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In this paper we consider the M;/G /oo queueing model with infinitely many servers
and a nonhomogencous Poisson arrival process. Our goal is to obtain useful insights and
formulas for nonstationary finite-server systems that commonly arise in practice. Here we
are primarily concerned with the peak congestion. For the infinite-server model, we focus on
the maximum value of the mean number of busy servers and the time lag between when this
maximum occurs and the time that the maximum arrival rate occurs. We describe the asymp-
totic behavior of these quantities as the arrival changes more slowly, obtaining refinements
of previous simple approximations. In addition to providing improved approximations, these
refinements indicate when the simple approximations should perform well. We obtain an
approximate time-dependent distribution for the number of customers in service in associ-
ated finite-server models by using the modified-offered-load (MOL) approximation, which is
the finite-server steady-state distribution with the infinite-server mean serving as the offered
load. We compare the value and lag in peak congestion predicted by the MOL approxi-
mation with exact values for M;/M /s delay models with sinusoidal arrival-rate functions
obtained by numerically solving the Chapman-Kolmogorov forward equations. The MOL
approximation is remarkably accurate when the delay probability is suitably small. To treat
systems with slowly varying arrival rates, we suggest focusing on the form of the arrival-rate
function near its peak, in particular, on its second and third derivatives at the peak. We
suggest estimating these derivatives from data by fitting a quadratic or cubic polynomial in
a suitable interval about the peak.

Keywords: time-dependent arrival rates, slowly varying arrival rates, nonstationary queues,
multi-server queues, infinite-server queues, peak congestion, time lag, uniform acceleration
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This paper is a sequel to Eick, Massey and Whitt [4,5] in which we gave relatively
simple formulas describing the mean number of busy servers as a function of time in
an M;/G/oo queue (having a nonhomogeneous Poisson arrival process). In addition
to directly describing the behavior in this model, these formulas were intended to pro-
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vide insight into the performance of corresponding nonstationary finite-server systems
(delay or loss) commonly encountered in practice.

Our purpose here is to highlight some implications of our previous results for
the commonly occurring case in which the arrival-rate function A(t) changes slowly
relatively to the mean service time. In this case, steady-state analysis applied locally
at each time ¢ tends to be appropriate even though there may be significant changes
in the arrival rate over a longer time scale. Our goal is to better understand when
the direct steady-state analysis is appropriate and to determine what modifications are
most important. For background, see Hall [10, p. 178], Newell [19, Chapter 4], Green,
Kolesar and Svoronos [9], Green and Kolesar [6,7], Whitt [20] and references therein.

In particular, here we focus on the value and time of the maximum expected
number of busy servers in the infinite-server model. We assume that the arrival-rate
function can be expanded in a power series about its peak in a way that makes suc-
cessive coefficients negligible compared to previous coefficients. Then we obtain a
corresponding power-series expansion for the infinite-server mean. This enables us to
identify the dominant terms in approximations for the value and time of peak conges-
tion when the arrival-rate function changes slowly. Consistent with Eick et al. [4]
and Green and Kolesar [7,8], we find that the most important modification to a direct
steady-state approximation when the arrival rate changes slowly is a time lag in the
peak mean behind the peak arrival rate.

We also want to see how the information about peak congestion in the infinite-

server model enables us to predict peak congestion in associated finite-server models
with a fixed number of servers and unlimited waiting space. The general idea is that
the infinite-server model should provide a reasonable approximation when the actual
number of servers in the finite-server model is greater than the mean number of busy
servers in the infinite-server model. When this condition is violated for significant
periods of time, then there should be a buildup of customers in queue not receiving
service, which is not accurately accounted for by the infinite-server model.

To investigate the quality of infinite-server approximations for finite-server mod-
els, we consider Markovian M;/M/s delay models, for which we can calculate the
exact time-dependent distribution of the number of customers in the system by nu-
merically solving the Chapman-Kolmogorov forward equations, using a variant of the
algorithm in Davis, Massey and Whitt [3], using a large finite waiting room to make
the state space finite. The predicted location of the peak in the finite-server model is
precisely the location of the peak in the infinite-server model. We compare the peak
congestion and the location of the peak in the finite-server system to the exact and
approximate peak congestion and location of the peak in the infinite-server system.

In order to obtain an approximation for the peak congestion in the finite-server
model based on the peak value of the infinite-server mean, we use the modified-offered-
load (MOL) approximation, as in Jagerman [11] and Massey and Whitt [16]. (Those
papers focus on loss models, but the MOL approximation applies to delay models in the
same way.) The MOL approximate distribution of the peak number of customers in the
M, /M/s system is the steady-state distribution of the stationary M/M/s model with
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offered load equal to the peak infinite-server mean. Equivalently, the traffic intensity p
in the steady-state distribution is the peak infinite-server mean divided by s. We show
that the MOL approximation performs well when the traffic intensity is not too high.

Here is how this paper is organized. We state our main result in section 2. In
section 3 we discuss the special case of sinusoidal arrival-rate functions considered in
Eick et al. {5]. In section 4 we suggest that quadratic or cubic approximations fit in a
neighborhood of the peak are likely to be more effective than sinusoidal approximations
for realistic slowly-varying periodic arrival rates arising in practice. In section 5 we
provide illustrative numerical comparisons. Finally, we prove our theorem in section 6.

Since we focus on peak congestion, our results here provide useful informa-
tion about the number of servers needed to meet peak congestion. The more general
problem of dynamic staffing to meet time-varying demand is considered in Jennings,
Mandelbaum, Massey and Whitt [12].

2. The main result

We assume that the service times are independent and identically distributed, and
independent of the arrival process. Let S denote a generic service-time random vari-
able. Without loss of generality, we assume that a service time .S has mean 1. Then
the arrival-rate function A(t) is the relative arrival rate; the relative arrival rate is the
time-dependent analog of the offered load. We assume that the system starts empty in
the distant past. Then the number of busy servers at time ¢ has a Poisson distribution
for each ¢ with a mean

t
m(t) = / Gt — u)du = E[Mt — S0)], e))

—o0

where S, is a random variable with the service-time stationary-excess distribution, i.e.,

t
P(S. <t)= / P(S > u)du, (2)
0

see Eick et al. [4, egs. (1) and (3)].

Formula (1) shows that the time-dependent mean coincides with the relative ar-
rival rate A(¢) except for a random time lag S.. We thus say that there is a random
time lag of S, in m(¢) after A(t). In general, the actual time lag in the mean m(?)
behind the arrival rate A(t) differs from the mean E[S.] due to the nonlinearity of the
arrival rate function A(f). However, the mean E[S,] is a natural initial approximation
for the time lag; see Eick et al. [4, Remark 10 and section 3] and the discussion below.
Fortunately, the moments of S, are simply related to the moment of S, i.e.,

E[Sk] _ E[Sk+1] B E[Sk-H]
- kKEST Tk

€
From (1) and (3), we can see the role of the service-time distribution.

&)



160 W.A. Massey, W. Whitt / Peak congestion in multi-server systems

Before stating our main result formally, we discuss the notion of peak conges-
tion informally. For this informal discussion, let ¢y and ¢,, be the times of the peaks
(maximum values) of A(t) and m(t), respectively, which for simplicity we assume are
unique. If A(t) is nondecreasing before ty, then t,, > ty; see Eick et al. [4, Theo-
rem 5]. More generally, we typically have t,, > £, but it is not difficult to construct
counterexamples. Suppose that A(¢) is unimodal in a relevant interval about ¢y and that
tm, falls in this interval, so that t,, > t). We are interested in the time lag in the peaks

L=t, —t. 4

The initial approximation mentioned above is
my
= 5
5 ®)
where my, is the kth moment of S. (Recall that £S = 1.) Approximation (5) was ob-
tained from the linear and quadratic approximations in Eick et al. [4]; see Remark 10,
Example 1 and section 3 there (especially Theorem 9).

We are also interested in the values of the peak m(t,,) and A(f)). From (1) we
see that m(t,) < A(t)), because m(t,,) is an average of A(f) for ¢ to the left of 1,,,
where A() < A(t)). We are interested in the difference in the peaks

D = Mty) — mltn). (6)

L~ ES, =

A natural initial approximation is m(t,,) = A(ty) or
D =0. @)

Approximation (7) can be obtained from the pointwise stationary approximation (PSA),
which approximates the distribution at time ¢ by the steady-state distribution associ-
ated with the stationary model having arrival rate A(t). The steady-state mean num-
ber of busy servers in the infinite-server model associated with arrival rate A(f) is
ABES = A2).

Our primary purpose in this paper is to obtain refinements to approximations
(5) and (7) in the case A(t) changes relatively slowly in a relevant interval about
its peak t). These refinements yield better approximations and indicate when the
simple approximation in (5) and (7) should perform well. To obtain refinements to (5)
and (7), we scale a fixed arrival-rate function in the neighborhood of its peak. In fact,
our approach permits ¢y to be the location of any local maximum of the arrival rate
function A(t). We then rescale A(¢) so that only the neighborhood of ¢y is relevant.

Hence, let A(¢) be any arrival-rate function with a local maximum at £). We
assume that A(f) has a Taylor-series expansion in the neighborhood of ). Then we
form a family of functions indexed by ¢ by letting

Ac(t) = Atx + e(t — t2)) ®

and consider the behavior as ¢ — 0. We thus think of the actual arrival rate function
being A.(t) for some small . If we first move the peak t) to the origin, which we can
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do without loss of generality, then (8) is equivalent to the direct time scaling
Ae(t) = A(et). )

Since A(f) has a power-series expansion about ¢y, so does A:(t) in (8), and it
takes the form

2 B¢ 2 AE (¢
=3 =3 ek (10)
=0 k==0

where /\fsk)(t) and X®(t) are the kth derivatives of \.(¢) and A(%), respectively. The
nature of a power series expansion is that its value in the neighborhood of a point can
be approximated (to arbitrary precision) by using the derivatives of the function at that
one point. This is the spirit of perturbation theory which is eloquently described by
Bender and Orszag [2, p. 319]. When € = 1, A.(f) becomes the original arrival-rate
function A(t). When ¢ is close to 0, A.(f) corresponds to an arrival-rate function that
is slowly varying and close to the constant rate of A(¢y), a local maximum for A(%).

When ¢ is small, the successive coefficients of (¢t — ¢,)F in (10) are indeed
negligible compared to all previous coefficients. Thus the representation (8) or (10)
serves to justify the polynomial approximations previously considered in Eick et al.
[4, section 3]. This approach also coincides with the uniform acceleration expansions
in Massey [13], Eick et al. [4, Remark 15, p. 739] and Massey and Whitt [17].

Let m.(t) be the infinite-server mean associated with A.(f) in (8), let £,,(¢) be a
focal maximum time for my, let 7i(e) = m. (¢ (€)) be the local value attained and let
L(e) and D(e) be the associated lag and difference. We will show that ¢,,(¢) and m(e)
are well defined below. We justify (5) and (7) and identify the next most important
terms by expanding L(e) and D(e) in powers of ¢. Here is our main result.

Theorem 1. Suppose that ) is 6-times differentiable and A*®) is bounded and Riemann
integrable on the interval (—oo,t)] for 1 < k& < 6. Suppose that ES = 1 and
ESS < co. If A.(t) is defined by (8), XD(ty) = 0 and AXP(¢,) < 0, then the associated
mean function m.(f) defined by (1) has a local maximum 7i(e) at time ,,(¢) for all
suitably small €, with a lag

_ A9(ty)
L(e) = tm(e) — ta= ELSe] — 52/\(2—)@/\) Var[S]
A9ty 3
+52672~)£;5E[(S€ ~ E[S1)’] +0(€) (an
and a difference
D() = Aty — m(tm(e))
@ 32G

=22 z(t*)Var[Se] + 533@1@[(56 ~EIS.0)°)+0(s%) (2

as e — 0.
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In applications we typically have a single arrival-rate function A(f), not a para-
metric family A.(t) as in (8) or (9). For applications, it seems more meaningful to
re-express (11) and (12) in terms of /\gk)(t \), because our given arrival-rate function is
Xe(t) in (8) for some fixed small e. When we do this, the ¢ factors prior to the final
error terms disappear, i.e., (11) and (12) are equivalent to

A(ty) AD(ty) 3 3
L(e) = E[S.] — Var(S,] + £l E[(S, — E[S, 0 13
€)= BLSe] = gy VarlSel + ooy [( [Se])"] +0(7)  (13)
and
2)
D) =~ 2“”\/ [S]+/\ (t” E[(S. - ElS.))°] +0(e"). (9

Theorem 1 expressed this way could also be obtained by a direct Taylor series expan-
sion, using the assumption that the kth derivative AB)(ty) is O(e¥) for some small €.
Indeed, the first terms of L(e) and D(e) in (13) and (14) were already obtained this
way via the quadratic approximation in Eick et al. [4, section 3]. The second-order
approximation for the difference

D(e) ~ —¢

2)
2 Z(t’\)Var[Se] (15)

coincides with the space shift in the quadratic approximation QUAD-D in Eick et al.
[4, section 3]. Theorem 1 here adds new terms to what is directly deducible from Eick
et al. [4].

From (8) and (9) and the proof of Theorem 1 we see that the successive terms
in the expansions (including ones beyond the ones we display) depend on the service-
time distribution through the central moments of S,. The higher-order terms involving
E[(S. — E[S.])’] will disappear when the distribution of S, is symmetric about its
mean, which happens if and only if the distribution of S is deterministic (because the
density of S, is P(S > t)/E[S]).

3. Sinusoidal arrival-rate functions

It is interesting to consider the special case of sinusoidal arrival-rate functions,
because we can obtain convenient explicit formulas for them and because the asymp-
totic relation (8) is natural to consider for them. Their periodic form is also in the
spirit of many real systems with daily cycles.

Hence, suppose that we have a family of arrival rate functions indexed by e,
defined by

Ae(t) = X + Bsin(et), (i6)
where as before the service time S has mean 1. Eick et al. [5} showed that
me(t) = X + B(sin(et) E[ cos(eSe)] — cos(et) | sin(eSe)] ), a7
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where as before S, has the stationary-excess distribution in (2). In this context, the
peak for A is ty(¢) = m/2e. Eick et al. [5] showed that the time lag L(¢) and
difference in the peaks D(e) are

L(g) = ¢! arctan (E[sin £S.]/ Elcos sSe]) (18)
and

D(e) = B — B((Ecos(eS,))” + (B sine5)])*) . (19)

‘What is nice about the sinusoidal arrival-rate function in (16) is that the notion of
“slowly changing” is represented simply by the frequency £. The arrival-rate function
is slowly changing when ¢ is suitably small. Hence we can directly apply Theorem 1
in section 1.

However, there is a complication. As noted before Eick et al. [5, Theorem 4.4},
the peak t) goes to infinity as £ — 0. This is already accounted for in (18) and (19),
but could be avoided at the outset if we moved the peak to the origin. The peak can
be moved to the origin by replacing (16) with

Ae(t) = X+ Bcos(et). (20

We can describe the asymptotic behavior as ¢ — 0 in (16) or (20) either by
applying Theorem 1 here or by directly letting ¢ — 0 in (18) and (19). Indeed Eick
et al. [3] already showed that limiting value 72(0) is A -+ 3 in their Theorem 4.4.
They also showed that the limiting lag L(0) is 1/2 for a deterministic service-time
distribution and 1 for an exponential service-time distribution; see (26), (16) and the
remark below (17) in Eick et al. {5].

The asymptotic behavior is especially easy to see from Theorem 1, because
AB)(¢y) = 0 when k is odd and \¥(t,) = 1 when k is even. Note that quadratic and
sine functions share the special property that A®(ty) = 0, which eliminates the second
terms in (11) and (12). From Theorem 1, we obtain asymptotic formulas for the lag
and difference, namely,

2
L(e) = B[Se] + %E[(Se — E[S.)’] +0(e*) ase—0 1)
and
2
D(e) = 6% Var[S.] + O(e*) ase — 0. (22)

We can also obtain formulas (21) and (22) from (18) and (19) with a little bit
more work. In particular, we can apply familiar asymptotic expansions of trigonometric
functions, 4.3.65, 4.3.66 and 4.4.42 of Abramowitz and Stegun [1],

1'3 m5 Q?7 23
smm-.:c——+§~?+ (23)

2 4 6
cosx~1—f-+x_—x—+---, (24)

41 6l
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arctanx=x~~af—3—+m—5—£+-~ (25)
3 5 7
as x — 0. From (18)—(19) and (23)—(25) plus 3.6.18, 3.6.21 and 3.6.22 of Abramowitz
and Stegun [1], we obtain (21) and (22). Note that (21) and (22) are consistent with
(5) and (7); ie., L(0) = m,/2 = ES,, consistent with (5) and D(0) = O, consistent
with (7).

In the case of deterministic service times, (21) and (22) become

L) = % +0(e*) ase—0 (26)
and
2
_maz%%+o@ﬁ as e — 0, 27

which is consistent with exact results in (26) and (27) of Eick et al. [5]. For the
M,/ D /oo model with sinuscidal arrival rate, all error terms in the lag L(e) disappear
because X*)(¢y) = 0 and E[(S, — E[S.])*] = 0 for all odd k.

In the case of exponential service times

2
L) =1-5+0(") ase—0 28)

and

e
2
Formulas (28) and (29) are consistent with exact results (16) and (18) of Eick et al.
[5], namely,

D) = + 0(54) as € — Q. 29)

L(g)= gt arctan(e), (30)
Jé]

DE)Y=08 — ——. 31

©=5 1+&2 G

Formula (28) follows directly from (30) and (25) above. Formula (29) follows directly
from (31) by taking a Taylor-series expansion.

~ The fact that the first error terms in (21) and (22) are of order O(e?) indicates
that the approximations based on the limit ¢ = 0 should often perform well provided
that € is suitably small, as recently shown numerically for the cases of exponential
and deterministic service-time distributions by Green and Kolesar [7]. The explicit
constants given for the O(e?) terms help us understand departures from this limiting
case.

To illustrate, we display both the approximations (28) and (29) and the exact
values (30) and (31) for the lag L(¢) and the difference D(e) for the M;/M /oo model
with the sinusoidal arrival rate function in (8) in table 1. Note that the lag and
the relative the difference D(e)/ depend only on the frequency. For ¢ small, e.g.,
for ¢ < 0.2, the approximation (28) and (29) are quite accurate. More importantly,
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Table 1
A comparison of approximations with exact values for the lag L(e) and the normalized difference D(e) /8
for the M, /M /co model with the sinusoidal arrival rate in (16). The formulas are in (28)-(31).

lag relative difference
frequency L(g) DE)/8

€ exact approx. exact approx.

10.0 0.1471 - 0.9005 -

5.0 0.2747 - 0.8039 -

2.0 0.5536 - 0.5528 -
1.0 0.7854 0.6667 0.2929 0.5000
0.5 0.9273 0.9167 0.1056 0.1250
0.2 0.9870 0.9867 0.0195 0.0200
0.1 0.9967 0.9967 0.0050 0.0050
0.0+ 1.0000 1.0000 0.0000 0.0000

though, the simple approximations L ~ ES, = 1 and D = 0 clearly perform well in
this region.

4.  Analyzing real periodic systems

In this section we make some suggestions about what seem to be appropriate
ways to analyze real nonstationary multi-server service systems that are characterized
by slowly changing arrival-rate functions. As before in this paper, “slowly-changing”
means relative to the mean service time. Since many real systems clearly have periodic
or nearly periodic arrival-rate functions, where the maximum is much greater than the
minimum, it is natural to consider periodic arrival-rate functions.

The periodicity led many researchers, including Eick et al. [5], to consider the
special case of sinusoidal arrival-rate functions. However, when the arrival-rate func-
tion changes slowly, the periodic nature tends to become less and less relevant. The
periodic nature tends to be important only when the behavior at any time is influenced
by the system behavior more than one cycle previously. However, when the arrival
rate changes slowly, as when service times are in minutes with daily cycles, the rel-
evant history to determine the system congestion at any time rarely goes back a full
day. What really is relevant (when there are negligible queues of customers waiting to
begin service) is a time interval extending back only several mean service times from
the time of interest.

From section 1 we see that what is relevant to determine the congestion at times
near the peak arrival-rate function is to know the arrival-rate function near the peak.
In order to apply the first refined approximations (second terms) in (13) and (14), we
need to know only the second and third derivatives of the arrival-rate function at its
peak, A@(ty) and AP(t)). We suggest focusing on these quantities.

The problem with sinusoidal arrival-rate function models is that, if we take ac-
count of the full periodic structure, the frequency ¢ in (16) or (20) will be determined
by the long-term behavior rather than the local behavior, because it is determined by
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the cycle lengths. Hence, X®(ty) = —Be? and A®)(t)) = 0, where ¢ is determined
by the cycle lengths. In contrast, what we should really do to obtain a good approx-
imation is directly estimate A@(ty) and A®)(y) themselves by examining A() in the
neighborhood of its peak ty. It may happen that A?(t)) ~ —Be? and \¥(¢t)) =~ 0,
but it need not.

For example, an application may have a daily cycle with X = 3 = 100 and
a mean service time of about 23 minutes. A direct sinusoidal model then dictates
that £ =~ 0.1 (assuming ES = 1). This sinusoidal arrival rate function has second
derivative —e28 = —1. However, the actual arrival-rate function could have a much
bigger second derivative at its peak, say A?(t)) = 25. Since § = 100, this means that
a sinusoidal arrival-rate function fit locally to A®(ty) should have frequency e ~ 0.5.

Having suggested estimating A\?(ty) and A®)(ty), it is appropriate to consider
how. When considering possible estimation procedures, it is good to keep in mind that
our real goal is to yield an approximation for the integral

t

¢
m(t) = / Ge(t — w)M(w) du == /

Gt — wyA(w) (32)
—~00 t—10
for ty <t £ ty,. From (32), we clearly see that the behavior of A(f) in a very small
immediate neighborhood of t) is less important than the average behavior over an
interval centered at £y of length equal to a few mean service times. For example, a
reasonable procedure is to fit a quadratic or cubic function to data over the interval
[ty — 4,1y + 4] using regression. A maximum likelihood estimator of the coefficients
can be obtained from iterative weighted least squares, as was done for the linear case
in Massey, Parker and Whitt [14]; see McCullagh and Nelder [18]. Massey, Parker

and Whitt found that ordinary least squares was nearly as efficient.

5. Peak congestion with finitely many servers

In this section we investigate how well the exact and approximate formulas for
the lag in the peak of the infinite-server mean m(t) predict the lag in peak conges-
tion for finite-server systems. We also investigate how well the MOL approximation
using the exact or approximate peak m(t,,) predicts the actual peak performance in
finite-server delay systems. For this purpose, we consider the Markovian M;/M/s
models with a nonhomogeneous Poisson arrival process and a sinusoidal arrival-rate
function. We apply a variant of the algorithm described in Davis et al. {3] to com-
pute the time-dependent probability distribution of the number Q,(¢) of customers in
the system at time ¢. We consider three specific performance measures: the proba-
bility of delay P(Qs(t) > s), the expected number in queue E[(Qs(t) — s)1], where
(x)* = max{z, 0}, and the tail probability P(Qs(t) > s + 5).

We anticipate that, for a given arrival-rate function, the infinite-server approxi-
mation for the lag will perform better for larger s, because then the finite-server model
is closer to an infinite-server model. To focus on this phenomenon, we describe the
three performance measures as a function of s.
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Table 2
The actual lags in peak congestion for three performance measures as a function of the number of
servers, s, for the arrival-rate function 20 + 10sin(0.2¢).

number lag in lag in lag in
of servers peak delay probability tail probability mean number
s delay probability P(Q(tw) 2 8) PQltm) 2 s+5) in queue
o0 0.99 0.99 0.99
55 0.000024 1.00 1.03 1.02
50 0.00048 1.01 1.08 1.04
45 0.0062 1.04 1.12 1.09
42 0.023 1.08 1.19 1.16
40 0.050 1.13 1.27 1.25
38 0.100 1.22 1.39 1.39
35 0.245 1.42 1.67 1.75
32 0.493 1.80 2.10 2.38
30 0.692 2.16 2.76 2.98
28 0.862 2.64 2.99 371
25 0.984 3.52 3.88 4.68
22 0.9997 4.52 4.87 4,78
38 + s(t)
At
0+
1 L i i L
1.0 - Probability
r of Delay
0.8
04+
0 L ! ! i 1 i
Expected
30 + Queue Size
20
10
O .
1 1 L Il i

0 12.5 25 37.5 50
Time

Figure 1. The arrival-rate function, probability of delay and the mean number of customers in queue in
the M;/M/s model with s = 38 servers, £S = 1 and arrival-rate function A(t) = 20 + 10sin(0.20).
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25 //\ /\\s ®

(i 1 L L

1.0 |
0.8
0.6 |-
0.4
0.2

Probability
of Delay

H i L 1 1

Expected
Queue Size

20

0 12.5 25 37.5 50
Time

Figure 2. The arrival-rate function, probability of delay and the mean number of customers in queue in
the M/M /s model with s = 25 servers, ES = 1 and arrival-rate function A(t) = 20 + 10sin(0.2¢t).

As a specific example, we consider the sinusoidal arrival-rate function (16) with
X =120, 3 =10 and ¢ = 0.2. We have chosen the frequency ¢ small, so that the
arrival-rate function is changing relatively slowly. From table 1, we see that the exact
infinite-server lag of 0.987 is indeed close to the approximate infinite-server lag of
E[S.] = E[S] = 1. (For an exponential distribution, S is distributed the same as S.)

Table 2 displays the actual lags in the peak for the three performance measures
as a function of s. When s is large, the actual lags are very close to the infinite-server
lag. As long as the actual delay probability is relatively small, say less than 0.10,
the infinite-server lag still yields a decent approximation. However, as the number
of servers decreases, then the actual lag grows significantly. This behavior should be
anticipated, especially when s < 30, because then the instantaneous traffic intensity
exceeds 1 at the peak. :

Figure 1 displays the three performance measures in the relatively good case in
which s = 38. For s > 38, the infinite-server approximation performs pretty well.
In contrast, figure 2 displays the same performance measures when s = 25. Since
the infinite-server mean exceeds s = 25 for a substantial period, the infinite-server
approximation no longer performs well.
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Table 3
A comparison of the modified-offered-load (MOL) approximation with exact values of the peak delay
probability and peak mean waiting time as a function of the number of servers for the model with arrival-
rate function A(t) = 20 + 10sin(0.2¢) and mean service time ES = 1. The exact infinite-server peak
mean 29.81 is used as the offered load for MOL.

number of delay probability mean waiting time

servers § exact MOL exact MOL
50 0.00048 0.00048 0.0012 0.0012
45 0.0062 0.0062 0.0181 0.0185
42 0.0228 0.0232 0.077 0.080
40 0.050 0.051 0.190 0.200
38 0.100 0.104 0.442 0.483
35 0.245 0.268 1.44 1.81
32 0.493 0.601 4.28 8.78

Table 3 compares the MOL approximation with exact values for the peak delay
probability and the peak mean waiting time before beginning service. (Recall that
the mean waiting time equals the mean number in queue divided by the number of
servers.) We used the peak infinite-server mean m(t,,) = 29.81. The PSA approxi-
mation m(t,,) ~ 30.0 obviously yields similar values, but the difference is noticeable
with large numbers of servers; e.g., the 6% difference in offered load produces a 10%
error in the delay probability when s = 45.

6. Proof of Theorem 1

In order to prove Theorem 1, we apply a previous result in Theorem 10 of Eick et
al. [4] and Massey and Whitt [15]. The following weaker form of the previous result
will suffice here. Let ST be a random variable with the n-fold iterated stationary-
excess distribution, i.e., S = (SM),, where S, is defined in (2).

Theorem 2. Suppose that X is (n+ 1)-times differentiable and A1 is Riemann inte-
grable on [£\ — x, ] for each z. If ES™? < oo and AW (¢) is bounded on (—o00, t)],
0<k<n+1, then

me(t) _ ., _omp) | R
5S = E[A(t - So)] = 7o 75 (33)
where A, is defined in (8),
n /\U) HESIF!
i =3 -1y o (4
and
£ Tl Vi3 ¥ E[Sn+2]
Bt = GBSO (- SO T (35)

with |m&(t)| < oo and |RE(F)] < oc.
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Let £(t) denote the derivative of a function = with respect to £.

Corollary. If, in addition to the conditions of Theorem 2, X is (n -+ 2)-times differen-
tiable and A\ (¢t) is bounded on (—o0, 1), then

e (t) = i (8) + Ry (0) (36)
with |ri;, ()] < co and |RE ()] < oo for mE () in (34) and R (%) in (35).

Proof. By the bounded convergence theorem,

E[ Sn+2]

Rty = ()M EDETD (£ - S81P)] R

(4

The bound is obtained from
AHD( 4 ) — XPHD(@)
€
where ¢ < 0, <t+¢foralltande. O

=\"D0,) < M,

In order to prove Theorem 1, we apply Theorem 2 and its corollary for the special
case of n = 4. Recall that ES = 1. We first obtain

me(t) =E[Xe(t = Se)] = E[A(tr + et — tr — So))] (37

(¢)] 3)
=A(ty) + ezi—i(’i)E[(t —ty— S + 531-3—('@&‘[@ —tx— Se)]
1)
+54/\—£('£’\—)E[(t~t,\—-56)4] +0(e). (38)

The Corollary to Theorem 2 allows us to differentiate with respect to ¢ in (38) in order
to obtain

(3)
The(t) = e? XD E)E[t — ta — Se] + 5357(”—)-5[@ —ty — Se)’]

At
+ 64”*——6( 2y E

(We use the fact that R5(¢) is also O(e>).)

From (39), it follows that m.(¢) has a unique maximum 77(¢) at time &,,(g) for
all suitably small £. Considering only the first term of (39), we see that m(¢) > 0 for
t < ty + ES. and all ¢ suitably small, while m.(t) < 0 for t > ty + ES, and all €
suitably small. Now we want to construct an asymptotic expansion for ¢, () of the
form

[t —tr— Se)’] + O(%). (39)

tm(e) = 79 + erD 1+ 279 1 0(?), (40)
where

1 (tm(e)) = 0. (41
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Combining (39)~(41), we obtain

pASHE?
0= XD (ENE[tm(e) — tr — Se] +¢ 2( ’\)E[(tm(s) —ty—S.)7]
A9
+ 52-—6(A)E{(tm(a) —ty—5.)°] +0(£). (42)
If we equate the terms in (42) of order £ = 1, then we obtain

7O =ty 4+ E[S,]. (43)

If we set t%,(€) = tyu(e) — 70, then we get

tm(e) — ty — Se = tr,(e) + E[Se] — Se. (44)

Hence eq. (42) is equivalent to

A3t
0= ADt0)t5, @) + £ (15,0 4 VarlS.))
ADt . .
+62——6(~1\2(tm(5)3 + (e VarlS,] — E[(S. — ELS.])’]) + O(e7).  (45)
Now, if we equate like terms in (45) of order €, we get
(3)
0= AP+ A—%@w{s&], (46)
which gives us
) _ /\(3)(tA)

Ty = —2/\(2)@” Var[S,]. 47)

Finally, if we equate like terms in (45) of order £2, we get

AD(ty)
o =
6

0=\ (tr - (5~ E15.1)°]; )

which yields

L0 A9ty

T 6AA(ty)

We obtain the expansion for m.(tm(€)), and thus for D(¢), by applying the asymptotic
expansions for m.(¢) and t,,(¢).

E[(S. — EIS.1)"). (49)
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We consider the classical M/G /1 queue with two priority classes and the nonpreemptive
and preemptive-resume disciplines. We show that the low-priority steady-state waiting-time
can be expressed as a geometric random sum of i.i.d. random variables, just like the M/G/1
FIFO waiting-time distribution. We exploit this structures to determine the asymptotic be-
havior of the tail probabilities. Unlike the FIFO case, there is routinely a region of the para-
meters such that the tail probabilitics have non-exponential asymptotics. This phenomenon
even occurs when both service-time distributions are exponential.  When non-exponential
asymptotics holds, the asymptotic form tends to be determined by the non-exponential as-
ymptotics for the high-priority busy-period distribution. We obtain asymptotic expansions
for the low-priority waiting-time distribution by obtaining an asymptotic expansion for the
busy-period transform from Kendall’s functional equation. We identify the boundary be-
tween the exponential and non-exponential asymptotic regions. For the special cases of
an exponential high-priority service-time distribution and of common general service-time
distributions, we obtain convenient explicit forms for the low-priority waiting-time trans-
form. We also establish asymptotic results for cases with long-tail service-time distributions.
As with FIFO, the exponential asymptotics tend to provide excellent approximations, while
the non-exponential asymptotics do not, but the asymptotic relations indicate the general
form. In all cases, exact results can be obtained by numerically inverting the waiting-time
transform.

Keywords: priority queues, M/G/1 queue, low-priority waiting time, tail probabilities,
asymptotics, non-exponential asymptotics, asymptotic expansions, Laplace transforms,
algebraic singularities

1. Introduction
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In this paper we study the low-priority steady-state waiting-time distribution
in the classical M/G/1 queue with two priority classes and the nonpreemptive and
preemptive-resume disciplines. The priority structure tends to make the low-priority

waiting-time distribution have a relatively long tail. We quantify this effect.

The Laplace transform of the low-priority waiting-time distribution and the first

few moments are well known, e.g., see Cohen [30, section II1.3.6], Heyman and S

O-



