WAITING TIMES WITH RANDOM SERVED QUEUE

The waiting time theories reviewed in the
preceding article all refer to the ecase that
the serving of those waiting takes place in
the same order as their calls came in, so that
those waiting formed an ordered queue. There
occurs often, however, in telephony an order of
service departing entirely from the ordered
queue, whose characteristic feature is, that the
selection of that waiting ecall which is given
oecupation when a device becomes unoccupied
takes place very much at random. If there is
only one waiting when a device becomes unoc-
cupied, the order of service has of course no
significance, as the call waiting in that ease will
always obtain occupation on the device coming
free. Now if several subseribers are waiting, it
is clear that the random selection of those waiting
who obtain a free device means that some sub-
seribers may have to wait much longer than
would be the ease if serviece proceeded according
to ordered queue. On the other hand, the random
service may mean that some of those waiting
have a much shorter waiting time than with
ordered queue. The result will obviously be that
the waiting time distribution with random served
queue will be flatter than with ordered queue.
It is true that we can show that the mean waiting
time in hoth cases will be the same, but the
greater flatness with random served queue may
be expected to have a certain significance for
judging the inconvenience involved for the sub-
seribers from waiting. The question of the pro-
perties of the distribution funetion of the waiting
times with random served queue is therefore of
very great importance. In spite of this, there has
so far appeared in the literature no investigation
concerning this ease, which probably is not due
to lack of interest but to the mathematical com-
plications involved in the treatment. It is true
that there was published in 1942 a solution of
the problem by Mellor (bibliography 1), which is

' incorrect, however, and gives misleading results.
The solution presented in the present article was
drawn up in 1938, but has not been published
before!) in the expectation of being able to submit
easier methods of numerical evaluation, a hope
that has unfortunately only been partly realised.

1) Before 1946, (Editor’s note.)
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As already indicated, the mathematical treat-
ment of the waiting time conditions with random
served queue will be appreciably more compli-
cated than with ordered queue. The reason for
this is the following. With ordered queue the
subseriber’s waiting time will be independent of
whether further calls come while he is waiting,
and it will then only be dependent on the dis-
tribution funection of the congestion transition
and the number of persons already waiting at
the moment when the subseriber begins to wait.
With random served queue, however, the possi-
bility of a waiting subseriber being served at any
moment will be dependent on how many waiting
subseribers there are at the same time. Owing to
this, with eomputation of a subseriber’s waiting
time, consideration must be given not only to
how many others are waiting on the arrival of
the subseriber’s call, but one must also consider
the possibility that other subsequent calls will take
part in the competition for the devices coming
free. As might be expected, this condition con-
siderably complicates the treatment.

As was explained in the preceding article,
with not too small groups the distribution fune-
tion of the congestion transition will be very
close to exponential, even if the holding times’
distribution function differs appreciably from the
exponential form. It has therefore been assumed in
the following that the congestion transition has a
purely exponential distribution funetion, whieh
indeed seems to be the only case giving the possi-
bility of profitable mathematical treatment. In
this the solution is obtained from a partiaMy
differential equation of hyperbolical type with
certain boundary conditions. Unfortunately it
has not been possible to produce the wanted
solution of this differential equation in closed
form by means of known functions. It is, how-
ever, possible to find series expansions for the
wanted solution, whereby the terms are deter-
mined recurrently by means of integrations. Un-
fortunately it is only possible to compute a few
terms with a reasonable amount of work. Never-
theless, by this method it has been found to be
possible to tabulate the wanted distribution
funetion in a sufficiently large field for the
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nential function for the same mean value as
with F(¢) comes so near to F(t) that the dif-
ference cannot be traced in the scale used for
the figure. Both F(t) and F,(¢), however, are
rather steeper than the corresponding exponen-
tial funetions, so that their form factors are less
(though extremely little) than 2.
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Fig. 5. Distribution function of the waitlng times with voluntary departure of those waiting.
Number of devices n = 10, traffic 4 = 5 erlangs. Mean holding time s = 120 secs., mean departure time & = 12 secs.
« = 0.5, g= 1. Serving in ordered queue and exponential distribution of holding times are assumed.

1.
2.
2
3.
and the mean waiting time (49) will be

1 1
pl— = 2
{ 1—e* a}
Further the probability of a waiting person who
does not tire of waiting having a waiting time

at least ¢ long will be

L
b

1—e—oe™
Iy (t) = ] —¢-a

and in this special case the mean value of this
may be expressed in the form of a series

b o a® at

I—e e\ o1t 11"

Fig. 5 shows the distribution funetions for
the following numerieal example. Number of
devices in the group n = 10 and incoming traffie
A = b erlangs. With this we have ¢ = 0.5, If
the mean holding time s is put at 120 secs., 8 = 1
means that we have the mean departure time

Distribution function F(t) of the waiting times. Mean value 6.5 secs.
Probability of at least a t long wait Fy(¢). Mean value 13.54 secs.
a. Exponential function for the same mean value as 2.
Distribution funetion of the waiting times, when no voluntary departure of those waiting ocenrs. Mean value 24 secs.

b = 12 sees. We then find with the aid of the
formula above that the mean value of the waiting
times, i.e. the mean value for distribution F(¢)
is 6.5 secs. The mean value for distribution F,(t)
is 13.54 secs. This is therefore the mean value
of the waiting timefor a subscriber who never
tires of waiting. It is remarkable that this time
is approximately double the size of the mean
value of waiting times actually oecurring. If no
voluntary departure of those waiting oceurred,
the mean waiting time would be 24 secs. In the
example chosen the congestion is 2.37 %. If no
voluntary departure of those waiting oceurred
the congestion would be 3.60 %, and with a busy-
signal system with the same traffic and number
of devices the congestion would be 1.84 %.
Fig. 5 shows F(t), F(t) and the exponential
waiting time distribution that would apply if no
departure of those waiting occurred. The broken
;eurve shows the exponential funection for the
‘same mean value as with Fy(t). The difference
between the curves is rather slight. The expo-
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By some conversion of the results presented
in the above mentioned works there is obtained
for the distribution function of the waiting times
the expression
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"as in the previous paragraph and the formula is
valid for ordered queue under the same assump-
tions respecting the distribution of the holding
times and the departure times as were previously
made. For 8 = « (58) goes over as it should
to the expression (23) for delay systems without

wluWeﬁrture for those waiting.

The distribution funetion (58) is now valid for
the waiting times actually occurring, irrespective
of whether these are terminated by those waiting
receiving occupation of some device or tiring of
waiting. Thus it expresses the probability that
a call which is subjected to waiting will still
remain after the time ¢ as a waiting call. It should
be noted that this is not the same thing as the
probability for a waiting subscriber not receiving
occupation during the time ¢, provided he does
not himself tire of waiting during this time. If
this latter probability is denoted F,(t), it is

/) clearly valid that

F()=e 5 Folt)

seeing that the right member in this is the pro-
duct of the probability that the waiting sub-
seriber does not tire of waiting during the time
t and the probability that he does not receive
occupation in the same time if he waits to the
end of the time. These two probabilities are inde-
pendent of each other with service in ordered
queue, so that their produect expresses the pro-
bability of both events occurring simultaneously,
whieh is just F(t). The distribution funection

1

Fy(t) = et F(1) (59)

J
is clearly of special interest in judging the in-
conveniences caused to subseribers by the waiting.
The same may also to some extent be said of
the distribution funetion F(¢) according to (58),
which moreover is that which should be obtained
in measurement of the waiting times actually
oceurring.
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The function F(t) may be presented in several
other forms than (58). Thus from (55) there
may be obtained a presentation with the aid of
the incomplete gamma funection or the corres-
ponding integral. Further, for whole number
values of 8 & presentation with a finite number
of Poisson expressions may be obtained from
(53). In respeet of the different forms of presen-
tation attention is directed to bibliography 8.

The mean value of F(t), i.e. the mean length
of the waiting times actually oecurring should
be identical with the mean value (49) deduced
before, which moreover is easy to check. For
the mean value of F,(¢) which obviously should
be rather greater, it would appear on the other
hand to be rather more difficult to set up any
expression that is reasonably simple of compu-
tation. The same applies to the form factors of
the distributions. In these respects the theory
requires supplementing.

Some relations which are of great interest in
measuring of waiting times may be shown. Thus
the fraction of the full number of those waiting
who cease to wait before oceupation is obtained
should be equal to the mean waiting time (49)
divided by the mean departure time b. Further,
the probability that a waiting person tires of
waiting between the time ¢ and the time ¢ + di
after waiting started is

1

This is therefore the density funetion for the
voluntary departure of those waiting when waiting
oceurs in the group considered, and the validity of
this is a criterion of the exponential form of the
departure function. To verify this assumption by

y"m% i

/ f

measurement one therefore only needs to invest- ¢’

igate whether the general distribution function
for those waiting and the density funection for"

those who tire of waiting are curves with ordi-
nates which always have a constant ratio to each

other. This ratio will in such case be equal to

the mean departure time b.

To demonstrate instances of the form of the
distribution funetions deduced we select the case
B = 1,ie. b = s :n. In this case (58) is simpli-
fied to ,

/




& (A4,8) according to (48a). If one has tables

available which give 4-E, ’ndirectly, it is also

possible to employ the still simpler formula
T’V . A 'E1 ' 0

& =
" n+ W-A-E» (56)

which is easy to verify.

In the table below there is given a number
of values for W{(w,8) computed for different
values of « and B. As the congestion (48a) for
small values of E 1, n 080 with reasonable accu-
racy be put as equal to W- Elm,the table furnishes
direet information regarding the variation of
the congestion, at least for those values of con-
gestion that are common in practice.

Finally there may be brought out an interest-
ing special case which occurs for B = n, that is
b = s, which in practice is a eonceivable though

/M/ M/ w probably rather high value for b. We then get,
Uve“@m suitably direet from (43) and (44),
oty i}’&,.z f\@ M{-@Wh ki »
J hglam= D e (57)
= 0\&/0 M/,\\;f[e ”}(\t)‘"*f- veq <

In this the right member may be read as the
probability that in a group of devices with an
infinite amount of deviees one will find n or
more devices occupied at one time. The formula
1s used in some gquarters when fixing dimensions
as an approximate expression for the congestion.
With the assumptions stated here it is valid
exactly, however.

Waiting Times with Voluniary
Departure of Those Waiting.

The investigations mentioned before of delay
systems with voluntary departure (bibliography
8) also contain a number of results regarding
the distribution function of the waiting times
with ordered queue, which will be reviewed here
briefly and complemented. It is found that, un-
like the case where no voluntary departure of
those waiting occurs, we do not generally get
any simple exponential distribution of the waiting
times. On the contrary, the results will mostly
be relatively complicated and numerieal compu-
tations are therefore troublesome, but by mno
means impossible to perform.

Table for W(a,pB).

\ﬂ 0.5 1 2 3 6 8 10 20 oo
o

0.05 | 1.017| 1.025| 1.084 | 1.089| 1.041| 1.045 | 1.046| 1.047 | 1.060 | 1.058
0.10 | 1.084] 1 052] 1.070| 1.080| 1.086| 1.093 | 1.087; 1.099 1.105 | 1.111
0.15 | 1.052| l.079] 1.108 | 1.128| 1.188 1.145 | 1.151| 1.166 | 1.165| 1.176
0.20 | 1.069| 1.107! 1.148 | 1.170| 1.184} 1.201 | 1,211 | l.218| 1.282| 1.250
0.25 | 1.088| 1.1861 1,190 1.220| 1.289| 1.262| 1.276  1.286| 1l.807| 1.888
0.80 | 1.106] 1166 1.284| 1.272| 1.298 | 1.820 | 1.848 1.861| 1.891| 1.429
0.85 | 1.1256] 1.197| 1.281 | 1.829| 1.861 | 1.402 | 1.427 | 1.447 1.485 | 1.588
0.40 1.146) 1.280] 1.880 ] 1.889 | 1.480| 1.482| l.514| 1.587| 1.691 | 1.667
0.45 | 1.164] 1.268| 1.882 | 1.454| 1.504| 1.669 | 1.610| l.640} 1.712| 1.818
0.50 | 1.185| 1.207| 1.487| 1.528| 1.584 | 1.665 | 1.718 | 1.755 | 1.851 | 2.000
0.65 | 1.205 ] 1.888| 1.494| 1,597 1.670| 1.770 | 1,887 1.885| 2.011| 2.222
0.60 | 1.226| 1.870| 1.5656 | 1.677| 1.764| 1.887 | 1,970 2,082 | 2,198 | 2.600
0.65 | 1.248| 1.408| 1.620| 1,762 | 1.867 | 2.016| 2,120 2.198 | 2.417 | 2.857
0.70 | 1.270| 1.448 | 1.686 | 1.854| 1,978 2.159| 2.289 | 2.888 | 2.675 | 3.888
0.75 | 1.202 1.489 | 1,762 1.952] 2.099 | 2.819| 2.479| 2.605| 2.984 | 4.000
0.80 | 1.816| 1.582 | 1.888 | 2.050| 2.282 | 2.496 | 2.696 | 2.858 | 3.857 | 5.000
0.85 | 1.888| 1576 | 1.920| 2.178 | 2.877| 2.695| 2.942| 3.144| 3.818| 6.667
0.90 | 1.862| 1.622| 2006 2.297| 2.5685 | 2.918 | 3.228} 3.479| 4.874 10.000
0.95 | 1.886 1.669 | 2.097 | 2.480 | 2.709 | 8.166 | 3.647 | 3.872 | 5.076 |20.000
1.00 | 1.411] 1.718 2.195 9.675 | 2.900| 3.451 | 8.919 | 4.888 | 5.968 | oo

The sign 5 indicates that the result is rounded off upwards to the five.
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Lom {%,+ a———l} & (50)

This is, as it ought to be, 0 for b = 0, when
all incoming ecalls are served and it will be

“A-E  forb = 0, that is the same as with busy-

signal systems,

Let us now consider more closely the series
(45) and state methods for its numerical com-
putation. By comparison with the series expan-
sion for e='#it is seen at once that (45) is con-
vergent for all positive bounded values of «
and B. Again, for 8 = o, (45) has the form
(47) and is convergent only for o < 1. Further
it is easily seen that W(«,8) always rises with
rising o and B (here we only consider positive
values for o and B). For bounded 8 > 0 there
is then valid

Wia,0) < We, 8) < W(a, )

therefore

1< Wie A (51)

“1—a

It is now seen, from the properties stated for
W{a,B), that the congestion for bounded B is
always less than one. For § = o« the congestion
will be 1 for « = 1, that is for A = n, and for
greater o values, the formula has no meaning.
This is fully in agreement with what we found
before with delay systems without voluntary
departure for those waiting, viz: that for 4 > n
there is no longer any state of equilibrium. With
voluntary departure of those waiting, on the
contrary, nothing like that ever happens, how-
ever great o and thus 4 may be. This is an ex-
tremely interesting condition. Of course, in rea-
lity there does not oceur any case where one
deliberately fixes the dimensions of a group of
devices in a delay system, so that the offered
traffie’s mean value is larger than the number
of devices. Nevertheless, there may arise tempo-
rary overloads of such long duration that a state
of equilibrium should be able to arise. If no
voluntary departure of those waiting ocecurs,
however, no state of equilibrium ean arise and
gradually the waiting times approach infinity.
It is evident that in such case those waiting
always give up their waiting but then there will
gradually set in a state of equilibrium, so that
one may reckon with a congestion according
to (48 a).
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For numerical computations of W(«,8) one
may have use for the following simple recurrence
formulee which are easily verified by insertion
in (45). The formule are

_ a-ff a- i
W(a,ﬂ)-1+ﬂ+lW<ﬂ+1,,9+1)(52a)
a.W(a,ﬁ)zW(ﬂ“fl,ﬂ—-l)—q (52 b)

Furthermore, it may be noted that if 8 is a whole
number (45) may be written in the form

Wiaf) =gt DL

g=0

from which we get the expression

B-1 .
. 2 (a vl’g) e B

y=0

_ Ple= 8

(- B)f

Wia- ) (53)

Thus in this case we can conveniently compute
W(a,B8) from a table of Poisson expressions. It
is also possible to use the simple special case
of (53): Cd' 4
— (53 a)
= T

and then progressively apply the recurrence for-
mula (52 D).

For the general case, where 8 is not a whole
number, we can express W(«,8) by means of a
known integral. If we derive (45) in respect of
« and convert the result somewhat by means of
the recurrence formule (52) we obtain a diffe-
rential equation of the form

.fl w
da

and from this there is obtained the following
solution

ea——l

Wie, 1) =

[73

=pla—1) W+ 8 (54)

a8
NPLEY:}
Wia, p) = pre /‘xﬁ—l e *dx (55a)

(- BF
0
The integral in this constitutes what is called
the incomplete gamma function and is to be
found in table (bibliography 12). We can then
write
_pee#
W(ayﬁ) w(aﬂ}ﬁ s (ﬂ)
When W(a,B) is known it is easy with the aid
of tables for E 1 ,t0 compute the congestion

(55 b)

B e e S e e b
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[p] = (46 a)

1+ (W—1)Ey,n pldr

[7,q]

— E1,n . (a'ﬂﬂ'
L+H(W—1E;» B+1)(f+2)---(B+9)

Tt is now seen from (45) that for B = 0 we have
W(a,0) = 1. There is then obtained from (46 a)
the usual expression with busy-signal systems for
the state quantity [p]. This is quite natural as
8 = 0 means b = 0. The mean departure time
for those waiting is therefore in this case 0, ie.
none subjected to eongestion troubles to wait for
a device to become unoccupied. The traffic con-
ditions in the group must then be exactly the
same as with busy-signal systems. Another ex-
treme case is also of interest, namely b 0.
Then we shall also have 8§ = oo. 1f now in (45)
we divide the mnumerator and denominator of
each term by B7 it is seen that

(46 b)

o0

D

q=0

W (e, o)
which is an ordinary geometrical series. From
this we get

1

l—«

W (4, o) = (47)

The equations (46 a) and (46 b) in this case go’

over to the equations (4a) and (4b) applying
to delay systems without voluntary departure.
This is also quite natural since an infinitely long
mean departure time means that all those sub-
jected to congestion continue to wait until they
obtain occupation, ie. the conditions will be the
same as when no voluntary. departure of those
waiting oceurs.

Consideration of the conditions with voluntary
departure of those waiting has thus brought us
to formule of very general validity, which con-
tain within themselves as speecial cases the results
presented by Erlang both for busy-signal systems
and for normal delay systems.

We are now in a position easily to set up a
formula for the congestion, that is the time of
full occupation. This is obtained from the sum
af all the state quantities [n,q] for ¢ = 0, 1,
2... and is obtained from (46 D) as

V2 &= he

1+ (W —1)E,,» (482)

For this expression there may also be used the
notation & (4,8) with all the three parameters
n, 4 and B set out. No special marking of « and
b is required, as these are obtained from n, A
and B. For b = 0 there is now obtained, as it
should be, from (48 a)

g,;(A’O) = El,n
and for b = o« we get

. Ehn
l—a-+ a E,,

&4, =)

which is the same thing as the recurrence for- 1
mula (12 a) and therefore equal to ,EML.

We can now also obtain a simple formula for
the functioning time of the waiting arrangement,
as this is defined in the left member of (6). It
will be

W—1 e

& (481)

The formule shown so far evidently apply
irrespective of the order in which those waiting
are served, as in the deduction we had no need
to assume anything in this respect. The same
condition applies also to the mean waiting time,
this as previously shown being obtained gener-
ally from an expression of the form (18) the
deduction of which, as may easily be realised,
is valid with voluntary departure among those
waiting, too. By means of (46 b) the following
expression can be obtained for the mean waiting
time

E[&/ﬁ /iﬁj \?»@gz
A

This applies to the mean waiting time of ecalls
actually subjected to waiting. To arrive at the

—1—+a-—1l

B

mean waiting time for all calls, the expression- )X iy

is to be multiplied by the congestion.”(49) be-
comes 0 for b = 0, as it should be. For b =
we have (49) assuming an indefinite form, but
closer examination gives in this case

1 a

y1—a

which is identical with (19).

Pinally, the volume of traffic is of interest,
which is »losty» owing to a number of subscribers
exposed to waiting not completing the waiting.
For this traffic we can obtain the expression
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tems gives reason to suppose, however, that the
assumption of an exponential departure distri-
bution need not be feared to involve any serious
restriction of the general application of the results.

We introduce the same designations as before .

for the state quantities with delay systems, i.e.
[p] and [n,q], to denote the mean value per unit
of time of the total time when the state prevails
with p of n devices occupied or with all n devices
occupied and ¢ waiting subscribers. Assuming
random traffic and exponential holding time
distribution there is obviously obtained the same
relation as previously (1a) for the states when
there are none waiting. The same distribution
funection and the same termination probabilities
are valid, of course, for the state p as with busy-
signal systems, irrespective of the conditions for
congestion. A state n,g proceeds as long as no
new call comes in, none of the occupations ter-
minates and none of the ¢ waiting subscribers
tires of waiting. The probability of a state n,g
proceeding for at least the time f will then be

_ LA l)
e (y+a+bt

since not only the holding times but also the
departure times for those waiting are assumed
to have distribution funetions of the exponential
type. From this expression for the probability
that the state n,q will persist for a given time,
we can in a manner entirely analogous with
the deduction of the relations for busy-signal
systems determine the probabilities of the state
terminating owing to new calls coming in, owing
to the termination of one of the occupations
proceeding or owing to the voluntary departure
of one of the ¢ waiting subseribers. It will then
be possible by means of the quantities [n,q] to
get the expression for the mean value of the
number of times per unit of time the different
states change over to each other. We then obtain
a general relation of the form

g+%md

From this and (1 a) there is then obtained

ylmqg—1]

(s-y)nre

s s s
il 97 ..., hd
"+b><n+“b> <n+qb>

The quantity [0], at last, is determined from
the fact that the sum of all state probabilities

[n,q]= ( 0] (43)
nl
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must be 1, so that we get

p=0

(s 9" & (s-9)?

+ (44)
n!£;@+%ﬂ"+2%"”@+qa

To simplify the final formule we shall intro-
duce somewhat different notations. First, we set
A = sy = the volume of traffic offered to the
group, as before. In this case this is slightly
greater than the traffic handled in the group,
as some of those waiting are assumed to abandon

their calls. Further we set o = ¥ the ratio
n

between the traffic offered and the number of
devices. Finally it seems appropriate to set the
mean fatigue b and the mean holding time s in
relation to each other. We therefore introduce

n-b
B = =
between the mean departure time and the mean
interval between the congestion transitions. The
second series in the right member of (44) will
now, with these notations, have the form

(c-B)7
B+2)--B+9

The constant B8 is then the ratio

oo

22@+n

g=1

It appears advisable to introduce a separate
notation for this series. We put

) (a,ﬂ)q
af) =
W (a, 3) N FF G+ B +g

q=0

(45)

In this series there occurs for convenience also
a term for ¢ = 0, which is set equal to 1, so that
we have W(0,8) = 1 for a 0. There is now
obtained from (44)

1 47

g LA

An—1 Anr
(n—1)! - n! Wia, £)

By means of the notation E, , introduced on
page 19 formula (7) for loss in busy-signal
systems, this may bé written in the form

14 1
El;”ll

[o] " mr
We then get, finally, the following expressions
for the state quantities [p] and [n,q]:

—
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tion that the holding times follow an exponential
distribution funetion and that the calls are
distributed at random during the times when
the subscribers are not engaged in conversation.
Thus no accumulating of call needs is eonsidered
as occurring. If the number of subseribers is
denoted by N and the incoming traffic from each
subseriber is @, the mean value of that part of
the whole time when the state p prevails is re-
presented by

(41 a)
This is valid for p < n. If there is congestion

and the number of Waiting calls is ¢ there is
obtained instead

The constant K in these formulae is determined

by the condition
Ne—n
E n, gl =1

n-—1
E [p] +
. p=0 g=0
and the traffic guantity a, is obtained from
n—1
Na= N'plpl
p=i

For small congestions there is valid with good
aceuracy

N
n-+q

(n+ g)lan*e
n! n?

I, q] = K( (41 D)

(41 ¢)

Nen

+ 722 [n, q] (42 a)

g=0

a
1—a

ay = (42 b)

Numerical computations according to the above
equations will in general unfortunately be quite
troublesome, so that the formulae are hardly
likely to find any great employment in eompu-
tation of dimensions in practice.

Congestion with Voluntary Departure
of Those Watting.

The formulae presented earlier in this article
for delay systems have all been based on the
agsumption that the subseribers when subjected
to waiting have always continued to wait until
they are served. This is probably not always the
case in reality; it is a wellknown experience that
with markedly long waiting times the subseribers
will often become impatient and replace the re-
ceiver, renewing the call immediately or after a
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little while only. In the former case there should
not be caused any effect on the size of the eon-
gestion; the result of a subscriber ceasing to wait
and immediately trying a new call will only be
that he will be placed further back in the queue,
in case the serving of those waiting is done in
ordered queue. If on the other hand the subseri-
ber, after tiring of waiting, does not renew the
call until after a certain time, the call may he
regarded as »lost» in the same way as a call
meeting with congestion in a busy-signal system,
so that the renewed call is suitably counted among
the normal random distrib¥ited calls. In this case
there evidently arises owing to the voluntary
departure of waiting subseribers a reduction of
the congestion and of the waiting times for those
who continue to wait. It has been found possible
with certain assumptions theoretically to compute
the traffie conditions with such voluntary depar-
tures among those waiting and there are then
obtained formulae of a fairly general character,
which comprise as special cases the Erlang solu-
tions both for busy-signal and for delay systems.
Respecting the deduection attention is directed to
bibliography 8. Here we shall only present some
complementary formulae and tables, which faci-
litate employment of the results in practice. In
this connection there will be given a brief survey
of the most important of the results obtained
earlier.

To allow of a reasonably simple mathematieal
treatment it must be assumed that the probability
that a waiting subseriber gets tired of waiting
may be expressed as a simple exponential funetion
of the time he has already heen waiting. We
therefore start out from

e
as expressing the probability that a subsecriber
who has to wait has still not ceased to wait after
a time {. We denote this funection the departure
function. The constant b, which is the mean value
of the distribution, may be denoted the mean
departure time. Now it is true that both measu-
rements and theoretical considerations which
cannot, however, be gone into more closely in
this connection, show that the departure funetion
has in reality a more flat type than that repre-
sented by the exponential distribution. Experience
in respect of the influence of the holding time
distribution on traffic conditions with delay sys-

b
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funetion should quite closely agree with the purely
exponential form. To show how good this agree-
ment is in reality, the function (33) has been
tabulated here for n = 20 and s = 100 secs.
There is obtained from (33) in this case

t 19

valid for all values of £ up to 100. Beyond that
the funetion has the value 0. The difference
between this function and the exponential fune-
tion for the same mean value has a maximum of
around 0.01. With graphical presentation, there-
fore, the scale must be quite large for the curves
to be distinguished from each other. Some idea
of how near together the curves come is given by
fig. 4, which shows the difference

t 19 _t
1=

as a funetion of ¢.

As a final example, we may consider the dis-
tribution introdueced on page 54 for two expo-
nentially regulated stages. We then have

f(z)=(1 +§t)e“§"

and get

19 ¢
) — ¢ 7 % as a funetion of ¢,

2
£ .—.(1 +-§>e*?‘
The form factor according to (40) will then be

D4 )2 n
{1 con+ Gf L B0 }
21 ‘ n!

n!

(2 n)"

It can be shown that this expression has 2 as
limit with growing ». For n = 2 we get the form
factor 1.625. It may be of interest to consider
the congestion values in: the table on-page 55 in
the light of the form factor values for the distri-
bution function of the congestion transition.
With constant holding time this form factor will
be 1.333, with two exponentially regulated stéges
there is obtained the value l.625 and finally for
purely exponential distribution the value will
be 2.000.

In conjunction with the general diseussion of
the applicability of the Erlang solution for delay
systems with exponential holding time distribu-
tion, something may also be said about the con-
ditions with delay systems when the number of
subseribers is regarded as limited. Some formulae
for this case will be found in bibliography 7,
chap. 5 (unfortunately partly incorrect owing to
printing errors). They are deduced on the assump-
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the latter case should therefore be fully adapted
to general application. Naturally, this rule must
be employed with a certain amount of diserimi-
nation, as it is known that conditions with very
small groups can be very different. This should
be particularly observed for n = 1, a case which
is quite often found with service stations (e.g.
booking offices, counter service ete.).

To obtain an idea of how good the agreement
is with the formule applying to exponential hold-
ing time distribution, it may be worth while in
special cases to compute the function (33), or at
least determine its form factor which may be
expected to furnish a good indication of how
closely (89) is satisfied. The form factor for
any distribution function f(t) is defined by the
equation (3) in the first article of this number,
page 3. In that expression s is the mean value
of the distribution, which for the function (33)
above is equivalent to s:n. Thus the form factor
for this is expressed by

(o]

2"’/t-F(f)dt
82
[0

1f in (33) we introduce the function f,(t) accord-
ing to (34), there is obtained from this

oo

20 L 0 () e

0

Now A (1) = wélff(t)

may be written

so that the expression

[o <]

2n [ t-d{fiO)
oy

0
From this there is obtained by partial integration

—i@[t{flw}] ‘f’fﬁ()}

Now it ean always be assumed that
limt{A(H)}»=0
t ~—p 0O
Whleh in faet, is necessary if the form factor is
to be finite. The square bracket in the last ex-
pression but one will then be zero, and we obtain
as final expression for the form factor

——/{ﬁ  d |

(40)
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With exponential distribution we have f(7)
t ¢
=¢ #, from which we get , ({) =e 5. There

is then obtained, as there should, for the form
factor the value 2, irrespective of n. As an example
of a flat distribution we may consider the com-
pletely monotone function

8
@2 +10)°

which is to be found in curve 2, fig. 1, page 5.
In this case s = 1 and the form factor has the
value 4. We now find

4

fx(t) = 2 +{)2

From (40) there is then obtained

2n4”/2+t‘2“d6

or, evaluated

f@) =

L
2n

In this case then the form factor for the distri-
bution function of the congestion transition for
increasing n approaches the value 2, that is the
value it has with purely exponential distribution.
For a group with 20 devices, therefore, the form
factor will have the value 2.051, whereas with
the original function f(f) it is 4. Even with 2
devices it has gone down to the value 2.67.

As yet another example, we will consider the
distribution with constant holding time, with
which the form faector has, of course, the minimum
value 1. Here f(1)=1for0 <t < sand f(¢)= 0

fort > s. We then get f,(t) = 1 — -Z:forO —i=s

and fl(t5= 0 for t > s. In this case there is
obtained from (40)

B

S S
0

or
2n
n+ 1
Thus for a group of 20 devices the form factor

for the distribution function of the congestion
transition will be 1.905, which shows that' the




means that the probability that the n — 1 oceu-
pations which are still proceeding after the first
congestion transition will all continue after the
time t is expressed by

Snl-x /f(ac+£)dx

In addition, the fresh occupation which started
at the congestion transition and which derived
from one of the waiting calls will continue at
least the time £, and the probability of this is f(¥),
this being the distribution function of the holding
times. The produet of f({) and the above proba-
bility, thus expresses the probability that none
of the n occupations will terminate during the
time t after the congestion transition. But this
product is identical with F(t) according to for-
mula (33). We may now repeat the reasoning
and determine the probability that after the next
congestion transition, if such occurs, all the oceu-
pations will last at least the time ¢ and will then
again obtain the function F(¢). This function
therefore is preserved throughout the whole con-
gestion state and gives the probability that after
each congestion transition taken at random none
of the » occupations will terminate during the
continued time ¢. The formula (33) therefore
gives the general expression for the congestion
transition’s distribution function, for which we
found earlier in (24) a special expression, valid
for exponential holding time distribution. If we

n—1

-,

introduce f(¢) = ¢ s it is also easy to see that

the two expressions agree,

Now, the practical significance of the reasoning .

here advanced lies in the fact that the function
(33) for m values of any size comes very close to
the exponential function (24). To show this we
introduce the designation

Ji(t)= %/f(x +tdz (34)

We further introduce a funetion K (¢), defined by

A=1—S(1—F0) 65

By deriving (34) and (35) we get

Filll=— 0 =— -+ SE@+ K

from which

S =1—K{t)—t-K'(}) (36)

If we introduce the variable v = ::it and expand

In f,(t) in series according to (35) we get

Infl(t)zmz—L{l——K<ﬁ>}-—

n

1 72 st\ )2
hé_?{lﬂK(;z_)}....
From (33) we then get
1nF(f—”>=1n f(iz)-——n_lr{l—-K(f)}m
n % n %
2 n n n

We shall now determine the limit of this expres-
sion when 7 — . We then note first that

(37)

f(0) = 1. From (34) it further follows that
f,(0) = 1. From (35) it is then seen that
we have

Hmt - K(f) =0

| ]

From this it follows, however, that

lim K' {#)

t—0

must be bounded. It then follows from (36) that

limK(f) =0

t——0

From (37) it then follows, when we let n —
that

limln ¥ (f’—’) =— (38)
T e OO %
which means that
Ft) —e "t (39)

for great values of n.

Since the distribution funetion of the congestion
transition wholly determines both the waiting
times and the durations of the congestion states,
(39) now shows that the congestion conditions in
large groups will be independent of the distribu-
tion function of the holding times and the same
as in groups with exponential holding time dist-
ribution. The comparatively simple formulae for
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justification for the opinion that the formulae
valid for exponential holding time distribution
are also applicable for arbitrary distribution
funetion for holding times, at least with small
congestions and large groups, may be obtained
by comparison with conditions in busy-signal
systems since in this latter case we know the
expressions for the distribution functions of the
various states with arbitrary distribution fune-
tion f(t) for the holding times. (Regarding this,
see bibliography 9, particularly formulae (37)
and (43).) These distribution funections for the
states determine uniquely all traffic conditions
with busy-signal systems, provided there is sta-
tistical equilibrium, which means that the traffie
must have proceeded, theoretically, for an infi-
nitely long space of time. It is found, however,
both from experience and from theoretical in-
vestigations (bibliography 11, chap. 7), that
equilibrium is restored very quickly after small
disturbances. If we now consider a delay system
at an instant when a congestion state ceases, then
it may be assumed that the state that follows
with n — 1 devices occupied has a distribution
funetion different from the corresponding one
in a busy-signal system. If now the congestion
in the delay system is small and the number of
deviees large, the mean value of the time between
two successive congestion states is very great in

relation to the mean interval between the incoming .

calls. Now, during the time between two con-
gestions a delay system operates on exaetly the
same laws as a busy-signal system, since it is only
in respect of the treatment of congested calls
that the systems differ. During this interval
between successive congestion states the traffic
conditions should therefore seek to attain the same
state of equilibrium as in a busy-signal system
and if this interval is long the ages of the occu-
pations proeeeding"on the occurrence of a fresh
congestion state should distribute themselves m
approximately the same manner as with a busy-
signal system, which means that the probability
that none of the occupations proceeding termi-
nates in the time t should be approximately the
same as in a busy-signal system. This last is
expressed according to bibliography 9 by

oo n—1

ri= L5} [ 1o

0

‘\

(33)

In this s is the mean holding time and n the
number of devices in the group. The distribution
function of the holding times has an arbitrary
form f(?).

One may obtain an idea of the quantities
referred to in the reasoning by means of a
numerical example. We consider a delay system
with the number of devices n = 20 and the in-
coming traffic 11 erlangs. The mean holding time
may be 126 secs., which is that usual with us for
local calls. If we apply the formulae that are
valid for exponential holding time distribution
we find as value for the congestion 0.010 and
for the mean duration of the individual congestion
states 14 sees. Thus per hour congestion prevails
on the average 36 sees., which means 2.6 congestion
states on the average per hour. The mean value
of the interval between two successive congestion
states will then be 1400 secs., i.e. approximately
23 mins. During this time there arrives an average
of 122 calls and a like number of oceupations
terminate. Between two successive congestion
states there oceurs then an average of 244 changes
of state. This should be sufficient to cancel out
even a very great disturbance of the statistical
equilibrium.

We shall now show a remarkable property in
the funection F(¢) above. Assume that the expres-
sion (33) for this funection is also valid in a delay
system on the occurrence of a congestion state,
which from what is stated above should be
approximately correct if the intervals between
the congestion states are of any length. The ex-
pression (33) then gives the probability that none
of the n occupations terminates during the time ¢.
‘While all the n occupations are proceeding there-
fore there can come in fresh calls, which are then
subjected to delay. When later one of these n
oceupations terminates, there supervenes imme-
diately a fresh occupation and the congestion
continues. We shall now determine the probability
that after such a congestion transition none of
the occupations terminates during the remainder
of the time . This may easily be done by means
of the formulae deduced in bibliography 9 since
the expression (43 a) on page 52 in that paper
gives the probability that all p occupations occur-
ring in a state p arising out of a state p + 1 will
proceed for a further time £. As we have assumed
that (83) above is valid, the said formula may be
applied directly to our case for p = n — 1. This
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S= [0l + [11]. + [02],)

As the sum of all the state quantities is one, we
have further the relation

[00] + [10] + [01] + S=1
During the time when one of the states [10] or
[01] prevails, one occupation is dealt with in
the group. During the time that congestion
prevails two oceupations in the group are dealt
with. The traffic dealt with per unit of time in
the group will then be [10] + [01] -+ 28 and
this must be equal to the traffic offered to the
group, which clearly is s-y. We then get the
relation

[10] + [01] + 28 =35y

We have thus obtained 6 equations which only
contain the 6 unknowns [00], [10], [01], [11],,
[02], and §. If from this we solve S, there is
obtained the following expression, in which we
have set the incoming traffic s-y = 4:

4 [ (2—4)4
244 64 + 564+ 124+ 4°

S = 1 (32)
If we compare this expression with the congestion
with purely exponential holding time distri-
bution, i.e.
A?

2+ A

it is seen that (32) always gives less congestion
except for the maximum value 4 = 2. The table
below furnishes a comparison between some con-
gestion values obtained with constant holding
time, with the distribution treated here for
exponentially regulated stages and finally with

purely exponential holding time distribution.

E2)2=

Traffic Congestion with the form factor
A 1.0 15 2.0
0.0 0.000 0.000 © 0.000 0
0.2 0.018 0.018 1 0.018 2
04 0.061 0.066 2 0.066 7
0.6 0.184 0.137 3 0138 5
0.8 0.221 0.226 7 0.228 6
1.0 0.323 0.230 8 0.233 3
1.2 0 439 0447 1 0.450 ©
14 0.565 0578 6 057 5
16 0.702 0708 7. 07111
18 0.847 08515 08526
2.0 1 000 1/50/0 1000 0
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The form factor 1.0 corresponds to econstant
holding time, the form factor 1.5 to the distri-
bution examined above with exponentially regu-
lated stages and the form factor 2.0 to the purely
exponential distribution. The values for constant
holding time are taken from Erlang’s tables,
whieh only go to 3 decimal places.

Despite the fact that the congestion values in
the table refer to a small group, the differences
between the cases are relatively small. For small
congestion values the differences are very small,
growing with rising 4 to a maximum around
A 1.3. The congestion with the form factor
1.0 is then 0.011 less than with the form factor
2.0, which is only 2.5 % of the congestion value.
The relative deviations always decrease with
rising 4 and are zero for 4 = 2. It is extremely
interesting to note that the congestion with the
form factor 1.5 always lies between the congestion
for the form factors 1.0 and 2.0, and considerably
nearer the congestion value for the latter form
factor. For the general utility of the formulae
applying to exponential holding time distribution,
this is an exceedingly favourable circumstance.

The discussion presented appears to show that
in all steep holding time distributions oecurring
in reality one can with good accuracy apply the
formulae for exponential distribution. Another
question of equal importance is how conditions
will be with flat distributions which, as stated,
have a form factor greater than 2. Thus, measu-
rements performed lately of holding times with
local traffic have indicated that here we have
relatively flat distributions, with form factors
between 3 and 4. For the investigation of eondi-
tions in such cases the author treated in an
earlier work delay systems with arbitrary
completely monotone holding time distributions
(bibliography 7). The result was obtained that
the same formulae as for exponential distribution
also apply for an arbitrary completely monotone
distribution, at any rate where the congestion is
concerned. Unfortunately, in a serutiny recently
undertaken, the author has found a number of
gaps in the proof, so that this result, otherwise
extremely important, cannot yet be regarded as
fully established.

The reasoning advanced up to now has mainly
been based on numerical comparisons in special
cases and can therefore not be considered as
sufficiently general. A considerably more general




In measurements of 16000 register holding times
there was obtained a distribution curve with
the form factor 1.23, which means a considerable
departure from the eonditions with absolutely
constant holding time. The measurement results
are mentioned in more detail in bibliography 10.
Now it appears very natural that the traffic
conditions with holding time distributions whose
form factor lies between 1 and 2 should differ
less from the conditions with purely exponential
holding time distribution than what is the case
for traffic conditions with absolutely constant
holding time, ie. with the form factor 1. With
steep distributions oceurring normally in aetual
practice it should therefore be possible with still
greater safety to apply the formule valid for
exponential distribution than is the case with
absolutely constant holding time. With a view to
examining this condition more closely the author
has tried to introduce distributions with expo-
nentially regulated stages. In the first article of
this number, »Some Propositions Relating to
Flat and Steep Distribution Functions», it was
shown that such distributions always have a form
factor between 1 and 2. As an example of the
results obtained in these investigations, we may
go through a simple case, the computations for
which will not be too complicated, but which all
the same allow of some numerical comparisons
that are of interest.

The law of distribution of the holding times
is assumed to be such that each occupation must
pass through two stages before it is terminated.
For either stage there applies the distribution

2t

e "% . The distribution function of the holding
times will then be aceording to equation (30) in
article 1 of this number

2

The mean holding time is s and the distribution’s
form factor is 1.5. The appearance of the dis-
tribution funetion is seen from curve 2 in fig. 2
on page 17 (of that article).

Let us now consider a group with 2 deviees in
a delay system. The calls are assumed to come
in random distributed, their mean number being
y per unit of time. For the mean durations per
unit of time for the states possible in the group
the following notations are introduced:

_2
e 3
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: no occupation present.

[00]

[10] : only one occupation in stage 1 present.

[01] : only one occupation in stage 2 is present.

[20], : two occupations in stage 1 are present.
In addition there are » waiting calls.

[11], : one occupation is present in either stage.
In addition there are r waiting calls.

[02], : there are two occupations in stage 2 and

r waiting calls.

The distribution functions for each of these
states can now easily be set up and {from them
one can determine the mean number of times
per unit of time that each state is presgnt and goes
over into some other state. As regards method,
reference may be made to the ustal deduction
of the Erlang formule (see, e.g. bibliography 6).
By then setting the mean number of times per
unit of time that a state prevails as equal to the
number of times per unit of time that it arises
out of another state, there is obtained a linear
equation for each state. Thus, the following
equations, among others, are obtained:
2|

y [00] = —[01]

S2
(§+@um=ium+ymm

2
P

@+4mu=§m+ [02],

(i+@m%=énm

In each equation the left member represents the
mean number of {imes per unit of time the state
considered prevails. The right member gives the
mean number of times per unit of time that
the state arises from other states. The simple
but long-winded deduction may be omitted here,
as it would be trivial for those who are acquainted
with the methods in the preceding works.

As there exists an infinite number of states
one can obviously set up an infinite number of
equations. However, to determine the congestion
it is sufficient with the four equations given
above. To show this we introduce the notation S
for the congestion, i.e. for the sum of all the states
when both the devices are occupied and an in-
coming call must therefore wait. We then have

hle.ls
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Fig. 3. Distribution function of the delay with constant holding time. Number of devices n==10, traffic 4=4 erlangs.
Holding time equal to unit of time. The mean delay is 0.129. The broken line curve shows the exponential function
for the same mean value.

ficance, particularly in respect of the oceurrence
of long delays. '

The present author has in quite a large number
of cases compared the congestion values com-
puted by Erlang, Crommelin and Pollaczek for
constant holding time with those which apply
for ecquivalent traffic and number of devices
with exponential holding time distribution. Tt
was then found that the differences in general
are so small that they must be considered as
lacking significance in the work of dimensioning.
The differences will be the smaller the larger
the groups are. Only with very small groups will
the difference be of such a magnitude that one
possibly should [take them into account. In the
case n = 1, there is no difference, as the equation
(7), as stated earlier, is valid generally.

Pollaczek, for the congestion with constant
holding time, has deduced an asymptotie formula
(see bibliography 19) valid for great n values:

1 (e

l—a Vornu
in which & = A:n. Now it was shown earlier,
see equation (17), that

(31),

for great n values constitutes a good approximate
value for the congestion with exponential holding
time distribution. If now in this expression we
introduee the wellknown Stirling approximate
value for the gamma function, i.e.

nl=Voan-nren

then the expression (31) is obtained in this case
too. From this it is seen that both for constant
and exponential holding time there are obtained
the same expressions in the limit for the con-
gestion in large groups. Pollaczek has also stated
asymptotic expressions for the mean delay and
the distribution funetion of the delays, which
show that these, too, will be equal for constant
and exponential holding time distribution for
great n values.

The numerical and theoretical results stated
all appear to show that with groups not too small
it is possible with good approximation to count
with the formule for exponential holding time
distribution for constant holding time, too. Now
there hardly occur in reality any traffic cases
in which the holding time may be regarded as

- completely constant. The case in telephony in
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which one comes nearest to the constant holding
time would seem to be with register occupations.




The General Dependence of Congestion
Conditions on the Law of Distribution
of Holding Times.

The condition that congestions and delays in
waiting systems are dependent on the distribu-
tion law valid for the holding times constitutes,
of course, a considerable inconvenience, the like of
which does not exist with the busy-signal systems
with which, as previously shown, the congestion
and the other traffic values are entirely inde-
pendent of the form of the holding time distribu-
tion function. Moreover, conditions with delay
systems are so complicated that the theoretical
investigations so far have only furnished definite
results for some special types of holding time
distributions. Even if it were possible to perform
computations for every kind of distribution fune-
tion for the holding times, the application would
be found extremely troublesome, as in fixing
dimensions one would always have to take into
account which kind of occupations were present
in the individual case. In such conditions it may
appear as if the value of the results so far gained
were rather limited. Fortunately such does not
appear to be the case, and the reason is that
the influence of the distribution funection of
the holding times as regards congestion and delays
seems in general to be slight from the purely
numerical point of view. In consequence of this
it would appear that in most cases one may
employ with confidence the formule, which are
valid for exponential holding time distribution
and which for numerical computations are the
most convenient. There are many motives for
such an attitude and these will be more closely
examined in this section.

Btate ho?é)ilxllsgt‘;a tx;litr;ne lﬁ}fgiorflge Iﬁﬁt
{0} 0.0183 0.0183
[1] 0.0730 0.0732
[2] 0.1464 0.1464
[3] 0.1951 0.1952
4] 0.1952 0.1952
[5] 0.1565 0.1562
(6] 0.1044 0.1041
M ~ 0.0598 0.0595
[8] 0.0297 0.0298
[9] 0.0140 0.0132

Congestion 0.0078 (.0088

To arrive at an estimate of the numerical dif-
ference between the results with constant and
exponential holding time, we will first consider
a case computed by Crommelin with constant
holding time and compare the same with the
equivalent values obtained from Erlang’s for-
mulae for exponential holding time. In the example
the number of devices n = 10 and the incoming
traffic A = 4.0 erlangs. The table below shows
the values that are valid for the different states
[p] and for the congestion with constant and
exponential holding time.

Tor the state quantities [0] up to and including
[8] the agreement is practically exact, and the
small differences there are would seem owing to
the irregular occurrence to be entirely attribu-
table to the circumstance that the 4th decimal
is not exact as regards the values for constant
holding time. On the other hand,: the congestion
is distinetly less with constant than with expo-
nential holding time and the difference will be
seen to have mostly have lain in the state 9, which

is the highest state where no congestion occurs.

§2

That the congestion should be smaller with con-
stant than with exponential holding time is fairly
natural and appears to be a condition generally
valid (execept for » = 1), as all comparisons
between numerically ecomputed values show this.
It is also rather matural that this decrease in
the congestion should be compensated by an in-
crease of the durations of just the highest states.

In the example given it must be considered
that the difference between the congestion values
is so slight that it is of no significance in prae-
tice if in deeciding dimensions one reckons with
one value or the other.

In respect of mean delay for the calls that
have to wait, Crommelin found for the same
example the value 0.129, the unit of time being
set equal to the constant holding time. With
exponential holding time distribution there is
obtained the mean delay 0.167. The difference
should be considered here as having a certain
signifiecance though in percentage it is not par-
ticularly great.

In fig. 3 will be seen the distribution function
for the delays in the above-mentioned example
with constant holding time as compared with
the exponential function for the same mean
value. The difference between the curves may
be considered as having quite appreciable signi-
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This is identically valid, so that the coefficients
for the different powers of z must be equal in
both members. By means of the definitions (18)

and (22) all [p] for p < n will then be uniquely

determined. For example we find

= Sp=1-
p=0

\'I‘his expresses the congestion, that is the part of
the whole time when all n devices are held.

The function ¥ (¢) is now fully determined and
by expanding the right member of (23) accord-
ing to rising powers of 2 and comparing the
coefficients for the different powers of z, there
will be determined all [p] even for p = n. Thus
it has been shown by the introduction of the
generating function that the system (19) has a
single solution, which satisfies the condition that
all [p] are non-negative and that the sum of
them is 1.

For computation of the roots A it is convenient
to.introduce 8 = a-A, @« = y:% being the mean
value of the load per device. By putting the
denominator in (23) equal to zero there is ob-

tained the equation
n S
=g V 1

For each of the n roots of 1 there is obtained a
value for B, the absolute value of which is =« .
Not more than 2 roots are real, the others are
conjugately complex.

‘What is stated above shows the fundamental
reasoning behind the Crommelin presentation of
the problem. It is possible then from the gene-
rating funetion to produce expressions both for
the mean waiting time and for the distribution
function of the waiting times. The latter has a
broken form, in that its derivative is disconti-
nuous for { = 1, 2, 3 and so on, ie. for integral
multiples of the constant holding time, If we put
t = T + =, with T a whole number or zero and
0 <1< f’, then there is obtained for the pro-
bability that a random selected call will be sub-
jected to at least a ¢ long delay the following
series expansion

n—y

(=2 (=) (I—hey) (25)

pre (26)
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Erlang has also given an asymptotic formula
F(t))=e v 0= [(f) (28)

by means of which for great ¢ values one can
compute F(t,) out of F(t,), with ¢, > ¢,. The
formula will be the more accurate the greater
« and n are. The constant r, has been tabulated
by Erlang (bibliography 4) and is also given in
Berkeley’s above-named article (bibliography 2).

The formule stated above are valid for delays
with ordered queue. The delay conditions with
random served queue and constant holding time
do not appear to have been the object of investi-
gations.

The determination of the congestion according
to (25) will be troublesome owing to the necessity
of computing the roots A. Pollaczek and Crom-
melin have therefore also deduced a somewhat
more convenient expression for computing the
congestion. According to this

Z‘“’ = 3!

v=pn

M @/)”

(29)

is equal to the natural logarithm for 1 minus
the congestion. There has also been produced a
series expansion for computation of the mean
delay. According to this the mean delay for all
calls (i.e. not only those which have to wait) is
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As has been seen from this brief exposé the
theoretical treatment of the traffic conditions
with delay systems and constant holding time
gives relatively complicated final formule, which
are little suited to numerical computations.
Nevertheless, a number of these have been per-
formed by Erleng, Pollaczek, Crommelin and
Berkeley. Quite a number of conclusions of great
interest can be obtained from the results of the
computations, and these will be touched on in
more detail below.




We see that the model described holds good
even if p > = and therefore there are waiting
calls also at the end of the interval. The proba-
bility that at the beginning of an interval of time
selected at random of the kind under conside-
ration one of the states 0, 1, .. n will prevail
is now according to the notation (18) equal to an.
Further the probability that the state p will
prevail at the beginning of the interval is [p]
and finally the probability that during an interval
of time with length 1 there will come in p calls
but not more is, according to the wellknown laws
for random traffic,

y“ -y

i
The probability [p] that at the end of the interval
the state p will prevail must now he equal to
the sum of the probabilities for the different
contingencies described above for the occurrence
of the state p at the end of the interval. On the
basis of this we get the relation

e (19)

which is valid for all values of p, ie. also for
p > n. For p = 0 the right member is reduced
to the first term onlyr =

By means of (19) there is obtained a linear
equation system with an infinite amount of un-
knowns. Aceording to Crommelin, the system was
first stated by Fry, though not published. It is
found that this system in conjunction with the
conditions that all the unknowns are probabilities,
ie. non-negative quantities, and that the sum
of all the quantities ['pj is one, has a unique
solution. To show this we define with the aid of
the probabilities [p] a function of a variable 2:

oo

v =) lple

} p=0
Such an expression is designated a generating
function, as the separate probabilities [p] con-
" stitute the coefficients to the powers of 2. Since
the sum of all the probabilities must be one,
there is valid

v) = D=1

p=0
Since all the quantities [p] are non-negative,
the series is absolutely convergent. The function

(20)

(21)

§0

P (z) is therefore limited for each # (also complex)
whose absolute value |z | < 1.

If now we multiply both the members in (19)
by z# and add the relations for all p values thus
obtained, we get

co »
yrH
np)eP
22{“]@ﬂm
=1 u=1

If the summation order in the double sum s
reversed, the sum over p can be performed di-
rectly and we get

Yiz) = aneV*=V + eV

»

Y(z) = a, eV 1 4 ¥ D 2 [+ u e

u=1

The remaining sum ecan elearly be written in

the form
n

zn{ﬁluo—- PN

p=0
If we introduce the designation

n

Q) = D il

p=0

(22)

we obtain finally

DY (2) = ay + 27 (Y (2) — Q (&)}
or

‘,U(Z) — Q(Z)—"‘anzn

Tl ev () (23)

The denominator in this expression has a zero
place for z = 1, and Crommelin has shown that
altogether it has » zero places, the absolute values
of which = 1. Now since ¥ (z) from what was
just stated is to be limited for all Iz) < 1, the
numerator must also contain these roots. Now
the numerator is a polynomial of the nth degree
in #z and will therefore be fully determined
through these roots except for a constant factor.
If the roots are 1,4, 4,,++-4,—1, then we have

Q) —aner =k e—1) p—2) o t— )
The constant k is obtained from
lim v{&)=1
z—p 1

The limit is obtained in the wusual way by
deriving the denominator in Y (z) and setting
z = 1. We then get




Pollaczek published in 1930—1934 (bibliography
13—19) a number of investigations into these
problems, the early ones being based on condi-
tions which are not present for applications in
telephony. The final solutions were published at
about the same time by Pollaczek and Crommelin,
whose works appeared 1932—1933 (bibliography
19 and 2). ,

Pollaczek in his investigations considers to
begin with a finite space of time 7', during which
a given number of calls come in randomly dis-
tributed. The times of the holdings caused by
these calls obey an arbitrary distribution law.
By means of an extensive mathematical apparatus
there are then obtained particularly complicated
expressions for congestions and delays. To make
these manageable there is considered the case
T —+ oo with which the assumptions change into
those applying to ordinary random traffic. No
solution that could be used for numerical com-
putation was produced, however, for the general
holding time distribution funetion but only if
this is exponential, when the Erlang results given
above are obtained, or constant, when the results
are still complicated yet possible to evaluate.

Crommelin’s procedure is of quite a different
nature. He starts out direct from random traffic,
in which all holding times have the same length,
and by means of relatively simple mathematical
aids arrives quickly at general expressions for
the solutions, for which afterwards series ex-
pansions of the same kind as Pollaczek’s are
obtained.

Respecting the literature dealing with delay
systems with constant holding time, there may
finally be mentioned a paper by Berkeley (bib-
liography 1), in which some of Crommelin’s
formule are reproduced and esplained in some
detail and a number of comparative computations
performed. The results are compared with a
number of tests on »artifieials traffic, which are
ineorrectly conceived however.

Here we shall review some of the concordant
Pollaczek and Crommelin results, without going
into the details of the deductions. Nevertheless,
a brief survey will be given of Crommelin’s
fundamental equation partly because through it
there is obtained an idea of the essential elements
in the method of treatment and partly because
it gives a partieularly fine example of the em-
ployment of generating functions, a method often

employed in the theoretical treatment of traffic
problems. Otherwise attention may be directed
to Crommelin’s work (bibliography 2) and to
Pollaczek’s latest work (bibliography 19) which
give a final summary of the whole problem.
We consider a full availability group with n
devices in a delay system, with the incoming
traffic random and y the mean value of the num-
ber of calls per unit of time. The holding times
are always of equal length. For the sake of
simplicity we make the unit of time equal to
the constant holding time, so that s = 1 and
the traffic flow will be equal to y. As before, we
introduce the notation [p] for the probability
that p but not more of the n devices are oceupied
at one time. In this case it is appropriate to retain
the expression [p] even though p > 7, in which
case by [p] we mean the probability that all
devices are occupied and p — = calls waiting,
that is what we previously denoted by [n, p—n].
Making use of Crommelin’s notation we intro-

duece now
ay = 2 [p]
p=0

We consider an interval of time of the length 1.
Since all holding times have the length of 1,
holdings proceeding at the beginning of the time
interval must all have terminated at the end
of the interval. Any delayed ecalls that may be
present at the beginning of the interval and all
the calls coming in during the interval of time
considered must at the end of the interval either
form occupations in progress or wait (here we
consider only the case that all calls subjected to
delay continue to wait until oecupation is ob-
tained). If a state p exists at the close of the
interval, one of the following cases must have
arisen:

(18)

at the beginning of the interval there prevaﬂre,d) e
one of the states ’Q;' 1..m) and ‘during the in-

terval p new calls have come in,
at the beginning of the interval there prevailed
the state n + 1, i.e. there was one waiting call,
and during the interval p — 1 new calls have
come in, )
ete. and finally

at the beginning of the interval there prevailed

the state » + p and during the interval no
new calls have come in.

i
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the waiting queue being always served in order
there is no need when deducing the distribution
funetion (21) for the gth waiting call to take
any account of the further calls coming in during
the delay to take up places further along the
queue. It is this condition which, among other
things, makes itself apparent by (21) not con-
taining y, which makes the deduction for ordered
queue relatively simple. With random served
queue there occurs on the other hand an influenee
on the delay from calls coming in later, which
makes conditions more complicated.

Of fundamental importance for the whole delay
theory is the circumstance that the dropping out
of the occupations is governed by an exponential
function of the form

_ i

e (24)
which gives the probability that none of the n
occupations proceeding during a congestion state
terminates during a time ¢ after an arbitrarily
selected point of time. Through this function
being exponential the probability of any of the
waiting calls occupying a deviece will be inde-
pendent of the earlier course of events. ‘We may
designate (24) the distribution funetion of the
congestion transition, meaning by the congestion
transition the circumstance that when all devices
are occupied one of the occupations terminates
and another, originating in a waiting call, imme-
diately takes its place. A congestion state during
which calls arrive and must wait will thus display
one or more congestion transitions. The distri-
bution funection of the congestion transition (24)
thus gives the probability that during the time ¢
no congestion transition will oceur. It may here
be noted that though both this distribution and
the distributions for the states n,q are exponen-
tial, the same does not apply to the distribution
for the durations of the actual congestion states.
This, which is of the utmost importance for
judging the quality of service, will be treated in
more detail in a later article.

In conclusion, we shall refer to an interesting
circumstance. In the deduction of the distribu-
tion (21) for the gth waiting, we did not need
to take into account the magnitude of the state
quantities [p] or [n,q]. These did on the other
hand come in when determining F(f) according
to (22). This is not, however, a necessity, but
was only employed to simplify the presentation.

°°|=
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Basing solely on the congestion transition’s dis-
tribution (24) and the random distribution of
the calls, it is possible to deduce F(t) without
making use of the previous results concerning
the values of the state quantities. This will, how-
ever, make the deduction more complicated. This
circumstance does nevertheless have an interest,
as it explains why the group’s number of devices
n does not have any significance for the delays,
but only the quantity s:n which is the mean value
of the time between two congestion transitions.

Congestions and Delays with Constant
Holding Time.

The exponential holding time distribution, for
which the results presented earlier in this article
are valid, was formerly considered as agreeing
well with actual conditions for local traffic. But
with trunk traffic and also as regards conditions
with a number of connecting devices, which only
are involved in the establishing of connexions,
such as registers, it was considered more correet
to reckon with holding times always equally long.
The assumption of eonstant holding times would
moreover appear purely formally to be the simp-
lest possible, so that it should lead to a simple
mathematical treatment. This is now found to be
by no means the case; on the contrary, conditions
will be appreciably more complicated than with
exponential holding time distribution. Despite
this, several scientists have devoted a considerable
amount of work to investigating the conditions
with delay systems when the holding times are
constant. Erlang produeed as early as 1909 (bib-
liography 3) formule for delays with the number
of devices n = 1, a special case which is of in-
terest for all serviee arrangements where only
one person handles the service, e.g. booking offices

and the like. Later (1917) Erlang published

(bibliography 4) solutions also for the cases
n = 2 and 3. Unfortunately no proof was fur-
nished for the results, which were fairly com-
plicated in form, a cirecumstance that has perhaps
contributed to their seeming not to have been
given proper attention. Moreover, it seems quite
probable that Erlang was in possession of methods
also for the treatment of cases with greater =
values. It was not until around 1932 that there
appeared, thanks to the investigations of Pol-
laczek and Crommelin, general solutions for the
congestions and delays for a general n-value.




when the state n,q — 1 is prevailing and therefore
there were ¢ — 1 waiting before, will not obtain
an occupation within the time ¢ will then be

21

1 n q_l} ~2—t
*(q—nl(?t) e

We term this the distribution function for the gth
waiting. Now an average of y{n, g—1] calls are
offered to the group per unit of time, these
ocecurring when the state n, g—1 prevails, and
of these calls the fraction f,(¢) will have to wait
the time ¢. There will then occur on the average
per unit of time a total of

Zy[n,q——l]fq(t)

calls, which are subjected to at least the delay 1.
Now there arise on the average per unit of time

Dlyln.g—1]

calls which are subjected to delay. The quotient
between these two expressions, i.e.

2
fq(t)={l+§t+—1—(%t> +o

(21)

oo

Z {?2 ' q ‘——l}f;l (I)

7=1

S'ng—1

will then give that part of the total number of
waiting calls, for which the delays are at least
t long. F(t) according to (22) is therefore the
distribution funetion of the delays and expresses
the probability that a call selected at random
which has to wait will then have a delay that is
at least ¢ long.

The general expression (22) can now be appre-
ciably simplified by inserting f,(¢) aceording to
(21) and [n,q] aecording to (2bh). We get first

q=0 n il

) = (22)

=0

oo
2
n
7=0
The denominator in this constitutes a geometrical

F(t)

series vﬁth the sum 1: (1 —_ % ) The double sum

in the numerator can, by reversing the summation
order, be written

n \#
=0 g=p
The sum over ¢ is a geometrical series with the

sum
A\~
g

L4
7

There then remains of the whole double sum

1 A,i(;t),;;(%)

whiech is

After these simplifications there is obtained from
the expression for F(f):

Soghurin

The distribution function of the delays has thus
proved to be a simple exponential funetion. It is
easily seen that the mean delay will be equal to
the expression (19) deduced before. We again
note the necessity of having 4 < n, as otherwise
the series will not be convergent.

The expression (23) was given first by Erlang
(bibliography 4). A deduetion for it appears to
have heen first published by Molina (bibliogra-
phy 5). In the same way as in respect of mean
delay it oceurs ocecasionally that one means by
the distribution function of the delays the pro-
bability that a random selected call, irrespective
of whether it must wait or not, will have at least
the delay ¢. This distribution funection will ob-
viously be equal to

Ez, n F (t)
in all points, except when ¢ = 0, when it is equal
to 1. In this point therefore the funection has a
negative leap of the magnitude 1 — E, ,
As regards the deduction shown above, some
conditions may be specially mentioned. Owing to
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The sum in the denominator is a common geo-
metrical series, of which the value is

SE-—

=0 1——
? n

If we derive both the members of this in respect
of 4:n we get

S -

The left member in this is except for the factor
A:n equal to the sum in the numerator in the
expression just obtained for mean delay. After
some conversion there is then obtained for the
mean delay the simple expression

J
(:[%!% >0 1 st - #«1 (19)

As the whole of the traffic offered to ’éhe group
is with delay system served within the group,
n — A constitutes the traffic reserve for delay
system. For the case here considered, when all
those waiting continue to wait until they obtain
occupation, the mean delay will be equal to the
mean holding time divided by the traffic reserve.

The expression shown above for mean delaj
was first stated by Erlang (bibliography 4). It
is valid irrespective of what rules and what order
apply for the serving of those waiting, seeing
that in the deduction no conditions in this respect
were introduced.

It should be noted that the expression (19) is
valid for the delays actually oecurring. It thus
expresses the probable delay for a call subjected
to delay. In contrast with this, it is sometimes
usual to imply by mean delay the probable delay
for a call selected at random and offered to the
group. The denominator in (18) is then replaced
by y alone. It is easily seen that the mean delay
for all calls is obtained from the mean delay (19)
valid solely for the calls which are really sub-
Jected to delay by multiplying the latter by E, ,

" which, as seen, expresses the probability that a

call selected at random is compelled to wait.
The mean delay for all calls offered to the group
is then

=, = 5 5 20
= —FE. (20)
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In deciding dimensions of plant, hoth the ex-
pressions (19) and (20) are of interest. It seems,
however, appropriate to reserve the term mean
delay for (19), which indeed gives the mean
value of the delays actually ocecurring and thereby
gives a better idea than (20) of their magnitudes.
Let us for example consider a group with 20
deviees and the offered traffic of 11 erlangs. If
the mean holding time is 126 sees., the mean
delay will be 14 secs. according to formula (19).
In this case the congestion is 0.010 and the mean
delay for all calls according to (20) will be 0.14
secs., a quantity which can hardly in itself give
any idea of the real magnitude of the delays,

Let us now determine the distribution function
of the delays in the case with ordered queue, i.e.
when those waiting are served in the same order
as the calls came in. We then consider first a
call offered the group when the state n, ¢—1
prevails. There will then be ¢ — 1 waiting, who
have priority, and only after all these have oceu-
pied devices does the call considered oceupy the
next device becoming free. Each time one of
the occupations proceeding terminates all those
waiting in the queue move forward one step.
A person waiting who has ¢ — 1 waiting before
him in the gueue must therefore go through ¢
stages before lis call is served. During the first
stage he has ¢ — 1 waiting before him, during
the second stage ¢ — 2 waiting before him and
so on, so that in the gth stage he is at the head
of the queue. The probability that a stage will
not terminate in the time ¢ after it started is
now equal to the probability that none of the n
occupations in progress will terminate in the same
time, and is thus equal to

L
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as we had assumed that the holding times follow

the exponential distribution e~ % The delays
therefore follow a distribution built up of the
exponentially regulated stages of the kind treated
in the first article of this number. In addition,
we have the special case when the mean durations
of all stages are equally great and equal to.s:n

according to the formula just above. The dis-

“tribution function for such a case is given by
‘equation (30) in the artiele just referred to.

Here s, in that formula must obviously be re-
placed by s:n. The probability that a call, arriving

[/(/ iﬁ \ffé ( ,3\/\4/’@;}% iy }Mg{ he

w/f £ g’fﬁ O

W




there is still another circumstance which influ-
ences to a high degree the distribution funetion
of the delays, and that is the order in which the
waiting calls are served. Sometimes the serving
is so arranged that when there are several waiting
calls at one time that which has been waiting
the longest always receives the first device be-
coming unoccupied. Thus those waiting are served
in the order in which their calls arrived.

It seems appropriate for systems where the
selection among those waiting takes place accord-
ing to this rule, to speak of ordered queue. Such
systems with the formation of ordered queues are
to be found, besides in telephony, in most of the
places where people are served in everyday life,
so that the delay conditions in this case have
great general interest. Mostly there oceurs, how-
ever, with delay systems in telephony an arrange-
ment of service differing altogether from the
ordered queue. For technical reasons it is then
so arranged that when there are several waiting
and some device becomes unoccupied, it is more
or less an accident which of those waiting obtains
occupation of this device. If therefore, the selec-
tion of the one waiting who is first served may be
considered to be entirely random, one speaks of
a random handled queue. In most cases, of course,
it would seem that the random selection was not
cxactly realised, though it appears that usually
one may caleulate as if a purely random selection
were present. In some cases, however, there are
such arrangements that the system must be
treated as a mixture of ordered and random
queue. It is worth pointing out that service
arrangements corresponding to random handled
queue formations also oceur in other fields be-
sides telephony. Such a case which should be of
interest for the science of economics is offered,
for example, by the redemption of a bonded loan
when this is done by periodical drawing of the
bonds by lot.

For the case where the holding times follow
an exponential function and the serving of those

waiting is done in ordered queue, Erlang has

already stated the general solution which will be
treated in this section. If with the same holding
time distribution the serving is done by random
selection of those waiting, the mathematical treat-
ment immediately becomes considerably more
complicated. This case will be examined more
closely in a later article.

Though the distribution function of the delays,
as stated, turns out different according to the
rules on which the selection among those waiting
is made, this does not hold good for the mean
delay. Moreover it is quite natural that this
should be independent of the manner of serving
the queue. The state quantities-[p] and [n,q]
were in fact fully determined without any con-

- ditions regarding the manner of service being

required. Now the total duration of the different
states n,q determine the total delay for all those
waiting, and with this the mean delay is also
determined. We shall show here how this can be
computed with the usual assumption of exponen-
tial holding time distribution.

‘When a state n,q prevails there are ¢ waiting.
On the average per unit of time this state will
prevail for the time [n,q] and there will then
be obtained during the same time a total waiting
time of the magnitude g[n,q]. Altogether for all
the different states there is then obtained on the
average per unit of time the total delay

Dl

Now all calls, which eome in when all devices
are occupied must wait. On the average per unit
of time there is therefore obtained

y 2> 4l
g=0
waiting calls. The mean value of the delay for
a call which is obliged to wait is now equal to
the total delay for all calls divided by the total
number of waiting calls and will thus be

Z gl gl
y Z [n, g

This expression is valid quite generally. For
exponential holding time distribution there now
applies the formula (2b) for the state quantities
and the above expression then changes to

)

7=1

(18)
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P, 2l —A
Since
E P.=1
pn=0

(5) may be written in the form

A Zoo n
e v ]
Fan| 1A n——-—APn Pu n—4d L
p=n+1
or
n oo
P
n—2A " A E
Es n M1m"““APn—“,l=n+1Py 16)

The right hand member in this is always positive,
which can easily be shown by maximising the sum
therein by means of a geometrical series, From
this it follows that

n
n— Al L

If we drop the sum in the right member in (16)
we then obtain the difference
n
n—A P
E, .

n
n-—A

P, (A7)

— 1 < é.
"

Thus __nj P, may be used as approximate value
To—

for E, , the left member in (17) expressing the
relative error maximised by the right member.
The approximation is only usable for relatively
small values of K , up to 0.2 to 0.3, but is very
much better than the corresponding approxima-
tion for E; , that was shown in the preceding
article. Moreover in the latter case there is ob-
tained a smaller value than the real one, whereas
for E», naccording to (17) one obtains a greater
value than the real one and is therefore on the
safe side.

As an example of the serviceability of the
approximation we may take 4 = 15 and n = 21.
We then have E,, = 0.10232, while with the
approximate value we get 0.10453. The relative
error in this is only 2.2 %, whereas according to
(17) the maximum limit for the error will be
7.5 %. In general one can reckon on the accuracy
being appreciably greater than (17) gives one to
suppose. :
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For purposes of comparison there have also
been plotted in fig. 1 curves for the approximate

value P, as a function of A. As may be

seen, a noticeable deviation from the E, , curves
only appears for over 10 % congestion.

It is clear that we can also employ P, as an
approximate value for the state magnitudes [p]
with delay systems. As all state quantities have
the same denominator, the relative error in this
case will be equally as great as for the approxi-
mate value for E, ,and it is thus maximised by
the right member in (17).

Finally it may be noted that in the fields
where the approximation formule are valid both
for busy-signal and for delay systems we also have

_n
n—A

the agreement, however, not being then so good
as with the approximate value maximised by (17).

Ey n Ein

Delays with Ordered Queue.

In judging the quality of serviece in a delay
system the size of the delays is of importance as
well as the congestion. A representative measure
for the waiting times occurring is constituted by
the mean delay, which nevertheless cannot in
itself be considered as giving sufficient infor-
mation for an all-round judging of the inconve-
niences to the subscribers associated with the
delay. For this purpose it is desirable also to
know how many of the delays are so long that
they are regarded by the subscribers more or less
as an inconvenience, It is therefore necessary to
know the distribution function of the delays,
that is how many of the whole number of delays
occurring are longer than different times ¢.

The caleulation of the distribution function of
the delays is generally found to be ahighly trouble-
some problem, though for a given case, which will
be treated in this section, it proves easy to perform.
The form of the distribution funection will be
dependent on what distribution function applies
to the holding times. Only if the latter is expo-
nential will the mathematical treatment be rela-
tively simple. Nevertheless, the case with constant
holding time has also been attacked by several
scientists, an account of whose results will be
given later on. Besides the nature of the dis-
tribution funetion of the holding times, however,
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it is often an advantage to use an approximate
formula, obtained by means of the Poisson ex-

busy-signal system, which is done with the help

of the recurrence formula (11) in the preceding

article. To compute individual congestion values pressions mentioned in the preceding article
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of (5) or one of the expressions (9) it is there-
fore easy to verify the validity of the formula

A(n—1—A4) Ey n—

E2’n=(n—-1)(n—A)——A-Em_1 (10a)
from which, inversed, there is obtained
By o= n—1)n—AE, » (10D)

)

These formule are rather complicated, however.
More interesting for the discussion are then the
relations which may be obtained between I,,
and the loss E, ,in busy-signal systems. For the
latter there is valid according to formula (7) in
the preceding article

An
nl
A2

_2_1_+...+

El n =

'

4

1+ 4+ !
‘ n!

It is then easy to verify the following relation

(11a)

B . = A'El,n—l
nn n—A+A'E1’7¢-—1

which in form reminds us of the recurrence for-
mula (11) in the preceding article. By inversion
of the formula above there is also obtained

n—A .Egyn

Brna=""7—1"F
L

(11b)

Moreover, the following relation may be deduced

n‘E| n
. 12
Ey, » n— A+ A E . (12 a)
from which by inversion
(71*A)E’2 n
By =t (12b)

Provided that n > A4 it is seen from (11 a) that
we always have E, , < 1. The denominator in
{12 a) is moreover equal to the traffic reserve in
a busy-signal system with n devices and therefore
always less than n. From (12 a) there then follows
the difference

E, > FEin (13)

In the preceding article it was demonstrated that
E; ,always grows with rising 4. The numerator
in (12a) will therefore. grow with rising A.
Moreover the denominator in (12 a) must de-
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erease with rising 4, as it expresses the traffic
reserve in a busy-signal system, which of course
decreases with growing 4. From this it follows
that E, , always grows with rising 4.

For A = 0 we have E, ,= 0. For n 1 we
have E, ,a straight line in accordance with (7).
For greater n values we see, e.g. from (9a), that
E, nhas an (n — 1)-fold tangent point with the
A axis in origin. For the derivative of E, .,
in respect of A we can obtain the expression

dEQ, n
Eg, n

A
n—A

4 g

={n—4 + 1

(1 - Ez,n)

which is somewhat more complicated than the
similar expression for the derivative of F; , (see
preceding article, formula (13b)). It can be
shown that the derivative of E, , always grows
with growing 4. Its maximum value then oceurs
for 4 n. A simple formula can be deduced
from this maximum value. From (9b) there is
obtained in faet

1—E2.'n
n—A
AZ A'n‘l
1+A+§T+""+m
= A2 An-‘z An-l
(n—A)[1+ 4+ ‘§-!‘+ . +(n__2)! +M(n_1)!

If now, taking this into consideration, we let
A—n in (14), there is obtained

d

d4

1

BTy

(15)
Fig. 1 shows how E, , varies with 4 for some
different n values. It is also of interest how E,y .
varies with n for constant 4. Unfortunately we
do not have for this case any equally easily dis-
cussed difference formula as with busy-signal
systems. If we join up by curves the points ob-
tained for different integral values of n then we
get charts of the appearance shown in fig. 2.
The curves start for integral values of 4 in the
point n = A, where E, , = 1. If 4 does not have
an integral value, the curves only start at the next
higher integral value of n.

For tabulating E, , the recurrence formula
(11 a) is found to be particularly convenient. It
is advisable to make the computation at the same
time as the computation for the loss £, ,in a




of the whole time when there is no waiting call.
During this part of the time the load conditions,
as observed above, are the same as in a busy-signal
system and thus the pth device is occupied on
the average the time a«, During the time when
there is no waiting call there is therefore carried
by the pth device in a waiting system per unit
of time the traffic

A— Al
@, (1—;E2,n)

During that part of the whole time, %Eg’n,

when there are waiting calls, all devices are oc-
cupied. The addition to the traffic on the pth

deviee for this time is thus —4—E2,n. Altogether
n

then there is handled by the pth device on the
average per unit of time the traffic

A A
ap(L"‘ ;Ez,n) -+ _1_2E2' n

If we write this expression for the load on the
device hunted pth in order in a group of n
devices in a delay system in the form

o+ 21— ) B (8)
it is seen that, since @, constitutes the load on
the pth device in a busy-signal system with the
same incoming traffic and the same number of
devices, then the second term in the expression
(8) gives the increase in the load which arises
in a waiting system owing to the serving of the
delayed calls. If the congestion E, ,is rather
small, as it normally is, this increase will be very
slight except for the very highest devices, where
its value in relation to «, can be appreciable.

The formula (8) given above is, as already
stated, valid only for the case that the holding
times are exponentially distributed. 1t was pro-
duced in 1925 by Vaulot (bibliography 20), but
appears to have attracted little attention, as it
has never been referred to previously.

Certain analogies have been pointed out above
hetween the traffic conditions in busy-signal and
delay systems, which moreover will be further
exemplified and enlarged upon later. There are,
however, also highly essential differences in the
two systems and as an expression for what is
perhaps the most important difference the fol-

lowing may be observed. In a group with ordered
hunting in a busy-signal system any sucecessive
devices whatever can be treated as a detached
group in a busy-signal system. This condition is

‘due to the faet that the lost calls never return.

41

A group of n devices in a delay system can, on
the other hand, in no circumstances be divided
up into smaller detached groups. Which device
a waiting call will gradually come to occupy
depends in fact upon the whole group’s state
and can therefore not be computed solely from
knowledge of the traffic conditions in a part of
the group’s devices.
E
Form of the Congestion Function.

Methods for Numerical Computations.

The congestion funetion K, ,aceording to (5)
has in part a similar build up as the function
E, . for busy-signal systems (see preceding ar-
ticle, formula (7)). Despite this there prevails
a rather essential difference in respect of the
course of the two functions, which is due to
the oceurrence in (5) of the quantity n:(n — 4),
which for great A values has a pronounced effect
on E, ,.By multiplying numerator and denomi-
nator by (n — A):n We can now bring (5) to
the form

An
(n—1)
By n= == (9 )
A
(n—“"’l’)—g
y=0
or
E; n= An
_ (n— 1)
- A2 An—? An—l
(n A)(l +AF Gt (n_2)1)+ T
(9b)

From this it is seen that the numerator is of
the power n and the denominator of the power
n — 1 in A. In the expression for E, , on the
other hand, both numerator and denominator are
of the power n. For A = n we have according
to (9b) the congestion E; ,= 1 and for greater
A values E, , has no physical significance.

As we did when dealing with the loss in busy-
signal systems we can for E, , too, set up recur-
rence formule for successive n values. By means




A consequence of the condition shown is that
for n = 1 we obtain

.Eg,l —"’—“A (7)

which of course can also be obtained from the
general expression (5). The formula (7) has,
however, a more general range of application
than the equation (5). When a group in a delay
system consists only of one single deviee, the
whole of the traffic 4 offered, must be carried
by that device, which will then altogether be
occupied the time 4 per unit of time. As the group
only comprises this deviece, congestion prevails
when it is occupied, which means that A4 also
expresses the congestion. This reasoning must
obviously be valid irrespective of the general
deduction for (5), and we then find the interest-
ing proposition that the special formula (7) is
valid irrespective of whether the hunting traffic
is random and whether the holding times follow
some given distribution function.

In conclusion we shall show some formule for
the individual deviees’ loading in a group with
an arbitrary number of devices, For busy-signal
systems there were obtained in the preceding
article the formule (9) and (10). With delay
systems the traffie carried is equal to the traffic
offered 4. The grade of utilisation, i.e. the mean

load on all devices, will then be & = -4—, with n

7n
representing the number of devices in the group.
If hunting in the group is random, so that all
devices are utilised equally, each individual de-

viee will on the average be occupied the part 4
n

of the whole time, Again if hunting in the group
takes place in fixed order, the different devices
will be loaded to an unequal degree. Though for
computation of the loads we find no formula so
directly apparent as with busy-signal systems, yet
results may be attained by means of a fairly simple
discussion. To carry this out we shall first note
" a significant relation between the traffic condi-
tions with busy-signal and delay systems. This
relation is derived from the fact that, provided
there is exponential holding time distribution, a
difference between busy-signal and delay systems
can only arise when congestion prevails.

Let us consider a delay system at a moment
when the state n — 1 has arisen out of a state
7,0 and thus a congestion state has just been in-
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terrupted. In the period up to the next time the
state n,1 arises and a call is thus compelled to
wait, all incoming calls are dealt with in the same
manner as if the group belonged to a busy-signal
system. If now in addition, and this is a necessary
condition, the holding times follow an exponential
funetion, then as is known the probabilities of
the continned durations of the n — 1 occupations
which were proceeding when the state 7,0 ceased,
are independent of how long the ocecupations have
already lasted. On account of this the statistical
laws which are valid both for the traffic condi-
tions during the interval of time under conside-
ration, that is between the end of a congestion
state and the next time a call has to wait, will
be the same as in a busy-signal system. From
this it follows that for such intervals of time one
may count on the same relative values for states
and loads as with busy-signal systems.

In respect of the states the condition mentioned
can be shown direet from the formule. We con-
sider the expression

il
0] + (]

which obviously gives the relation between that
part of the whole time when state p prevails and
the part of the whole time when no call is delayed.
From the equations (2 a) and (2 b) there is
obtained for this expression

AP

!

2 n

1 +A+%+~--+i—!'

which is the same as the state quantity [p] in
a busy-signal system with n devices (see preceding
article).

‘We shall now employ the relation demonstrated
to compute the load on a device in a delay system
with ordered hunting. According to the formula
(10) in the preceding article the load on the pth
deviee in a busy-signal system is

ap = A(Ep—1— L p)

Now (6) expresses that part of the whole time
when there is at least one waiting call in the

delay system. Therefore 1 — éEQ, » gives that
n
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The sum of all waiting states [n,g] Whe%l all
devices of the group are occupied may be denoted

I . We find e ¥/ ‘
nl n—4 |
4
Ez,n_l.*.A.*_ é‘j_l_ +...“.":1_.1_£. n
of b 21 (n—1) " al n—A
/0 {/54?1%‘; = (5)

The solution indicated was published by Erlang
in 1917 (see bibliography 4). The quantity E,
expresses the congestion or, as is also sometimes
said, the full occupation time. The subseript 2 is
introduced here to distinguish between the Evlang
expressions for busy-signal and for delay systems.
Another quantity which is of interest in making
caleulations for dimensions is the sum of all the
waiting state quantities [n,q], when ¢ > 0 and
thus at least one waiting call is present. For this
sum there is obtained

PNCY

q=1
This expression may, as a suggestion, be design-
ated the delay arrangement’s functioning time.
For proof of the equations given, attention may
be directed to bibliography 7. The assumptions
valid for the deduction may be summarised as:
that the group is fully available,
that all congested calls wait until they obtain
oceupation, '
that the traffic hunting the group is random,
that the holding times constitute a purely ex-
ponential distribution,
that the hunting traffic 4 is less than the num-
ber of devices n.

(6)

A5,
n

As regards the last-named condition it may be
observed that for A — n one gets £, , = 1 in
the limit. For A > = the hunting traffic cannot
be wholly served by the group, which means that
no statistical equilibrium is ever attained. Ge-
nerally it may be observed, that among the con-
ditions above nothing is said regarding the order
in which the devices are hunted, or conecerning

the rules which, with several calls waiting, apply

for the selection of the waiting call which is to
be the first to obtain occupation. The formule
stated above, therefore, are valid irrespective of
the conditions prevailing in those respeets.

The expression (5) for the congestion leads
one to suppose that this is greater than with a
busy-signal system having the same number of

A

devices and the same incoming traffic. Later it
will be proved by purely mathematical means
that this is always the case. This circumstance
implies nothing surprising, as in delay systems
all the hunting traffic is served within the group,
so that the traffic carried, other conditions being
equal, is greater than with busy-signal systems.
Moreover, the serving of that traffic which if
the delay arrangement were not adopted would
be rejected by the group, takes place of course
for the most part during the time when all devices
are occupied. In consequence of this, compared
with a busy-signal system, the congestion time
with delay system must be greater and all states
when congestion does not prevail must be smaller.
The condition may also be illustrated in the fol-
lowing manner. If we have a busy-signal system,
in which we imagine that all subseribers whose
calls meet congestion continually repeat their
calls at theoretically infinitely small intervals,
then there are obviously obtained the same con-
ditions in the group as with a delay system and
the congestion will be expressed by E,, , instead
of by E, , One has then assumed the maximum
possible reaction of the congestion. We can draw
from this the valuable conclusion that the con-
gestion reaction with a busy-signal system will
produce an inerease of the congestion beyond
E, .,which cannot ever be greater than K, ,,
however.

It may be of interest to show by purely mathe-
matical means that the traffic carried in the
group, with a delay system really is equal to
the traffic 4 offered to the group. This can easily
be done. While a state p is prevailing, there is
obviously carried a traffic load of p times the
state’s duration. While an arbitrary waiting state
n,q is prevailing there is further carried a traffic
load. of » times the state’s duration. The total
traffic carried in the group per unit of time is
then expressed by

SP pl +n j [n, q) = ()1,},3?!&962?

and it is easily seen that by means of the equations
(2a) and (2Db) this may be written '

A{S[wﬁmq}

which on aceount of (3) is reduced to 4.

=f
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able for practical computation. Fortunately there
is reason to suppose that- the conditions with
other distribution functions for the holding times
quite closely resemble those occurring with ex-
ponential distribution. The conditions with delay
systems, therefore, thanks to research in recent

times, may be considered as mainly cleared up,’

even though many important questions reguire
still further invéstigation.

As regards-the treatment of traffic conditions
with delay systems, too, Erlang’s contributions
are of fundamental importance. His results in
respect of delay systems are published in a num-
ber of articles together with the treatment of
busy-signal systems and comprise as well the
conditions with exponential holding times dis-
tribution, for -which he draws up formule for
losses, states;'becupations and the distribution of
delays in a ‘special case, as also a number of
special formule applying to constant holding
time. The results will be found in bibliography 4,
and they are as always where Erlang is concerned
entirely ecorrect, though the proofs given are
hardly convincing and partly omitted.

To describe Erlang’s results we consider a full
availability group of n devices in a delay system.
The traffic hunting the group is assumed to be
random and to have the intensity 4 = s-y, with
§ the mean holding time and y the mean number
of calls offered per unit of time. The holding
times are assumed to follow the distribution fune-

t
tion ¢ °, which therefore expresses the probabili-
ty that an occupation will last at least the time ¢.
It is further assumed that all subseribers who
cannot owing to congestion be served immediately
wait until they obtain oceupation of a deviee.

As with busy-signal systems we now introduce
expressions for different states in the group,
though we have here to consider two different
kinds of state, depending on whether waiting
calls are present or not. With the state p, in
which p < n, there is meant the condition that
p, but note more of the group’s n devices are
occupied simultaneously. The mean value per
unit of time of the total time when the state p

14«7// prevails may be denoted [p]. Further there is

-

i

meant by the state n,q the condition that all »
devices are occupied and at the same time ¢ calls
are waiting to obtain occupation. For this ¢ may

m?b‘e‘ any integral value or zero, The mean value

per unit of time of the total time when such a
waiting state prevails may be denoted [n,q]. It
can now be shown that the following relations
exist between the different state quantities:

W=2p—1 (1a)
[n,0] = %[n——-l] (1Db)
ng) =2 g —1] (o)

It should be noted that the coefficient in (1¢) is
independent of the value of g. From the system
(1) there are now obtained the following formule :

AP
p) = ] [0] (22)

n q
b, g = 2 <~4) 0 2b)

n! \n

In addition there holds good the obvious relation
that the sum of the probabilities for all states
existing is one, thus :

2J+2nq-1 (3)

p=0

The second sum in the left member in this, as
may easily be seen, from (2D), constitutes a
geometrical series which is eonvergent for 4 < n.
On summation there is then obtained

Sc‘ : L on A"
["1 Q} - 72~—A ’)l! [O}
q=0

From the system (2) and the relation (3) all state
quantities will be explicitly determined. We get: -

forp=10,1,2, .. 02— 1

Ap
ol
[p] = >
An—l An n
1+4 T T LA
A+ Gk =) BT —
(4a)
forg = 0,1,2, .. ad inf,
" Al
ng)= o i)
n,q > -
A Ar-l A4n n
1+ 4+ =— R .
T4t 21 + _-#(n—-l!) + nt n—A4




CONTRIBUTIONS TO THE THEORY ON DELAY
SYSTEMS

Delay systems differ from busy-signal systems
only in the way in which calls meeting with con-
gestion are dealt with. With busy-signal systems
a subseriber whose call is met with congestion
must make a fresh call to obtain the wanted
communication. With delay system a subscriber
who makes a call when all the devices of a group
reached are occupied requires only to wait with
the receiver off in order to come finally into
occupation of a device in the group. Owing to
this difference in manner of operating, the in-
convenience to which subscribers are subjected
with congestion will be of entirely different types
in busy-signal and in delay systems. This con-
dition must be earefully considered when judging
grade of service. Obviously the manner of ope-
rating has also a strong effect on the occupation
conditions in a group. In this respect, however,
the boundaries between busy-signal and delay
systems will be more fluid, seeing that the traffic
conditions in a group are not only dependent
on the system by which operation of calls in the
group is arranged but also on the subseribers’
reaction to congestion. If the subseribers in a
busy-signal system repeat the calls met with
congestion at very close intervals the traffic
conditions will be very like those arising in a
pure delay system. Again, if the subscribers in
a delay system prefer on congestion to break
the waiting at an early stage and instead make
fresh ecalls after a fairly long wait, the traffic
conditions will closely resemble those arising with
a purely busy-signal system. On account of these
circumstances the traffie eonditions will in rea-
lity, with both busy-signal and delay systems, be
represented by intermediate conditions between
the boundary values that arise if on the one hand,
with a busy-signal system, no reaction from
the lost calls occurs and on the other hand,
with a delay system, no waiting calls disappear
before they have obtained occupation. It will be
shown later how a mathematical description of
such intermediate conditions can be obtained.

As stated in the preceding article the Tele-
graph Administration’s present standards for
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dimensioning groups. of devices are based on
the losses in busy-signal systems. This is applied
also to delay systems, and the reasons appear to
be the following. As stated above, the traffic
conditions both with busy-signal and with delay
systems will be affected by the subseribers’ re-
actions in the direction of a compromise between
the two systems. It should then be possible to
count approximately with the same formule in
both cases, and it then seems more convenient
to use the simple expressions for purely busy-
signal systems, Since those standards were drawn
up, however, knowledge of the nature of con-
gestion has been appreciably extended and strong
eriticism of the reasoning advanced may now be
raised. The compromise stated would appear
generally to lie nearest the delay system’s traffic
conditions, so that there would rather be reason
to employ the formule for this throughout. In
this way there would also be obtained. valuable
possibilities of varying the dimension preserip-
tions to take into account the varying conditions
of operation in different groups of devices. For
these and other reasons, the problems respecting
traffic conditions with delay systems have ac-
quired greater interest in recent years. In the
present article there will be given some new
results applying to full availability groups in
delay systems. Some of the older results will also
be subjected to scrutiny. A couple of special
problems of greater range will be dealt with in
the next two articles.

Erlang’s Solution with Exponential
Distribution of Holding Times.

The theoretical treatment of traffic conditions
with delay systems will in general be consider-
ably more complicated than in respect of cor-
responding problems with busy-signal systems..
Thus it is found that the loss conditions with
delay systems are no longer, as with busy-signal
systems, independent of the distribution of the
holding times. Only if this is exponential is it
possible to resort to fairly simple methods of
treatment and to obtain final formuls service-




