private

• Arrivals over the day are not time-homogeneous.

• Arrivals over small intervals (15, 30, 60 min) are

close to time-homogeneous Poisson.

• Arrivals over the day are non-homogeneous Poisson.

Practically: Test (Brown), then model, as a Poisson

process with piecewise-constant arrival rates.

How to predict/forecast arrival rates?
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Arrivals to a Call Center:
Variability of the Arrival Rates

Number of Calls at a U.S. bank.

Mondays. March 2002-August 2002.
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25 Mondays overall.

- 13:00-13:30: 25 observations, range: 2,500-3,2000;

Sample Mean=2,842, BUT Sample Variance=24,539!

- 17:00-17:30: Mean=1,705, Variance=10,356.

Conclude: Number of calls during “similar” in-

tervals not i.i.d Poisson: over-dispersion.
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A Test for Inhomogeneous Poisson Process

1. Break up the interval of a day into short blocks of time, say I

(equal-length) blocks of length L.

2. Let Ti0 = 0 and
Tij : the j-th ordered arrival time in the i-th block, i = 1, . . . , I

and j = 1, ..., J(i),
then define

Rij = (J(i) + 1 − j)
(
− log

(
L − Tij

L − Ti,j−1

))
.

3. Under the null hypothesis that the arrival rate is constant
within each given time interval, the {Rij} will be independent
standard exponential variables.

4. Use any customary test for the exponential distribution; for
example, Kolmogorov-Smirnov test.
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Figure 3: Exponential (λ=1) Quantile plot for {Rij} from Regular
calls (11:12am – 11:18am)
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L = 6 min, n = 420, Kolmogorov-Smirnov statistic K = 0.0316 and
the P-value is 0.2.
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Forecasting Problem: Setup

Days are divided into time intervals, with an assumed

constant arrival rate over an interval.

Practice: 15 min, 30 min, 1 hour.

Njk = # of arrivals, during time-interval k, on day j.

Assume J days overall, with K intervals per day.

• One-day-ahead prediction:

N1·, . . . , Nj−1,· known. Predict Nj1, . . . , NjK.

• Several days (weeks) ahead prediction.

• Within-day prediction.

N1·, . . . , Nj−1,·, Nj1, . . . , Nj,k−1 known.

Predict Njk, . . . , NjK.

Practice: Do all the above, via nested rolling horizon

(Weekly, Daily, Hourly).
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Forecasting: Simple Methods

Most recent observation.

Fjk = most recent “similar” call volume.

Example: Fjk = Nj−7,k (previous week).

Moving average.

Average of several (not too many) recent “similar” call

volumes.

Most Recent, plus Yesterday’s Correction.

Example: Factor accounting for a “busy yesterday”.

What about sophisticated forecasting methods?

Active research.

Here, we shall compare the performance of simple meth-

ods against (given results of) sophisticated methods.
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Forecasting: Goodness-of-Fit

Njk – number of calls (day j, interval k);

Fjk – forecast.

Two ways to quantify forecasting accuracy:

1. Root Mean-Square Error (RMSE)

For each day j, calculate:

RMSEj =

√√√√√√ 1

K

K∑
k=1

(Njk − Fjk)2 .

RMSE =
J∑

j=1

RMSEj

J
.

2. Average Percent Error (APE)

APEj =
100

K
·

K∑
k=1

|Njk − Fjk|
Njk

.

APE =
J∑

j=1

APEj

J
.

8

Mandelbaum
Cross-Out



Exogenous Arrivals to Service: How to Model?

Axiomatically, “completely random arrivals” are Poisson.

Arrivals over the day are not time-homogeneous.

Hence, arrivals over the day are non-homogeneous Poisson.

Arrivals over small intervals (15, 30, 60 min) are close to
time-homogeneous Poisson.

Practically:
Test (L. Brown), then model, as a Poisson process with
piecewise-constant arrival rates.
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A (Common) Model for Call Arrivals

Whitt (99’), Brown et. al. (05’), Gans et. al. (09’), and others:

Doubly-stochastic (Cox, Mixed) Poisson with instantaneous rate

Λ(t) = λ(t) · X ,

where
∫ T

0 λ(t)dt = 1.

λ(t) = “Shape” of weekday [Predictable variability]

X = Total # arrivals [Unpredictable variability]

w/ Maman & Zeltyn (09’):
Above assumes “too-much” stochastic variability!
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Over-Dispersion (Relative to Poisson), Maman et al. (’09)

Israeli-Bank Call-Center
Arrival Counts - Coefficient of Variation (CV), per 30 min.

Sampled CV - solid line, Poisson CV - dashed line
Coefficient of Variation Per 30 Minutes, seperated weekdays
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263 regular days, 4/2007 - 3/2008.

Poisson CV = 1/
√

mean arrival-rate.

Sampled CV’s � Poisson CV’s ⇒ Over-Dispersion.
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Over-Dispersion: Fitting a Regression Model

ln(STD) vs. ln(AVG)

Tue-Wed, 30 min resolutionln(sd) vs ln(average) per 30 minutes. Sundays
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Significant linear relations (Aldor & Feigin):

ln(STD) = c · ln(AVG) + a
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Over-Dispersion: Random Arrival-Rate Model

The linear relation between ln(STD) and ln(AVG) motivates the
following model:

Arrivals distributed Poisson with a Random Rate

Λ = λ + λc · X, 0 ≤ c ≤ 1 ;

X is a random-variable with E [X ] = 0, capturing the
magnitude of stochastic deviation from mean arrival-rate.

c determines scale-order of the over-dispersion:
c = 1, proportional to λ;
c = 0, Poisson-level, same as 0 ≤ c ≤ 1/2.

In call centers, over-dispersion (per 30 min.) is of order
λc, c ≈ 0.8− 0.85.
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Over-Dispersion: Distribution of X ?

Fitting a Gamma Poisson mixture model to the data:
Assume a (conjugate) prior Gamma distribution for the arrival

rate Λ
d
= Gamma(a, b).

Then, Y
d
= Poiss(Λ) is Negative Binomial.

Very good fit of the Gamma Poisson mixture model, to data
of the Israeli Call Center, for the majority of time intervals .

Relation between our c-based model and Gamma-Poisson
mixture is established.

Distribution of X derived, under the Gamma prior assumption:
X is asymptotically normal, as λ→∞.
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Over-Dispersion: The Case of ED’s

Israeli-Hospital Emergency-Department

Arrival Counts - Coefficient of Variation, per 1-hr. & 3-hr.
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194 weeks, 1/2004 - 10/2007 (excluding 5 weeks war in 2006).
Moderate over-dispersion: c = 0.5 reasonable for hourly resolution.
ED beds in conventional QED (Less var. than call centers ! ?).
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Unpredictable Variability: The Multi-Class Case

Research w/ I. Gurvich & P. Liberman, ongoing.

Unpredictable variability: X = (X1, . . . ,XI)

Pairs: (XRetail ,XBusiness) and (XBusiness ,XPlatinum)

US Bank: Correlations, 600 weekdays
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Positive correlation (vs. independent in existing research)

Research: Empirical, then Impact on design and control ?
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