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Preface to the first edition

The literature on. queueing t'heory is airéady very large. It contains
more than a dozen books and about’ a thousand papers devoted
exclusively to the subject; plus many other: books on probabitity

" theory or operations research in which queueing theory is discussed.

Despite this tremendous activity, queueing theory, as a tool for
analysis of practical problems, remains in a primitive state; perhaps
mostly because the theory has been motivated only superficiaily by its
potential applications. People have devoted great efforts to solving
the ‘wrong problems.’

Queueing theory originated as a very practical subject. Much of the
early work was motivated by problems concerning telephone traffic.
Erlang, in particular, made many important contributions to the
subject in the early part of this century. Telephone traffic remained
one of the principle applications until about 1950. After World War
11, activity in the fields of operations research and probability theory
grew rapxd}y Queueing theory became very popular, particularly in
the late 1950s, but its popularity did not center so much around its
applications as around its mathematical aspects. With the refine-

ment of same clever mathematical tricks, it became clear that exact

solutions could be found for a large number of mathematical
problems associated with models of queueing phenomena. The
literature grew from ‘solutions looking for a problem’ rather than
from ‘problems looking for a solution.”

Mathematicians working for their mutual entertainment will
discard a problem either if they cannot solve it, or if being soluble it is
yet trivial. An engineer concerned with the design of a facility cannot
discard the problem. If it is trivial, he should recognize it as such and
do it. If he cannot solve it correctly, then he must do the best he can.
The practical world of queues abounds with problems that cannot be
solved elegantly but which must be analysed nevertheless. The
literature on queues abounds with ‘exact solutions,” ‘exact bounds,’
simulation models, etc.; with almost everything except common sense
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methods of ‘engineering judgment.” It is no wonder that engineers
resort to using formulas which they know they are using incorrectly,
or run to the computer even if they need only to know something to
within a factor or two.

In the last 15 years or so, I have suffered many times the frustration
of failing to solve elegantly what appeared to be 4 straightforward
practical queueing problem, subsequently to discover that T could
find very accurate approximations with a reasonable effort, and
finally that I could obtain some crude estimates with almost no effort
at all. There is no reason why students should suffer the same way.
They should benefit from the mistakes of others and learn to do
things in a sensible’way, namely in the opposite order. D

The following is an attempt {o turn queueing theory around and
point it toward the real world. It is, in essence, the fourth evolution of
a series of lecture notes written for a.course entitled ‘Applications of
Queueing Theory to Transportation.” The relevance of the subject to
transportation, rather than to other possible fields of application,
derives mostly from the fact that the course was given primarily for
transportation engineering students and in a department of transpor-
tation engineering. The students had a diverse background, but-the
majority were graduate students with an undergraduate training in
civil engineering. Most had just completed a one-quarter intro-
ductory course in probability theory at the level of Paul L. Meyer,
Introductory Probability and Statistical Applications (Addison-
Wesley, 1965) and were taking, concurrently, an introductory course
in mathematical statistics. Most would not have had a course in
advanced calculus and many would have forgotten much of their
elementary calculus (students with a strong formal mathematics
background usually had just as much difficulty with some of the
graphical techniques as the engineering-oriented students had with
the mathematics). : .

Whereas most of the queueing literature deals with equilibrium

distributions of queue length, the main emphasis here is on time-
dependent behavior, particularly rush hours in which the arrival rate
of customers temporarily exceeds the service rate. The reason for this
is that these are the situations which usually create large queues, and
the most important practical problems are those in which the size of
the queue is really a cause for concern. It turns out that these are
among the simplest problems to solve approximately, but are so
difficult to solve exactly that no one has yet solved a single special
case, at least not in a form suitable for computation. :

P
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The techniques emphasized here are mainly ‘fluid approximations’

and ‘diffusion approximations.” The former employs mostly graphi-
cal methods; the latter involves some elementary properties of
partial differential equations but: otherwise uses only a mixture of
graphical methods and elementary analysis. Nowhere is use made of
generating functions, characteristic functions, or Laplace trans-
forms, which are the standard tools of analysis in conventional
queueing theory methods.
- No attempt is made here to construct any bibliography except for
an - occasional reference in the text to some particular paper.
Although most of the ‘methods described here have appeared in the
literature before in the analysis of special problems, there does not
appear. to have been any systematic treatment of approximate
methods in queucing theory. Some things here may be ‘original’ in the
sense that no one has used a particular mathematical trick to solve a
particular problem, but the techniques used are all basically very old,
having been used in physics or engineering to solve other types of
problems, long before anyone heard of ‘queueing theory.’

Except for a short chapter on ‘Equilibrium distributions’ (Chapter
5), there is very little overlap between what is given here, and what is
presentcd in other books on queueing theory. Although what follows
is self-contained, it is not intended as a substitute for the more
conventional treatments, but rather as a supplement to them. For
further study of the more conventional aspects, it is recommended
that a student read D. R. Cox and W. L. Smith, Queues (Chapman
and Ha_li, 1961), for a very concise introduction; A. M. Lee, Applied
Queueing Theory {Macmillan, 1966), for some interesting case
histories of attempts to apply queueing theory to practical problems;

~and J. Riordan, Stochastic Service Systems (John Wiley, 1962) or

N. V. Prabhu, Queues and Inventories (John Wiley, 1963), for a more
complete introduction to the typical literature.

It is a pleasure to acknowledge the cooperation and assistance of
the transportation engineering students at Berkeley who struggied
with me through three preliminary versions of the class notes upon
which this book is based. One of these, Brian Allen, was kind enough
to help correct the final proofs. The typing and retyping of the notes
was done by Phyllis De Fabio. :

I would also like to express my thanks to Dr Arnold Nordseick and
Professor Elliott Montroll who helped me, as a graduate student and
post-doctoral fellow many years ago, to develop some of the attitudes
which have influenced this book.
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Special thanks go to my wife Barbara, who must endure the lonely
life of a scientist’s wife, and to my parents, who patiently guided me
through my youth.

Berkeley, June 1970 G. F. Newell

Preface to the second edition

More than ten years have passed since the first edition of this book
was published. It is interesting to look back now to see what has
evolved during that time, and to look closely at the major improve-
ments of this second edition.

The first edition had a title that promised ‘applications’ but the
book contained only a few examples plus some hints on how one
might attack certain applied problems, and the ‘queueing theory” was
not that which several generations of applied probabilists had
developed. The style of the first edition, however, needs no defense;
the ‘theory” has, in fact; been applied to the analysis of a wide variety
of practical problems which could not be solved by traditional
methods of queueing theory and will continue to be used as a
practical tool. _

The first edition was essentially the lecture notes of a course which
had evolved over a span of about four years. Variations of this course
have been given almost every year since, but as it evolved further,
more and more applications of the deterministic approximations
were added until they consumed more than half of the course. For '
lack of time, the diffusion approximations were gradually squeezed
ott.

Although the mathematics of the deterministic approximations is
elementary in the sense that it involves only graphs, algebra, and
calculus, it requires skill and ingenuity to apply. Students certainly do
not consider it easy. Without question, however, these deterministic

“approximations have found application to a much wider range of

practical problems than the stochastic theory simply because the
stochastic analysis of even the simplest systems which involve several
servers or customer types is too tedious to be of much practical value.

* Since a textbook must, of necessity, treat only simple illustrations
which can be described in one or two lectures, this second edition still

gives only some hints as to how one can analyze more complex

problems. It is certainly inappropriate to try to describe in detail how,
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for example, these methods can (and are) used for the analysis of
traffic signal synchronization, production line design, bus dispatch-
ing policies, etc. The difficulty in these more complex applications
comes not so much in the derivation of formulas for delays, queue
lengths, etc. as in the interpretation of the results which typically
contain many parameters. Each area of application involves special
understanding of what questions one is trying to answer.

Although the text itself contains few references, I have added a
bibliography of some of the applications of deterministic queueing
with which I am familiar (mostly in the area of transportation
engineering). '

Even though most of the diffusion theory was eliminated from the
original course, much of my own research during the last ten years
has been in the area of stochastic approximations. When I started to
write the present revision, 1 envisaged presenting an approximate
stochastic version of most of the models described under the

deterministic theory. I even taught an ‘advanced’ course asa meansof ~

testing some of the revised notes on stochastic approximations. This
course, however, started from the beginning, and since most students
of queueing theory are unfamiliar with properties of partial differen-
tial equations, this course barely covered some of the basic qualitative
features of single-server queues. Much of what 1 had hoped to do
must wait for some future occasion.

The first edition has been almost entirely rewritten, but the chapter
titles remain almost the same, as does the general philosophy and
style. The rejection of traditional approaches to gueueing theory is
perhaps even more emphatic.

Chapter 1 has changed little except that some notation has been
revised and some other types of graphical representatives are
discussed. The first problem set now introduces a hand simulation of
a ‘random walk’ queue which, with little effort, gives students some
preliminary feeling for the magnitude of statistical fluctuations.
These simulations are very helpful in illustrating some of the effects
discussed in later chapters. :

The introduction to Chapter 2 on fluid approximations now
discusses more thoroughly the qualitative features of some real
queueing situations and questions of concern to engineers designing
service systems. Two typical types of systems for which deterministic
approximations are particularly useful are then analyzed, the rush
hour with a steady service rate and a system with interrupted (pulsed)
service (traffic signals and buses).

P
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Chapter 3, describing the behavior of systems with several servers
and/or customer types, has been considerably expanded to emphasize
the benefits derived from drawing graphs of the cumulative arrivals
and departures of anything which satisfies a conservation principle.
Some of the illustrations are conventional (tandem queues or
multiple-channel server queues) but many are designed simply to
illustrate the art of modelling simple systems. The problem set
contains other illustrations many of which are derived from real
applications. Tt is the material in this chapter that has displaced much
of the stochastic approximations in the course I have taught because
this is the type of analysis that has proven to be most useful in the
design of real systems. This chapter has become the main focus of the
course in recent years.

The introductory chapter on stochastic models has been extens-
ively rewritten to emphasize the theme that stochastic models should
be chosen to represent the actual behavior of real systems not just to
yield mathematically convenient formulas. It describes typical qualit-
ative properties of arrival and departure processes, culminating in the
argument that if one cannot find a convenient ‘exact’ model, one can
usually evaluate the things one really wants simply by constructing a
few hypothetical realizations of the cumulative arrivals and
departures.

Chapter 5 on equilibrium distributions now includes a simple
dimensional argument giving the typical magnitude of equilibrium
gueue lengths and relaxation times and discusses the question of how
rapidly the traffic intensity can change if the queue distribution is to
stay close to the equilibrium distribution. In the first edition these
issues were postponed until Chapter 6 and obtained as a result of a
rescaling of the diffusion equation (which makes the argument
unnecessarily obscure). This chapter also contains a few more
examples of traditional equilibrium queueing problems than the first
edition, although the reader is still referred to other texts for a more
detailed introduction to conventional methods.

Chapter 6, which is entirely new, deals with systems in which
customers séldom interact because the server has a sufficiently large
number of channels and/or the arrival rate is low. It includes the
standard infinite-channel systems and loss systems but also some
approximations for queueing systems in which customers are delayed
only rarely. The behavior of queueing systems under light traffic has,
for some reason, received little attention in the queueing theory
literature. If, however, one can describe the system behavior for both
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light and heavy traffic, it requires little imagination to guess how the
system would behave for intermediate traffic (where exact results may
be difficuit to obtain). Perhaps this chapter will inspire further
research on low traffic approximations.

Chapters 7, 8, and 9 are devoted to diffusion apprommatlons
Chapter 7 starts with a fairly general stochastic process in two (or
more) dimensions having the property that the state of the system
changes by only a small amount in a short time. This is then
specialized to treat properties of the joint arrival and departure
processes, diffusion equations with state-independent coefficients,

boundary conditions, and one-dimensional equations for the queue -

distribution. Chapter 8 deals with equilibrium and transient queue
behavior for constant arrival and service rates, while Chapter 9 treats
time-dependent queues, particularly the stochastic version of the rush
hour and pulsed service problems introduced in Chapter 2.

queuemg systems; multiple-channel servers, tandem queues and some

more general networks of service systems, Although 1 had, at one
time, planned to add perhaps two more chapters dealing with some of
these results, | have (temporarily) abandoned the attempt because it
would take too much time to put much of this in proper perspective.
The complexity of the results in the existing literature is way out of
proportion to its usefulness (including my own research). 1t will be
some time before I can sift out from this material that which might be
appropriate for an introductory book, but maybe there will be a third
edition some day. Certainly the most difficult task in the analysis of
any real system is the collection of relevant data to describe what is
happening and the existing literature on queueing theory gives very
little assistance to an engineer in deciding what to measure and how
to interpret the results. '

It is a pleasure to acknowledge the help I have received from the
many students who have noted etrors in preliminary revisions of
these notes, suffered through unclear expositions, and tried to solve
ill-posed problems. 1 have learned the most, however, from those
students and colleagues who have actually collected data and
analyzed real problems, particularly Van Olin Hurdle, now at the
University of Toronto, who is a master at the use of graphical
technigues.

Phyllis DeFabio has continued to type most of the multiple
versions of notes from which this book derives.

CHAPTER 1

Introduction

1.1 Nature of the subject

Queueing theory is concerned, generally, with the mathematical
techniques for analyzing the flow of objects through some network.
The network contains one or more locations at which there is some
restriction on the times or frequencies at which the objects can pass. A
conservation principle applies; the objects do not disappear or
disintegrate. Any object which cannot immediately pass some restric-
tion is stored in some real or-fictitious reservoir until it can. Aslong as
there are objects in the reservoir waiting to pass, the facility will pass
them as rapidly as the restriction will permit.

The objects could be anything which move from place to place (and
satisfy a conservation principle), people, cars, water, money, jobs to be
done, etc. The restrictions could be a service facility for people, a

-highway bottleneck for cars, a valve regulating the flow of water, a

rule for money transactions, a finite labor supply for work to be done,
or a finite speed with which a computer can handle calculations to be
done.

One could consider all sorts of networks, but we will be concerned
here mostly with the rather simple geometry in which all objects flow
along some channel and all pass through the same restrictions as
illustrated schematically in Fig. 1.1(a). In many {perhaps most} real
systems, however, the objects are not identical. Although these objects
may differ in many ways {(color, size, name, etc.) the typical
characteristics of these objects which are relevant to queueing analysis
are:

{(a) Different objects may take different lengths of time to pass the
restrictions (there are long jobs and short jobs).

(b} Delays to different objects may be worth different amounts of
money (to delay an aircraft carrying 400 passengers costs more
than to delay a private aircraft).
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Figure 1.1 Schematic picture of the flow of objects along a channel

If one decomposes the objects into several categories, it is usually
assumed that a conservation principle applies separately to each
object type. Objects cannot disappear; nor can they change identity (2
long. job remairs a long job; a commercial aircraft remains a
commercial aircraft). A more realistic schematic picture of the system
would be as shown in Fig. 1.1(b) with many streams passing the same
restrictions. The restriction is usually a collective one restricting the
rate at which objects can pass in various proportions. o

The ultimate practical purpose of any theory is to make predictions
of what will happen in some experiment that one has not yet done.
The purpose of queueing theory is to provide a mechanism for
predicting how some hypothetical or proposed system will behave.
Sometimes one wishes to design a completely new facility where there
was none before and would like to compare the predicted perform-
ances of various proposed systems. In this case one must usually make
conjectures about the arrival rates of various objects and the
consequences of various restrictions {facilities). The more common
problem, however, is one in which a facility already exists. One.can
make observations on its present behavior; but; from these obser-

e
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vations, one would like to predict how the system would behave if
certain changes. occur. The change might be an.increased demand
(atrival rate) as projected for some future time or it might be an
improvement in the service rate of some facility or a change in strategy
for sequencing the service of different object types.

The same type of mathematical techniques apply to a very wide
variety of flow'systems, but the measures of performance or goals may
be quite different for: different systems. In queueing theory one
typically associates an implied cost with any delay and also a cost for
providing a higher service rate at any restriction. The usual problem is
to compare delays (and operating costs) for systems with different
service componetits or strategies. Some typical systems of this type
are: : ‘

(a) Objects move along a production line on which various tasks are
- performed at various rates but there is a penalty for storage of
. unfinished products. One might be able to decrease this storage
~ -cost by shifting some labor. _
(b) Cars move along a highway having certain’ bottlenecks {such as
traffic intersections)and there is an inconvenience associated with
" waiting. One might be able to decrease the delays by appropriate
adjustment of the signal timing.
(c) Patients wish to enter a hospital which can handle only finitely
many patients at a time, but delays may cause serious con-
-sequences, more 80 to some patients than to others.

The mathematical models of ‘inventory theory’ are quite similar;

objects pass from a supplier to a reservoir to a customer. The objectives
and strategies, hqwever, are quite different from the above. There is
usually a high penalty for an empty inventory (or a queue of unfilled
orders). The strategy is to regulate the input (reorder stock) rather
than the flow out of the inventory. In the ‘theoryof dams’ one has an
input (rain) to a reservoir and an output (consumption} but the
Fegulation or strategy is applied to the output rather than the input. In
insurance, gambling, banking, etc., one is concerned with the flow of
money. The money is, in fact, only some numbers on an account book,
but the rules of transfer are the same as if it were something physical.
There is a flow of money into an account (an investment rate), and a
flow out; and a resulting storage (balance). The strategy now may
involve regulation of either the input or the output or both with
potentially a rather complex set of objectives. In the university one has
a flow of students and faculty into and out of the system with a
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resulting population of each. There is a conservation principle: what
comes in must go out, one way or another. Lo

Since there is such a wide variety of possible applications of
queucing theory or related theories, it is rather difficult to dagree on
some common terminology. Much of the conventional terminology
has evolved from the following hypothetical system. The objects
which move from place to place are called customers; which one
typically imagines to be people. They arrive at some service point (a
bank counter, a taxi stand, a highway intersection) at certain specified .
times. The service facility (the restriction) requires some time to serve
each customer but is capable of serving only finitely many at a time
(possibly just one). If customers ariive faster than the facility can serve
them, they must wait in a queue (the reservoir). :

Typically, both the customer arrival times and the service times are
assumed to follow some specified stochastic behavior. One wishes to
relate the delays to the customers, and the number of customers in the
queue to the given properties of the arrival and service. In 'p_rae'ticai
applications one usually wishes further to compare the operation of
several possible modes of operation with respect to its type of service,
cost, etc. Should there, for example, be a single queue for all bank
tellers or separate queues for each?. _ _

In most of the following descriptions, we will also use the terms
customer, server, and queue (except when it is clearly inappropriate)
even: though the terms object, restriction, and reservoir are more
suggestive of the wide range of physical systems to which the same
mathematics will apply. _ S

What complicates the mathematical modelling of most real systems
is that repetition of an experiment ‘under identical conditions’ does
not usually yield exactly the same results every time. To make
predictions of future behavior it is, generally, necessary to postulate
some stochastic model and to estimate probabilities for certain events,
ie., fractions of times in which various events would happen over
many repetitions of the observations. Unfortunately, in most appli-
cations of queueing theory, the observed properties of the stream of
objects passing any point do not conform to any mathematically
‘simple’ stochastic model. To describe how the system behaves under
repetitions of an experiment one must actually repeat the experiment
to see what happens. It is usually rather dangerous (o speculate on
what would happen if the system were copsistent with some
hypothetical model. From repeated observations on an. exis_t_ing
system one must, however, still make conjectures as to how the system
would behave if certain changes were made in the system.
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1.2 Mathematical and graphical representations of events

Since a study of any queueing system should start from some (real or
imiplied) experimental observations, let us imagine that we station
observers at various points in the system. For each service point we
might place one observer just upstream of the server to record the
times and identity of each customer that passes him. If customers
travel with a finite speed and the queue has a positive physical length,
we 'might ask: this observer also to convert his observations into the
times at which the customers would have reached the server if there
were no queue (or if the queue occupied no space). We place a second
observer at the server to record the times and identity of customers
entering the server and possibly a third observer just downstream of
the server to record the times at which customers leave the server {and
their identity). -~ | .

We will assume that at time 0, when the observitions begin, the
system is empty. If it is not, we can imagine that the system was empty
for time t < O (whether it was or not) but that each observer records
arbitrarily that any customer already downstream from him att = 0
passed him at 1 = 0.

One could also imagine that the first observer assigns labels to each
custorner that passes him (for example, a number) and he asks the
customer to keep the label with him at all times. All customers are now
different by virtue of their labels (if not for other reasons) and each
customer individually satisfies a conservation principle in that he does
not disappear or change identity during the period of observations.

Since one may be interested in the possibility and possible
consequences of the fact that customers might intérchange positions
in the queue or server (they pass each other), such a labeling will
permit the downstream observers to detect any such rearrangement.
We would, however, like to make a distinctionr between customers
which differ only by virtue of having different labels and those which
differ in some more significant way (the delay time of one is worth
more than another or one is known to require a longer time in service)
which may be relevant in selecting some service priorities. If it is
relevant to treat the customer arrival as the superposition of several
identifiably different streams, each satisfying a conservation principle,
then we will ask each observer to record separately the times at which
customers of each category pass. '

For now, we will consider only the observations associated with
customers within the same category, as if those of other categories (if
any) were not there, or not observed.
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If the first observer numbers the customers (of the same category)
consecutively and assigns the numbers as labels let

0<y =1, =

represent the time at which customers 1,2, ... arrive at the server-or
would arrive at the server if the queue occuplcd no space. These times
can be represented graphically as a sequence of points on the real line
asin Fig. 1.2(a). It is more convenient, however, to represent these data
by a graph of a function A4(¢) which, for each i, represents the
cumulative number of arrivals to time ¢: :

A(¢) = number of t;withe; =<t (1‘.1)
1 - > > - & &
On K h fa 5 fg
{a}
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Figure 1.2 Representation of arrival and departure times by points on a line

This is a step function which increases by one at each time £; as shown in
Fig. 1.3.

One immediate advantage of this representation is that we willalso
have occasion to analyze arrivals and departures of quantities other
than numbers of customers; for example, the cumulative value of
products or the cumulative amount of -work to be done. If the
quantity in question is also conserved {what comes in must go out),
then it is easy to generalize (1.1) to

A(t) = cumulative quantity (or number) to arrive by time 1.
(1.1a)

This is also a monotone nondecreasing function of ¢, but it is not
necessarily integer valued. It may or may not be a step function
depending upon whether or not the arrivals are discrete. If they are
discrete, the steps need not be equal.
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Flgure 1.3 Graphical representation of cumulative arrivals and departures
from a queue :

For some purposes it is convenient to think of the graph in Fig. 1.3
asa graph of 4 versust,ie., the function A4 (r), but for other purposes it
is convenient to think of it as a graph of t versus A, i.e., the function
A~ (x). If x is integer, we can consider it to be the label on the last
arrival; for noninteger values we would interpret x as the cumulative
number of arrivals or fractions thereof,

A" x)=t; for j—1<x<j (1.2)

Perhaps it is better yet to consider this as simply a curve A in the t, x
plane without specifying which variable is the ‘independent’ variable.

The second observer will record the times at which customers enter
the server, along with the customer number assigned by the first
observer. Let

f+; = time customer number j leaves the queue and enters the service.

Whenever there is a queue of more than one customer, the order in
which these customers enter the service need not be the same as the
order in which they arrive.”A rule describing how customers are -
selected from a queue is déscribed in the queueing literature as ‘quene
discipline.” The discipline in which customers are served in order of
their arrival is usually called *first in, first out” or FIFO. This is the
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simplest to describe mathematically because the times t}; must now
satisfy the conditions

0<t¥ <t¥st¥,..., forFIFO. (L3
Some common examples of queue disciplines other than FIFO are:

(a) Last in, first out (LIFO). Suppose that letters to be typed or order
forms to be processed accumulate in a pile, each new addition
being placed on top. The typist or clerk now services the letters
(the customers) by taking each new task from the top of the pile. A
newly arriving task will be the next to be served provided it can be
served before another arrives. -

(b) Service in random order (SIRO). Passengers waiting to board a
bus might appear to board in an order which bears no relation to
the order in which they arrive. Random order of service is usually

defined to mean that whenever a customer is selected from the '

queue, the selection is made in such a way that any customer in
the queue at the time of selection is equally likely to be chosen.

{c) Priority service. Particularly if one has not initially decomposed
customers into categories and considered each category sep-
arately, one might order the customers in queue according to
some identifiable characteristic (length of job or value). The next
customer to enter the service is then the one in queue with the
highest ranking (top priority) at the time. There are several
variations on this depending upon whether or not a high priority
customer must wait until the next service completion to enter the
service or if it can displace a lower priority customer from the
service.

For some purposes (particularly if one is interested only in counts of
customers but not their identity) it may be convenient for the second
observer simply to record the ordered times at which customers enter
the service even though the queue discipline isnot FIFO. He, in effect,
relabels the customers and defines ¢ ; as the time of the jth departure
from the queue so that

O<ty StpStp s,
If one represents the times at which customers leave the queue by
points on the real line as in Fig. 1.2(b), the set of times t,; and tJ;

represent simply two different labelings of the same set of points.
As with the times ¢, it is possible also to represent the t, ; by a graph

D, (t) = number 'of-tqj witht, ;S t, o (L4
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the cumulative number of departures from the queue by time ¢, or
more generally

D, (t) = cumulative quantity or number to leave the queue by time r.

(1.4a)
The inverse of this, D' (x), describes the ordered departure times
DiMx)=t, for j-1<x<] (1.5)

If one draws both A(t)and D (t) on the same graph, as in Fig. 1.3, the
curves cannot ¢ross bécause, for any ¢, the number of customers which
have left cannot exceed the number which have arrived. The vertical
distance between the two curves at any time, representing the number
of customers who have arrived but have not yet left the queue, is

quantity or number in the queue (queue length)
= Qft) = A(t) - D,(t) =2 0. (L6)

It is, of course, also true that
D'(x)—A7'(x)=0

because x customers cannot have left until at least x customers have
arrived.

The curve DY does not display the queue discipline. It gives only the
count of departures but not the identity, and its inverse gives only the
ordered departure times ¢ ;. It is possible, however, to draw a graph
D* which does display both the departure times and the queue
discipline. If we consider x as the independent variable, we can draw a
function of x having values

¥, for j—l<x<j

instead of the ¢,; which defined the curve D,. Whereas the curve D
described a monotone nondecreasing function of x or ¢, the curve D¥
will not be monotone unless the customers are served in the order in
which they arrive (t,;> 1, if j> k), consequently the curve DF
will not generally define a single-valued function of «.

If we draw both 4 and D¥ on the same graph as in Fig. 1.4, the
horizontal distance from ¢ = 0 to A at height x, j—1 < x < j is the
time ¢;at which customer jarrives, and the horizontal distance to D is
the time he left the quéue. The difference between them, the horizontal
distance from A to D¥, is the time which the jth customer spends in
queue
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Figure 1.4 Graphical representation of departure times

This is also equal to the area of the rectangular strip between A4 and
DY, i-1<x<j o

Whereas Fig. 1.3 gives a simple gecmetrlc mterpretat;on of Q(r),
Fig. 1.4 gives a simple geometric interpretation of the w;. One could
also identify the w; from Fig. 1.3 if this graph were supplemented with
some scheme for identifying which step in D, gives the departure time
associated with the jth step of 4.

Since D} shows both the departure times and the order of
customers, 1t must also define Q(t). The curves D¥ and A enclose an
area, the locus of all horizontal lines from 4 to D; If one draws a
vertical line at time z, it will slice this area in such a way that any point
x in this area is identified with a customer who has arrived but has not
yet left. The total length of vertical line between A and D is the
number in the queue Q(r). This is also true of Fig. 1.3, but in Fig. 1.3
this is a single line segment.

If the queue discipline is FIFO the curves D, and D} are, of course,
the same curves.

The above definitions of 4, D, etc., are simply a description of what
two observers recorded and involve no ‘theory’ of what happened to
the customers in the queue. If we were to place a third observer
downstream of the server, he could record similar information
independent of what happens in the server, From this we can define t¥,
as the time at which customer j leaves the service, f,; as the orc_iered
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times at which customers leave, D,(t} as the cumulative number of
customers to ledave, and D} as the curve defined by

t¥ for j—1<x<j

If we draw the curves 4 and D} (instead of D¥) on the same graph, the
horizontal distances would be interpreted as the times customers
spend in the queue plus service (instead of just the queue) and a
vertical slice of the-area between A and D¥ would determine the
number of customers in the queue or in service (instead of g(r)).
Similarly, if we compare D} and D}, the horizontal distances would
be the times customers spend in service and a vertical slice of the area
between D} and D} would determine the number of customers in
service at any fime. :

1.3 Modeillng

In order to make predzctaons of what would happen in an expenment
one has not done, one must relate the properties of D, D,, etc., to any
rules governing the behavior of the customers in the queue and the
server. In a typical queueing problem one proposes one or more
possible curves A(t) or perhaps some probability distributions for
A(t), a description of the queue discipline (if relevant), and the manner
in which the server operates. From this one wishes to evaluate, in
effect, the curves D, D, or any derived properties thereof, perhaps
probability distributions of the w; or Q(¢).

The rules governing the dynamics of the system could conceivably
be quite complicated and involve interrelations between the service
times, arrival times, customer types, etc., restricted only by the
universal principle that a customer cannot leave before he has arrived
or equivalently that the queue cannot be negative. Most systems
which have been analyzed in the queueing literature, however, have
rather simple rules. The mathematical complications are not directly
associated with the queue dynamics, but with the stochastic analysis.
Even though the postulated relations between arrival times and
departure times appear quite simple, they lead to fairly complex
relations between probability distributions for arrivals, departures,
queue lengths, waits, etc.

A description of the server should at least define a relation between
the curves D}and D}, ie., between the t*;and t¥;. The simplest rule is
onein WhiCh the times each customer wﬂl be in service {or probability
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distributions for the service times) are given, ie.,
s;=th—1% for ali J.

From this one can, of course, immediately construct the D¥ from
the D¥.

In some situations, for example-, customers being served by taxis,
the customer might consider his service to start when he boards the
taxi and to be completed when he reaches his destination, so that the s;
would be his trip time. For the next customer who is waiting to be
served, however, the relevant ‘service time’ is the time from the start of

the last service until the taxi accepts him. Alternatively, he might-

consider his service to start when the taxi has discharged the previous
customer and accepted his order and to end when he is discharged.

In the analysis of most queueing problems it is usually implied that
the ‘service time’ is the time from the start of one service until the
server is available to accept the next customer, since this is the tlme
“which is relevant to the evolution of the queue. =

If one has m taxis serving the same queue, they could be serving as
many as m customers simultaneously. A server of this type consisting
of m separate servers, each of which serves only one customer at a
time, is called an m-channel server. For such a system, a new customer
can enter service as soon as any channel is free. The order in which
customers complete service is not necessarily the same as the order in
which they started service (i.e., the service discipline is not FIFO). A
server which can, at the start of any service, accept several customers
at the same time (such as a bus or elevator) is called a bulk server.

The rules governing the server will generally also specify that upon
completion of one service at time r another service should start
immediately provided that Q{t) > 0. If the server is a bulk server, the
rules will also specify how many customers the server can accept,
given the value of Q(1). If @(t) = 0, the rules should specify when the
next service starts, usually when the next customer arrives.

For most service systems that one encounters in queueing appli-
cations it is quite easy to follow the rules iteratively (either numeri-
cally or graphically) and construct D} and D} from a given curve A(t)
and the service times (i.e., perform a ‘simulation’).

If, for example, the server is a single-channel server one would
specify A(f) or equivalently the t,, the service times s;, and the queue
discipline. The iterative rules describing the evolution of the D, and D,

are that
ts*j = tﬂj+ SJ';
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and, if the queue discipline is FIFO, the j + 1th customer starts service
attime t¥if he hasarrived,ie.if t;, , < 5, but,if not, he enters service
as soon as he does arrive at time t;,,. Thus, t¥, = ¢.;, t& = t,; and

tqj4'.1:max(tj.'.l,tsj)mmax(tj+1,tqj+5j). (1.8)

Starting from an initial condition that the system is empty and
ty1 = ty, (1.8) determines each t_;,, from the previous one, Ly

Ifwesubtractt;, L from both sides of (1. 8) we can also write it m the
form

AT T =m3x(0,qu“tj+1_+§j)- (19)
For FIFO queue discipline

wi=1lg;—tj

therefore, the w; satisfy the equations
Wj+'1 =max(0,wJ+Sj""'(£J+l_tj)). (1.10)

This describes the waiting times iteratively in terms of the service

times and interarrival times t;,, —t;.

1.4 Averages

For most queueing systems, it requires only elementary mathematics
to describe the detailed dynamics of the system. It is, essentially, the
approximate theory of queues which is complicated. In analyzing the
behavior of queues, one does not care to observe the arrival and
departure times of every customer. On the one hand, this involves
tedious manipulations. On the other hand, they are not very
interesting data because many of them could not be reproduced if the
experiment were repeated. One would prefer to specify only a few
characteristics such as some average arrival rate or service rate, things
which are nearly reproducible.

Even if one could describe in detail exactly how large the queue
would be at every instant of time, one would probably disregard much
of the detail. One would prefer to have only some approximate
description or measure of performance. This is, in essence, why one
treats queueing phenomena as stochastic processes. One only wishes
to consider the average behavior of the system over a range of
conditions, not the details of what happens in any particular
experiment. :

Whether one treats the system stochastically or deterministically,
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there are certain gross properties one may wish to calculate; for
example, the average wait in queue for a set of n customers or the time
average queue length over some period of time.

The average time in queue for customers j+ 1 to j+ n inclusive is
defined as

j+n jtn o )
{wd== Y we=- ) (X—t) (1.11)
Mr=j+1 "k G+t

The w; can also be interpreted as the area of a horizontal strip k—1
< x < k between A and D}. The sum of the wy is, therefore, the area

enclosed by A, D} and two horizontal lines x = j and x = ;+n as

shown in Fig. 1 S(a)

jt+n —Er rE'
o . ol S M
Time T:ne ',l, db, '

() | ()

Figure 1.5 Areas defining average wait and queue length

The average quéue length during some time interval (a, b} is defined
as

Q) (bl j.Q(t)dt (L.12)

a)
Since g (f)can be interpreted as the length of cross section cut from the
region between A and D by a vertical line at t, Q(t)dt represents the
area cut from this region by a vertical strip between t and ¢ + dt. Thus
the integral from a to b represents the area enclosed by A, D} and two
vertical lines at t = g and ¢ = b, as in Fig. 1.5(b).

If, in (1.12), we chose a and b as any times for which Q(a) = @(b)
= 0, and in (1.11) we chose j = A(a), j+n = A(b), then the two areas
in Fig. 1.5(a)and (b) would be the same areas. Both the horizontaland
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vertical lines of Fig. 1.5(a)and (b) would cut the region between 4 and
D} at a single point. The total queueing time during the time interval
(a by would be the same as the total queuem g time for customers j + 1
to j+n. In (1.11) this is represented as the sum of horizontal strips
whereas in (1.12} it is represented as the sum of vertical strips. With the
a, b, j, and n chosen inthis way, it follows that

_ (b—a){Q(t)> = n{w;) = total queueing time

or

A 4 _
Q> =m<wj>- (1.13)

We can also define
Aap = nf(b-—a) {1.14)

as the average arrival rate during the time interval (a, b).

If the queue behavior is such that the queue vanishes repeatedly,
every day at midnight or at other perhaps irregular (maybe stochastic)
times with a finite spacing, the above relations would be valid for any
or all choices of times a and b when the queue vanishes {not just
consecutive times). Even if the queue does not vanish at times aand b,
but it vanishes at many other times between a and b including some
times close to aand b, the areas in (1.11)and (1.12) would differ only at
the ends of the region between A and D? and from a or b to the nearest
time where Q(f) does vanish. If these end areas are negligible
compared with the total areas (1.13) is still approximately correct.

Although (1.13)is exactly correct if Q{a) = Q(b) = 0,essentiallyasa
direct consequence of the definitions of the averages, and it may be
approximately true under more general conditions, the (w;>,
{Q(1) >, and 1, will generally depend upon the particular choice of a
and b.

Much of the mathematical literature on queueing theory deals with
what is known as ‘stationary arrivals’ generated by a hypothetical
source which operates from t = — o0 to t = + co. The arrivals are
assumed to have certain stochastic properties but of such a nature that
for a - — oo and b — + o0 each of the above averages, particularly
the 4, has a well defined limit. If such limits exist, {1.13) must, of
course, be valid for @ -+ — o0 and b — + co. Theorems relating to the
validity of (1.13) can be quite sophisticated,t but the complications are

t Little, J. D. C. (1961} A proof for queuemg formula L =2 W. Operations
Research, 9, 383-7.

Jewell, W. S. (1967) A simple proof of: L = AW. Operations Research, 15,
1109-16.
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mainly associated with the mathematical conditions which will
guarantee the existence of the appropriate liniits. From the point of
view of practical applications, this is, however, rather academic gince
no real process runs from ¢t = —w to t = + o0, _
Equation (1.13) has an obvious generalization to cases in which the
x coordinate measures Some substance :other than numbers’ of.
customers. Suppose, for example, that 4(t) measured the cumulative
arrivals of a substance which arrives in discrete units: of size a; at times
t, and leaves in the same units of size g; at fimes t¥. If Q(t) now
measures the amount of substance in the reservoir and Ofa) = Ob)
=0, the area between 4 and D} from a to b would be. :

i+n

;{Q(ﬂdf: Y alth—n),

k=j+1
with the sum extending over all arrivals between times a and_ b, or

it

<QU>_MJ;J'2 ah—t). (L19)

)k'_ﬁ-—l

There are (at least) two possible interpretations of the right hand side
of (1.15). If a, represents the value of the kth arriving object or the cost
per unit time for delay of the object (mterest cost on the value), we
could interpret : :

1ix1 .
= ) At — )
Sy 8

as the average cost of delay per arrival and write (1.15) as.

k=j

1j+n i .
Q) = j"ab{j; E ak(t:kmtk)} (1.16)

with 2, the {average) arrival rate of objects. Alternatively we might
interpret

1 itn
FERT Z a(fqr — )

Y @+
K=;
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as the delay per unit of substance (for example, delay per person if the
arrivals are buses with a, passengers per bus) and write (1.15) as
j+n
Z a 1 jtn
(g) = L alh-t) | (L17)
Y gt

<Q(t)>

k=j

EECE (amvai rate of substarnce) x (average deiay per
unit of substance).

The above formulas were derived from the geometric properties of
two curves (A4 and D}) but did not depend upon hiow the curves were
generated. If the curves had been 4 and DY instead of A and D}, and
the system was empty at tlmes aand b, we would mterpret {1 13) or
{(L.17} as

{Q,(t) > = average substance in the system
= (arrival rate of substance) x (average time in
system per unit of substance). {1.18)

Slmﬂarly, if the curves were DY and D} but there was nothing in the
server at times a and b, (1. 13) or (1. }7) could be written as

average su’bstahce in service = (arrlvai rate of substance)
' % (average time in service per
unit of substance). (1.19)

Furthermore, if @ and b were times when the system is empty, the
arrival rates in (1.17), (1.18), and (1.19) would be all the same and the
average delay times refer to the same set of objects,

The above formulas are true regardless of the queue or server
discipline, but the average queue length, which does not recognize the
identity of customers, could have been evaluated from the curves A4
and D, If a change in the queue discipline does not change the curve
D, 1., the times at which customers enter the server, then the average
wait per customer is independent of the queue discipline. The D, will
be independent of queue discipline, thus unaffected by an interchange
of customers, if and only if the service times of all customers are equal
{or if the service times are random, they are ‘interchangeable’).

If this is true, the advantage of FIFO discipline over other types of
queuve disciplines is related not to the average delay but to the
variations in delay about the average. Obviously, last in, first out
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dtsmplme gives a high proportion of very short delays (Iess than one

service time) but also some very long delays.

1.5. Applications of L = AW

In a typical queueing pfoblem, one specifies the arrival rate of
customers, A,;, and the service times. One wishes to evaluate (among

other things) the average queue length (@(1)) and/or the average

delay per customer {w, ). Equation (1:13)relates these two unknowns
in a simple way, so it suffices to determine either one or the other.

Equation (1.19), however, has some more diréct applications
because both factors on the right hand side are usually given.
Consequently, one can immediately evaluate the average number of
customers in service, provided, of course, that the long time arrival
rate of customers. is sufficiently low that the system will empty
occasionally, ie., the server is capable of serving customers . fast
enough eventually to keep up with the arrivals. '

If the server is an m-channel server, with each channel serving at
most one customer at a time, the number of customers in service is the
same as the number of busy servers. Thus (1.19) determines also the

{time) average number of servers that are busy, which is obviously a

Jower bound on the number of servers m which one needs to keep up
with the arrivals. A telephone company, for example, might know the
frequency of calls (arrival rate) between two cities and the average
duration of a call (service time). It wishes to know the minimum
number of channels it must provide to handle the traffic. An airport
designer may know how many aircraft arrivals are expected each day
and the average ‘turn around time’, i.e., the average time an aircraft
occupies a gate position (service time). He wishes to know the
minimum number of gate positions he must build. .

In each case, the designer would also like to know something about
the peaking of demand and the delays that would result from various
choices of m, but {1.19) will not determine that. In fact, if all channels
are identical, presumably the service time of a customer will be
independent of which channel it uses and, consequently, also
independent of the number of channels. Thus the right hand side of
(1.19) does not depend upon m (provided m is large enough eventually
to serve the arrivals) and the average number of busy servers is
independent of the number of channels.

" The difference between a service with many channels and one with
only the minimum number is that the former can serve customers with
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- Jess delay in queue. If one has an arbitrarily large number of channels,
_many channels will be used during temporary surges in the arrivals

but during lulls relatively few will be used. If one has only the
minimum number of servers, a queue forms during the surges but the
customers in queue are served during the lulls; the servers are kept
busy all of the time serving either new arrivals.or those in queue. The

time average number of busy servers is the same in both cases, but the

former has larger fluctuation.

- Equation' (1.19) also gives some- mterestmg information for a
smgle—channei server. Again one typically knows the arrival rate and
average service time, so (1.19) determines the time average number of
customers in service. For a single-channel: server, however, the
number in service at any time can be only 0 or 1. The time average
number in service is, therefore, the same as the fraction of time the one
server is busy. The right hand side of (1.19), 4,5 (5;, is, in this case,
called the ‘traffic intensity’ usuaily denoted by p:

0<p=dp(s;y<L. (1.20)

The quantity 1 —p is the fraction of time the server is idle. If a

- customer arrives at a random time uniformly distributed over the time

interval (a, b), 1 — p can also be interpreted as the probability that the

_customer finds the server-idle and can enter service with no delay.

1.6 Other graphiéql'representations

In Section 1.2 we represented A(t) and D, (f) as two curves on the

same graph, ie., as the locus of points in the (x,t) plane with
coordinates {A(t),t) and (D,(t),t) respectively, or equivalently
(x, A"'(x)) and (x, D *(x)). This is the most common way of
representing these quantities graphically because it shows very
conveniently most of the quantities one wishes to observe, particu-
larly if the queue discipline is FIFO and D} = D,. The advantage of
this type of graphical representation of the data t;, t;, etc., over other
possible schemes derives from the fact that one can easily visualize the
geometrical addition or subtraction of line segments or areas. The
graphs conveniently show geometrically the subtraction A(t) —D, (t)
to give Q (tYand, for FIFO queue discipline, the geometric subtraction
of line segments in a different direction D ' {x) — A~ (x) to give the
wait w(x). Furthermore, it conveniently shows addition of areas to
give the total waiting time. If these are the features of primary interest,
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it is difficult to imagine how one could find any better way to show all
of thése on the same graph. :

If one wishes to compare the behavior of the curves AN (1), DI1)
as observed on one day with a new pair of curves A (r), DP (1)
observed on another day, the fact that one must draw two curves for
each day and then compare the pairs of curves may be awkward. It is
possible, however, to show the evolution of both A(r) and D,(t)
simultaneously by a single curve if one goes to a three-dimensional
space. In an (x, y, 1) space one can draw a curve (A(i), D (1), tyorina
(t, t,, x) space one can draw a curve (A~ " (x), Dy ! {x), x). A

Each of these is a step function curve. The former movesa unit step
in the x direction at each time ¢;and in the y direction at each time ¢, ;
whereas the latter curve jumps from (t,t,) coordinates (¢, £ ;) to
{tj+1s tq, j+1) When x passes j. The two curves (A(t), t) and (Dy(2), 1)
are the projections of {A(1), D,(t), t) onto the (x, ) and (y, t) planes,

respectively. Correspondingly, the curves (A7 (x),x) and

(D ' (x), x)are the projections of (4~ " (x), Dy ' (x), x) onto the (£, x)
and (t;, x) planes, respectively. We have, of course, previously drawn
these projections on the same graph. We could have drawn them on
separate graphs but would then lose the simple geometric interpre-
tation of queue length and wait in queue which resulted from
subtracting distances between the curves A and D :

There is still a third projection of each of these three-dimensiona
curves, the projections on the (x, y) or (¢, t,) planes. These are curves
having a parametric representation (A(t), Dy(t)) and (A~ L{x),
D *(x)), respectively, as shown in Fig. 1.6. Actually, the latter ‘curve’
is only a sequence of points since it moves only at integer x, but wecan
arbitrarily join these points by a piecewise lincar curve. One may also
label the time ¢ or count x as a parameter along the cutve, particularly
since the only relevant parameter values are the discrete times ¢; and
t,; or the integer values of x.

On the (A(t), D, () curve, a horizontal step of the curve has a
length equal to the number of successive arrivals before a departure,
and a vertical step has a length equal to the number of successive
departures before the next arrival. If a ¢; should be equal to some £,
we would have simultaneous horizontal and vertical steps. This would
certainly occur at times when a customer arrives and finds the server
empty, since then ;= ¢, It seems most natural to represent
simultaneous arrivals and departures by a single line of slope 1.

That A(t) = D {t)and D] *(x) = A~ *(x) was displayed in Fig. 1.3
by the D, curve always being below or to the right of A. One needed to
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" Figure 1.6 Parametric representations of D(t) versus A(t) and D' (x)

versus A~ 1(x)

compare two curves to see this. In Fig. 1.6, however, this important

-property is shown by the one curve (A(t), D (£)) which must lie
~ always on or below the line x = y, or by (47 '(x), Dy ! (x}) which

must lie on or above the line £ = t,. One is still comparing two curves,
but the straight line does not depend upon the evolution of the system.
If one superimposes curves obtained on several days, the boundary

line is the same for all days.

A graph such as Fig. 1.6 displays quite different aspects of the
system behavior from Fig. 1.3. The former shows in a more
convenient way comparative properties of the arrival and departure
times (for FIFO), but it does not show conveniently any comparative
properties of counts and times because one or the other is represented
only as a parameter along the curve. Fig. 1.6(a) does not show waiting
times conveniently because these involve the time parameter ¢; Fig.
1.6(b) does not show queue lengths conveniently because these
involve the customer count parameter x. Neither graph shows the
arrival rate, departure rate. {w;>, or {@(t) ) since these all involve
both counts and time. '

Fig. 1.6(a) does show the queuc length identified with any point on
the curve having integer coordinates; it is either the horizontal or
vertical distance from the curve to the 45° line. Similarly, Fig. 1.6(b)
shows the waiting time associated with any point {t;,t ;) as the
horizontal or vertical distance to the 45° line.
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If, in addition 1o the constraint that Q (t) > 0and w; 2 0, one were.

to impose a restriction, that the queue could not exceed some number
¢ (a storage capacity) or that the wait could not exceed some boind;
these restrictions could also be represented conveniently in Fig. 1.6(a)
or {b) respectively by drawing another 45° line; for example, x ~y = ¢
in Fig. 1.6(a). The curve (A(¢); D, (t)) would then always lie between
the lines x —y =0 and x — —y=c :

Problems

1.1 From a sequence of 150 random dlglts X,=0,1,...,9, generate
~ a sequence of numbers :

1 if X;=0,1,2,0r3 .
EW{G if X,=4.5.67.80r9 i=1,...,150

From a different sequence of 150 random digits X} = 0, 1,. .9
generate a sequence ' C

1 if X,=0,1,2,30r4 '
A [} 3 4 £ 'ml . .
' {0 if X,=5678o0r9 ’1_50

The X, X; may be obtained from tables of random digits or orie
may use last digits of consecutive telephone numbers from a
telephone book (excluding any numbers which may be listed
twice, because a person may have both a business and personal
listing, for example).

Consider a queueing system for which customers arrive and
leave only at integer values of time ¢ = i. One customer arrives at
time i ifY; = 1, none if Y; = 0. If a customer is in service at time i
—1, it will leave the service at time i if ¥; = 1, otherwise no
customer leaves at time i. The server serves only one customer ata
time.

Draw graphs of A(t), D,(t), and Q,(r) = A{(t)—D,(t) on 10
squares to the inch graph paper with a scale of 20 time units to the
inch and 10 customers to the inch. Also draw graphs of (A (),
D,(t))and (4™} (x), D] * (x)). Interchange the sequencesY; andY;
and draw the corresponding graphs.

Note: This may be assigned as a class exercise. Each student

should select a different set of random digits. One can then

imagine that the different curves represent the results of some

experiment which was repeated many times. The class should
. then compare the graphs obtained by different students.
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1.2 1f on a graph of Q{(t) versus ¢ one sees that an arriving customer
_ causes Q (t) to increase from k to k+ 1, how would one identify
when he left the queue if the queue discipline is last in, first out?
How would one :dennfy the same thing from graphs of 4(t)and

D (£)?
1.3 (a) Let0 = tl <tz <L be ordered arrival times and 0 < tai
R 4 A n=tn ordered departure times from a queue
- which vamshes at time 0 and ¢,. If t¥, = fqn, is the departure
time of customer j, show that the sum of the squares of the delays

Z (tqn,_tj)z'
i=1

is least if n; = j, ie., for FIFO service. The ¢ ; are assumed to be

independent of the order of service.

(b) Asa generalization of (a), suppose the cost of dealy to the jthe
~ customer is a function P (w)) of the delay w; = 1, -—t; with the

function P (x) the same for all customers. The total cost of delay

to all customiers is

i=1

If the marginal cost per unit delay p(x),
p(x)=dP(x)/dx, P(x)= J‘ p{x)dx,
0

~ isamonotone increasing function of x, show that the total cost of
delay is least for FIFO.




Py

CHAPTER 2

Deterministic fluid
approximation —single server

2.1 Introduction

To analyze the behavior of some existing service facility which servesa
single category of customers, imagine that one were to record the
arrival and departure times of all customers over some very long
period of time, possibly several years. Such data do exist for some real
systems. For example, any computer controlled traffic signal system is
connected with many permanently installed vehicle detectors. At any
particular traffic signal (server) there is likely to be one or more
detectors upstream of the signal and also detectors downstream
(perhaps near the next downstream signal). These detectors transmit
an electrical pulse to the computer every time a vehicle passes. Most of
these data are discarded after use, but they could be kept on a
magnetic tape. Any airport also maintains a record of all aircraft
movements including arrivals and departures from the runway and
gate positions.

In the last chapter we discussed some of the microscopic properties
of the Aft), D,(t) curves; that they have integer steps at each arrival
time. If one were to draw a graph of A(t)and D (t) for several years on
a scale such that one could see each arrival, it might require a square
mile of graph paper. If, however, one were to rescale the graph, one
would see different types of time-dependent phenomena depending
upon the scales of counts and time.

If you- were counting cars on a highway, for example, which at
various times might carry flows of the order of 1000 cars per hour, one
could see the integer steps in A(¢) if the scales of time and count were
comparable with, say, 10 seconds to the cm and 3 counts per em. If,
however, one were to choose a scale of about I min per cm and 20
counts per cm, the integer steps would be too fine to show very clearly.

. The A(t) and D,(¢) curves would likely appear as a nearly smooth
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Figure 2.1 Cumulative arrivals on various time scales

curve, as illustrated in Fig. 2.1(a); havmg some wi ggles of rather erratic
form caused by ‘random surges’.

Depending upon how steep the curves become as a result of the
wiggles and how fast the server operates, the surges may or may not
cause a queue. If the server has nearly equal service times for all
cutomers, the D, (t) curve might look like the broken line curve of Fig.
2.1(a), which shows a queue whenever the surges generate a slope
temporarily exceeding the service rate. '

If we draw the curve on a still coarser time scale of say 20 minutes
per cm and 200 counts per cm, the wiggles inthe A(z) might not show
very clearly, but one would see the ‘peak demands’ or ‘rush hours’. For
example, between 7.00 a.m. and 8.00 a.m. of some day, the curve for

P
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A(f) might be of the type shown in Fig. 2.1(b). The A(t) curve may be

quite smooth, but not linear. If there is a portion of the curve where
the arrival rate exceeds the service rate, the D,(t) could deviate
appreciably from A(t) showing queues possibly of the order of 100
cars.

On ascaleofa few hours per cm and several thousand counts per
cm, the difference between A(f) and D, (t) would likely be too small to
measure (the queues are not measured in thousands), but over a
reasonable width of paper one sees the 24-hour flow pattern. It might
shiow a morning and evening peak but a very low arrival rate between

© 2,00 a.m. and 5.00 a.m. with no queue (even on the scale of Fig. 2.1(a))

as in Fig. 2.1(c).

If the graph is continued for a week as in Fig. 2. l(d) we would
probably see different patterns on different days, particularly Sunday,
Monday, Friday, and Saturday. If it is drawn on.a scale of a week per
cm, we would no longer see the daily rush hours. We might see some
variation in the daily counts within the week (particularly the
weekend) but over many weeks there is likely also to be some seasonal
variation. Finally, if one draws the graph on a scale of several months
per ¢m, one would no longer see the daily variations. The seasonal
variations would still be visible, but, in addition, one might see a
gradual growth of traffic from one year to the next.

To analyze queueing delays, it is obviously not very helpful to draw

A(f) and D,(t) on such a scale that one cannot measure the difference

between the curves. One would not ordinarily draw a graph on a scale
such as Fig. 2.1(d) (or a coarser scale), but would observe that the
queue (almost always) vanishes around 2.00 a.m. to 5.00 a.m. Instead

of continuing the curve Af{t) for several days, one could reset the

counters to zero at the same time each day and draw separate curves
AY(r) and D{(t) for each jth day, i.e., a set of curves of the type shown
in Fig. 2.1{c).

If we compare the curves on various days, we should, of course, find
that some days have similar patterns (successive Fridays, for example).
We would first try to classify the days in some systematic way so that
all curves in -the same class can be compared as being nearly
‘equivalent’. No matter how one does this, however, there are likely to
be some curves which are unlike any others. There are days when there
were failures in the service, unusual patterns caused by a snow storm
or whatever, which occur only once or twice in several years and
possibly never in quite the same way again.

In the analysis of most practical problems, one would probably not
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try to analyze the behavior of the system for all time periods.
Presumably, there are certain things about the system behavior which
are undesirable and which one wishes to correct through some
modification in design, strategy of operation or whatever. Since it is
expensive to collect and analyze data, one must first decide ‘what was
the problem? or ‘what are the most important of several possible
probiems?

The type of techmques one will use to analyze the system depends
upon whether one wishes to investigate the gueueing due to the
wiggles in A(t) as illustrated in Fig. 2.1(a), the rush hours as in Fig.
2.1{b), or the unusual events. If it is the rush hour, one must further
decide if the problem is primarily the weekday rush, the Monday-
Friday rush or the weekend demands (as for recreational facilities).

To design a facility to accommodate the unusual events often

means merely that one has some emergency procedures for diverting
the customers (aircraft are sent to another airport in a snow storm or

~ an announcement is made that some facility will be closed). The

evaluation does not typically involve conventional queueing methods
because the inconvenience may not be the usual delay associated with
customers waiting to be served. The inconvenience may be difficult to
quantify, yet many facilities (particularly public facilities) are designed
in response to complaints about service during unusual situations. If
the performance of a system is mainly a ‘political’ issue, there is no
point in making an economic evaluation of delays during typical days.
(People may want a rapid transit system no matter what it costs.)
We will be concerned here, by implication at least, primarily with
patterns of system behavior that recur many times or are {partially)
predictable. If it costs more to build a facility with.alarger service rate,
an efficiently designed system will always cause some delays, because
there is no benefit associated with any excess capacity which is never
used. The benefit associated with an increment of capacity that is used
for only a short period of time or infrequently is also very small.
Consequently, the capacity should always be somewhat less than the
maximum demand during some time period. In principle, the proper
choice of capacity should involve a compromiise between the cost of a
large facility and the inconvenience of delays for a smaller facility.
Even after one has classified the days into well defined categories,
one will still find that the AY(t) curves within the same class are
different in various ways. The arrival times of the customers are not
likely to be exactly the same. Furthermore, although the curves on
different days may have nearly the same form when drawn ona scale

e
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such as Fig. 2.1(b) or (c), the wiggles on a scale corresponding to Fig.
2.1(a) do not occur at the same times or have the same shapes.

Most of the literature on queueing theory deals with the analysis of
queueing on a scale corresponding to Fig. 2.1(a). It is generally
assumed that if one takes the arithmetic average of the AY(t) over
many days,

(AN = 2 AV(2) @.1)
J‘ =1

that this averaging will smooth out most of the wiggles of the
individual curves (for sufficiently large n) giving a curve for (A(t))
that is nearly linear .over some appropriate time interval. Actually
most of the theory deals with ‘stationary processes’ corresponding to
some hypothetical process that runs from ¢ = — o0 tot = +00. It is
usually further assumed that the arrival rate, i.¢., the slope of the linear
AP(1)), is less than the (average) service rate while the server is busy.

Whereas QU(1) = 0 on every day and, consequently, the average of
QUY(¢) over n days is positive, if one had a hypothetical process which
had an arrival curve (AP(1)) and a server which, while busy, serves at
a constant average rate larger than the arrival rate, there would be no
quene. Thus, the average (QY(f)) is not the same as the queue
generated by the average arrival curve. The.former is always larger
than the latter because the queues generated by random surges are not
compensated by a negative quene during the lulls. Despite the fact
that the QU(t) are not the same on different days, one will likely find
that the total delay over some sufficiently long time (or the time
average of QY(t) or the average wait of many customers on the jth day)
is nearly the same on all days.

In practical applications, however, many (perhaps most) queueing
problems are of a type analogous to that shown in Fig. 2.1(b). 1f one
compares these curves on different days, one still sees that the curves
have wiggles in different places on different days but the amplitude of
the wiggles is small compared with a typical queue length during the
rush. Except for effects caused by wiggles near the beginning or end of
the queueing period, the (QY(t)) is nearly the same as would be
generated by a hypothetical arrival process {AYXt)) served by an
average server.

In analyzing any queueing problems in which queues form
systematically at nearly the same time on ail days (of the same
category) it is convenient artificially to separate the queue length into
two parts, a part which would be generated by a hypothetical arrival
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process {AY(f)) served by an average server, and the excess queue
caused by the daily variations about these averages. The former part is
calied the ‘deterministic queue’. If the latter can be described by some
probability model, it will be called the *stochastic queue”.

In the following, we will first consider a variety of problems which
can be analyzed approximately from the evaluation of the de-
terministic queues. We will later describe some of the stochastic effects
associated with some relatively simple. types of systems.

In addition to the examples described in Fig. 2.1 primarily for a
system .having predictable rush hours but a steady server, de-

terministic approximations are also useful for describing any system

for which a queue¢ forms for predictable reasons. There are many
systems in which the service is interrupted for specified times long
enough for a sizeable queue to form. The service may be interrupted
for one class of customers because the server is being used to serve

_another class of customers or perform some other function. At a_

highway traffic signal, for example the signal turns red while a traffic
intersection is used to serve another traffic stream. A bus will interrupt
the loading of passengers who have waited for the bus because the bus
must be used to transport the passengers somewhere. A server may be
interrupted also for repairs.

The objective in modeling any such system is, of course, to relate the
behavior of the system to various parameters associated with- the
arrivals or the server so that one can predict how some hypc;thetlcal
system with different parameters will perform.

2.2 A rush howr

To analyze a rush hour of the type shown'in Fig. 2.1(b)and to estimate
what queues would exist for various service rates, one must first
collect data to estimate or predict a possible arrival curve A(t) of an
average curve {AY(e}>.

In practical applications, as for example in counting cars on a
highway where there is no automatic recording equipment, the data
which are often recorded consist only of the counts of arrivals during
consecutive time intervals of, say, 5, 10, or 15 minutes. These data are
also commonly displayed as a histogram of counts as in Fig. 2.2 which
one interprets as some step function approximation to a smooth
function A(t). These observations might not be repeated on another

day, it being assumed that the resuits would be reproducible within’

the typical range of statistical fluctuations, and that the hypothetical
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A(¢) which one would presumably obtain by averaging over many days
is some suitable smoothing of the histogram.

From the histogram one can, of course, evaluate A(t) at the discrete
times corresponding to the ends of the counting interval. Lacking a
statistical model, one would probably assume that the counts within
the time intervals were nearly uniformiy distributed over the interval,
that the A(t) therefore increases nearly linearly between the ends of
the time intervals, that the {4Y(¢)> would be a smoothing of A(f) on
some appropriate time'scale, and that A(t) is some suitable smoothing
of the histogram.

Since the questions we will be asking relate chrectiy to the curve A(f)
and areas between it and some proposed D_(t), it is more important
that one has an accurate estimate of A{f} (for all £) than A(t). If one is
smoothing ‘by eye’, it is generally better to smooth the A(z) directly
and evaluate A{t}, if relevant, as the derivative of the smoothed A(f)
than to estimate A(t) from a smoothing of the histogram and evaluate
A(r) by integrating the smoothed A{t). In doing the latter, one might, in
an attempt to follow the histogram ‘locally’, make systematic errors
which would ‘accumulate in the integration to obtain A(f), and
therefore cause inaccurate estimates of the Q(t).
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Having obtained an approximate deterministic A(t), we might now
imagine that we have a server which -operates at some constant
average rate u when busy. The construction of the curve D,(t) is
illustrated in Fig. 2.3{a) for a typical rush hour specified by a given
arrival curve A(t) and service rate p. The curve D, (t) follows A{t) very
closely (essentially zero queue) until a time to when the arrival rate A(t)
is equal to u. If for some range of ¢ with t > ty, A(t) > p, a queue starts
to form at time t, and the service rate remains constant at the value .
Thus the departure curve becomes a straight line of slope u tangent to
A(r) at t, and extending from ¢, until some time t; when the arrival

rate has been below pt long enough for the service to have caught up

with the arrivals, ie., D (t;) = A{t,). After time t,, the queue stays
zero, ie., D {1) = A{) for t > t3 until such time as the A{f) again
exceeds .

Note that the graphical construction of D(t) is very easy for any
given . One merely pushes a straight edge at siope jtagainst the curve

A(t) to form the tangént at to and draws the line from ¢, until it meets

A(r) again.

One can see 1mmed1ately from Fig. 2.3(a) that, for any smooth A(t),

Q(t) grows quadratically in time from time ¢, but vanishes linearly in ¢
near fj.

It is often convenient also to draw graphs of A(t) and the actual
departure rate p(f) as in Fig. 2.3(b). Until time g, p(t) = A{t) < pu. For
some time after time t,, however, p(t) = p < A(t) as shown by the
broken line. If A(t) reaches a maximum at time ¢, and decreases, it will
equal ¢ again at some time f,.

The length of the queue at time t

Q1) = A(t) — D) = J [A(r) = p(n)] de (22)

is represented in Fig. 2.3(b) by the shaded area between p{r)and A(z). It
reaches a maximum at time ¢, when.A(7) = p. After time t,, the guéue
decreases until time t; when the area between A(t}and u of Fig. 2.3(b)
from time ¢, to 1, is equal to the corresponding area between times £,
and t,. Note that p(t) will, generally, have a discontinuity at time ¢,
when, as the queue vanishes, u(t) drops from u to A(t;).

Although Fig. 2.3(b) shows clearly the evolution of the A(f) and u(t),
it does not show conveniently such things as waits, queue lengths, etc,,
as does Fig. 2.3(a).
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2.3 A slight overload

In most engineering applications, the evaluation of delays is only the
first step in an analysis, the final result of which is a decision as to what
to build. If costs of delays are large (in some sense) relative to cost of
construction, one should build a facility with a a very close to the peak
arrival rate, thereby keeping the delays low. If, however, construction
costs are high, one builds a facility only large enough to serve all
customers eventually, but certainly not to serve them with no delay.
The second step in such an analysis is to see how the total delay over
the rush hour depends upon the service rate u.

For any given A(t), the queue lengths, delays, etc,, are quite sensitive

to the service rate. One can see this immediately by observing how
D,(t) would change if its slope were changed.

If the period of time over which a queue exists (to to t5 of Fig. 2. 3(a))
is so large that A(f) cannot be approximated by any simple formula,
the easiest way to-evaluate-the total delay-over the rush hour as a
function of p is simply to draw several curves of D (f) for a reasonable
selection of u values. Then evaluate the area between A(t) and each
D (1) using a planimeter or by counting squares on the graph paper.

If however, the costs of delays are sufficiently large, one will
eventually build a facility such that D(r) is rather close to A(¢) with

some small value of t; —t,. Graphical methods are not very con-

venient in this case unless one can somehow make a preliminary guess
of the likely range for the final choice of p and therefore to and 3. To
obtain any accuracy from graphical methods, one must draw the
graph so as to magnify the range of ¢ from ¢, to t5. Instead of doing
this, however, one might consider an analytic approach.

Suppose that A(f) rises to a maximum at a time ¢ as shown in Fig.
2.3(b). In most practical situations, it would be reasonable to assume
that A(t) has a Taylor series expansion in ¢t —t,, or is at least twice
differentiable near ¢ = ¢,; so that A(t) can be approximated by a
quadratic function.

Aty = Mt - Bt —t; - 23)
for some constant f;
1 d%A(r)
b==33r i

at least over some sufficiently small range of t —t; (presumably for . .

tg <t <t3)
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If p is sufficiently close to A(t,), the time ¢, of Fig. 2.3(b), where
u = A{ty), can be estimated from (2.3); also the time £, where p is again
equal to A{t).

pu=Alt)—Blo —1,)?,
[H=s]"
to =1 = —7—1 ,

B
) :2 —t+ [ﬁ—"-] S 24
| BT |
It is convenient now to write A{t) ~ a in the factored form
A== Bt~ o)t — 1), (242)

This representation of A(f) — i follows directly from the postulates
that it is quadraticin ¢, it has zerosat t = t,andt = t,,and the second
derivative with respect to ¢ is —28.

The queue at any time t; < t < {5 is obtained by substitution of
{2.4a} into (2.2),

o1t - ﬁ(t —-to}l[{tz ;to} _ (t ;to)]. . .

From this we see-that Q(t) grows quadratically in t — ¢, for t near ¢,
and has a maximum at ¢,,
afalt) —ul’?

i 26)

06 =Eit—to =

proportional to the 3/2 power of the oversaturation A(t,) — p. The
queue vanishes again at time ¢, given by '

ty = to+ (3/2)t2 —to) = to + 3ty —to). 27

Thus (2.5) can also be written as

00 =Lu—twrin o @259

Despite all the parameters, this function has a universal shape. If we
were to translate the time and rescale the graph so that time was
measured from t, in units of £, —ty, and Q(t) were measured in units
of Q{z,), we could define

= (t~t,)/ts —t0), Q') = Q(1)/Q(t2),
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and obtain
Q)= 214’1 —t) for 0<t'=<1

This contains no parameters; it is a function only of t’ which vanishes
quadratically at t' = 0, linearly at ¢’ = 1 and has a maximum of @'(t)
= 1att ==2/3. '

Finally, the total delay W over the rush hour is obtained from the
area between A{(t) and D_(z), i.e,, by integration of (2.5a).

W:irﬂhgayzgjhdqr—%Vu3—ﬂ

ty

’ 1
= ”‘g‘(ts —to)* Jlo duu?(l —u) = 3%(53 —to)*
S ~u]” (2.8)

4p

“which is proportional to the square of the amount of oversaturation, ~

A(t;) — p, or the fourth power of the duration of the queue t; — 5. The
P represents the curvature of A(t); a large f means a sharp peak for
A(t), a small f§ a flat peak. A sharp peak, for fixed A(t;) and g, implies
from (2.4) a short duration of the gueue, a small maximum queue (2.6),
and a small total delay (2.8).

The estimation of total delay is one of the most common problems
to arise in practical applications. Some further fefinements of it will be
discussed again in Chapter 8. Any conclusions obtained here are
tentative and subject to unknown errors arising from the use of
deterministic approximations. One must be particularly cautious of
the possibility that the queue lengths calculated here may be
overshadowed by queues generated by stochastic effects.

2.4 Delays over many years ylﬁ(ﬁw W yINy’ eadoahin

For many types of service facilities, the arrival rate of customers
shows rush hours each day, variations in 24-hour arrival patterns
throughout the week, seasonal variations, and a general growth in
demand from year to year as discussed in Section 2.1. A question that
often arises is the following: one has an estimate of the annual growth
of demand over the next several years and one knows the costs of
construction of facilities of various service rates u; wben should one
expand the service?

We are concerned here mainly with the method of evaluating the
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delays associated with various strategies rather than with the final
problem of selecting dn optimal strategy. In principle, one can draw a
graph of 4(r) for a time range of 5 years, but if one draws it on a 5-year
time scale, one does not see the individual daily rush hours which are
the source of the delays; a 5-year plot will show the annual growth
possibly the seasonal oscillation, but little else.

Since the gueue is likely to vanish at the same time each day, one
could draw separate graphs of the A (t) for the jth day, and represent
the total delay as the sum over j of the areas between the AY(¢) and
D (#). Although one could, in principle, draw some 10° such graphs,
and evaluate them separately, it should be possible to classify the days
into weekends; weekdays, etc. Days of the same classification are still
likely to show trends or growth, but the shapes of the A (t) are likely.
to be nearly the same, differing only in the total count (scale).
Formally, for days of the same class, we might assume that

AD (1) = APF (1) (2.9)

in which 4" is independent of ¢ and F(¢) is independent of j, One
could, for example, let A" be the 24-hour count so that F(24) = 1.
If we draw a graph of the function F(f) as in Fig. 2.4(a), we can
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Figure 2.4 Evaluation of a rescaled wait for various service rates
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evaluate the total wait (area) W*(p*) that would exist for a
hypothetical cumulative arrival curve F(t) and service rate p*. If we do
this for many value of u*, we can construct a graph of W *(u*)versus
u* as in Fig. 2.4(b).

The delay that would occur for an arrival curve AV F(t) and service
rate i can now be obtained simply by rescaling coordinatesin Fig. 2.4.
The delay W is just A" times the W * evaluated at a service rate u*
= pufAD, ie,

WD = 4O * () AD), (2.10)

Actually, it may be more advaritageous to draw a graph of the
function

H(s*) = s* W*(l/s*) @1

rather than W"‘(u*} because (2.10) can then be written as
W = pH(AD/p). 212

The total delay over many days (years) having the same F{t) is
obtained by adding the W for each day,

total delay = u ¥ H(A/j). (2.13)
]. |

If AY is slowly varying with j, one would not evaluate the H for every
day but would group together the days with nearly the same 4.
Once the curve H(s*) has been drawn, it is a simple exercise to observe
the H evaluated at AY/p, ie, the AV measured in units of u, and
evaluate (2.13). A change in u involves only a repetition of the
calculation (2.13) with new units.

2.5 Queueing to meet a schedule

In most models of queueing it is customary to imagine that the arrival
pattern is given or observed and that it will not change if the service
rate changes. The objective is to serve these arrivals as early as
possible, i.e., to maximize the number of service completions by time ¢
subject to the constraint that the service rate shall not exceed some
rate ¢ and the number of service completions shall not exceed the
number of arrivals (an upper bound on D(t)). There are other
situations, however, in which one might specify a lower bound on the
number of service completions by time ¢ and one wishes to minimize
the number of service completions by time ¢ subject to the same
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constraint that the service rate not exceed u and that the number of
service completions stays above the lower bound.

Suppose, for example, that a factory can manufacture goods at
some maximum raie . The future demand for these goods is
predictable; Dy(t) goods should be produced by time ¢ (the cumulative
demand). The demand rate d D4(t)/dt is time dependent (rush hours,
seasonal demand, etc.) and may at time exceed u, although the long
time average demand rate is less than u (ie., for sufficiently large ¢,
Dylt) < pt).

To meet this demand it is necessary to stockpale goods ahead of the
demand surges, but one does not wish to store any more than
necessary. The number of goods produced by time z, D(t), should
therefore be the minimum number such that D('E) = Dyaft) and
dD{z}/dt < u for all values of 1 including 7 > t.

The method of constructing D(t} is similar to the construction of
A(z} in the conventional queueing problem except that one starts at
some time in the distant future and draws a line of slope p backwards
in time whenever dD,(t)/dt exceeds p as illustrated in Fig. 2.5, Itisin
fact the same type of construction as for 4(¢) if, for some future time
t* when the demand will certainly be satisfied, one draws a graph of
D4(t*) = D(¢* — 1) versus t* — 1, the future work to be done (by time
t*) versus the time remaining to do it, t* —1.

Of course, vertical and horizontal distances between D{(r) and Dy (t)
have the obvious interpretations as the stockpile of goods and the
time any object remains in inventory (if goods are used in the order
they are produced).

Another example of the same type of theory relates to the morning
commuter rush hour. Suppose that a transportation system has a
bottleneck which can accommodate a maximum flow of u. Let Dy(t)
represent the number of commuters {(customers) who must be at work
by time ¢, or actaally the number that must have passed the bottleneck
by time ¢ in order to be at work on time, and suppose that dDg(t)/dt
> p during some time interval. In order for everyone to be at work on
time it is necessary that some people arrive at work ahead of schedule.

If some transportation manager could assign arrival time reserv-
ations, he would presumably tell the persons who should be at work at
time ¢ to arrive at time t such that D(1) = Dylt)asinFig. 2.5 muchasa
factory manager would produce D(1) goods by time t in order to
satisfy the demand Dy(t} at time .

Unfortunately, most transportation facilities do not have a reser-
vation system and a traveler whose aim is to maximize his own benefit
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Figure 2.5 Cumulative counts to meet a scheduléd demand

is not likely to cooperate. If there were no queue behind the
bottleneck, a person who must be at work by time ¢ would see that he
could be at work on time even if he arrived at late as time ¢, but
someone else would be late for work. This is one of many examples in
transportation and elsewhere in which minimizing some global
objective is not achleved by each person doing what is optimal for
himself.

One might now ask if there is some arrival curve 4 (f) which results
if every persons tries to do what is optimal for himself. An arrival
pattern which identifies an arrival time with each individual would be
described as stable if, for that pattern, no individual can find a better
arrival time than the one he has. An interesting feature of this

Remaining count
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situation is that there is no arrival pattern with finite arrival rate and
FIFO queue discipline that is stable with respect to the objective that
each individual arrives as late as possible so as still to be at work on
time.

To prove this, one need only observe that any assignment giving an
arrival curve A with finite slope as in Fig. 2:6 and guaranteeing that
each person is at work on time will necessarily cause some people to be
at work early. However, any such person who must be at work by time
t can determine from the curve A an arrival time t"as shown in Fig. 2.6
such that he will be at work exactly at time ¢, an arrival time which, for
sote people at least; must be later than the one assngned (thus the
assignment is not stablc)
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Figure 2.6 - Arrivals who must be at work on time

To allow simultaneous arrivals (infinite slope for A4) does not
resolve the difficulty unless there is some mechanism by which people
who arrive simultaneously can be served in the order of their work
schedules. Neither is it helpful to recognize that there may be some
restriction upstream of the bottleneck which limits the rate of arrivals,
because the curve A actually refers to the expected times of arrivals,
the times people would arrive in the absence of a queue. It makes no
difference where they wait.

To obtain a stable assignment, one must postulate a diffecent type
of individual objective than arriving as late as possible. Stable
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assignments do exist under the hypothesis that each individual assigns
a price p per unit of delay in queue and a price p’ < p per unit of time
by which he arrives to work early. He then selects an arrival time so as
to minimize his cost, An assignment is stable if no individual can find a
less costly arrival time than the one he has. :

2.6 ‘Pubsod ser'm:e

For many types of service fac:htles service OCCurs in pulses A tmﬁic
signal at a highway intersection passes cars at a fairly constant rate for
a certain time while the signal is green, but then provides no *service’
while the signal is red. Any form of public transportation provndmg
service at a single terminal (an airplane, train, bus, elevator, etc. ) will
load passengers during a certain time interval after a vehicle has
arrived at the terminal; but after the vehicle leaves, there is no service
until the next vehicle arrives. Pedestrians wishing to cross a highway
will queue until a sufficiently long gap appears in the traffic stream of
cars. Mail in a post office is stored in sorting bins until, at certain
discrete times, the accumulated mail is passed to the next sorter or put
on a truck, train, or whatever. Service at some facilities may also be
interrupted for repairs or maintenance.

In many of these situations, the arrival curve A(t)is smooth in the
sense that A(t) is nearly constant over time intervals of duration
comparable with the time between service pulses and each service
pulse is sufficient to exhaust the queue of waiting customers. For the
traffic signal this means that the signalis ‘isolated’, i.e.; the arrivals are
not themselves pulsed by an upstream signal, and the traffic is light
enough that the queue clears during the green time. For the public
transportation example, the vehicles have sufficient capacity to serve
all waiting customers. The pedestrians cross a street in a pack
whenever there is a gap, and mail pick-ups take all the mail which has
accumulated.

Deterministic fluid approximations are particularly useful for a
crude analysis of these types of situations. The queues may well
become sufficiently large between service pulses to justify use of such
approximations even though, over a long time petiod, the system is
‘undersaturated’ in the sense that the queue does not continue to grow
from one cycle to the pext.

A typical graph of arrivals and departures for the above:type of
system is shown in Fig. 2.7. Suppose, as suggested by the traffic s:gnal
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Cumulative arrivals.
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Time,
Figure 2.7 Arrivals and departures for pulsed service

application, we let

r; =red time of the ith cycle

g¢; = green time of the ith cycle
A= arrival rate during the ith cycle
# = service rate during green,

Since A; < p, the maximum wait in the ith cycle is r,. If N; is the
number of customers delayed in the ith cycle, then the queue clears at
time

Nifd; = Nfp+r;
50

Ni=ridi/ (1 = 4,/p).

The total wait in the ith cycle, the area of the ith tnangle in Fig. 2.7, is
therefore r;N,/2, ic.,
] 1 r?i
wait in ith eycle = i 2.14
2 (= Adn) @19
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‘We have assumed here that A(r) is nearly constant over the ith cycle
with a value 4;. It should also be nearly the same for adjacent cycles,
but we do not rule out the possibility that A, may change appreciably
over a sufficiently long time. We are making no restrictions, however,
on how the g, and r, vary from cycle to cycle, as long as g; is-large
enough for the queue to clear in each cycle, ie.,

A+ 6) < g e

Aocordmg to the definitions of Section 1.4, the average wait per’
customer during the ith cycle is the total wait during the ith-cycle
_ divided by the number of customers in the ith cycle:

average wait per customer _ rid; 1
in the ith cycle 20—/ N A+ a)
2 o
L : (216)
2(ri+g) (1 = 4/p) _

Correspondingly, the average wait per unit time, ie., the average

gueue length is
during the ith cycl ik oy
average queue during the ith cycle = . . .
g & YT e =2
Over ncycles, the average wait is again the total wait during n cycles
divided by the number of arrivals over n cycles. - :

average wait per customer over cycles j+1toj+n

1 “jtn :
3 z ?'__;'2}-.'/3(1'—15/#)
= (wy =21
2 (ntgdd
VLS
1 i
DI L R |
- ‘f*j . : (2.18)
= Y (g
P=j+1

We have divided numerator and denominator by n, because the
numerator has the interpretation as the arithmetic average wait per
cycle and the denominator the arithmetic average number of arrivals
per cycle time.

The important thing to observe here is that (2.18} is not generally
the same as the arithmetic average of (2.16).
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If 4, varies sufficiently slowly with i that it is nearly constant over n
cycles, (2.18) simplifies to -
jtn
(/my 3
(w)d - b bl SR (2.19)

jt+r

2(1“1/1:}(1/") Y (r+g)

i=jf+1

In'many of the above applications, the service in each cycle ceases as
soon as the queue vanishes. This is approximately true for a vehicle-
actuated signal and for passengers boarding a public transportation
vehicle. In this case, the equality holds in (2. 15)for all i. One can
exploit this to eliminate one of the variables r; or g; o to express both
in terms of the total. cycIe time {r;+g;). If we do the latter (2.14})
becomes

wait in ithcycle = 5 (1~ A uy(r;+g)* 4

and (2.19) become;
_ _ (1/n) Z (r+ g
W) o1 =4/w e . (2.20)

j¥n
(t/m) 3 (ri+a)

IESTS!

In some applications, the cycle time varies appreciably from cycle to
cycle (even though 4; does not). A vehicle-actuated signal, for example,
may have a red time determined by fluctuating traffic from a side
street, so that {r;+ ¢;) is interpreted as a random variable with some
specified probability distribution. For a public transportation system,
the time (r; + g,) is interpreted as the ‘headway’ between dispatches
which may also have random fluctuations. For pedestrians crossing a
street, (r; +¢;) is the time interval between acceptable gaps in the
traffic stream. _

If we interpret (r;+ g;) as an ith observation of a random variable
{R + G), then the arithmetic mean of many observations is (by
definition) interpreted as the expectation. Thus

(I/H)Z(rs+gf)2 ~ E{(R+G)*} = E*{R +G} + Var {R + G},

1/"2(":‘“*‘9;'}2 E{R"I“G}
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and

(i'/ﬂ}z(ri‘i‘gi}z EZ-{R+G}+Var{R+G}

E{R+G}

(1/n) Z (ri+g)
= E{R+G} [1+C1(R+G)]
.m which C is the coefficient of variation f
- C*(R+G) = Var (R+GYEMR+G).  @21)

In many cases (partlculariy for loading bus passengers) the service
rate is large compared with 1, i.e. 4;/pu <1 and gi/r; < L. Thus (2 21)
simplifies still further to

i . ST
(w) = 5E{JR}[l +C*(R)]. (222
If headways between buses; for example, are all equal (so that C 2(R)

= 0), it is obvious that a person who arrives at a random time
unrelated to any possible bus schedule will wait, on the average, a half

a headway, i. e, § E{R}. If, however, the headways are irregular, it is-

more likely that a person will arrive during a long headway :than
during a short headway; therefore, the average wait will be larger than
that associated with the average headway. In the absence of any
control to keep buses on schedule, there is, typically, a tendency for
the headway distribution to become exponential. For an exponential
distribution C? = 1, i.e.; the average wait for buses with an exponen-
tial headway distribution is twice that of a regular schedule with the
same average headway.

2.7 Applications

In most applications of the above formulas, the choice of the time
between pulses is subject to certain constraints. Clearly, if one could
freely choose any cycle time or headway, one would choose it to be
arbitrarily small so as to minimize delay.

(a) A fixed-cycle traffic signal

An isolated traffic signal actually serves two (or more) traffic streams
each of which receives pulsed service. During part of the red time for
one stream, the signal is green for the other traffic stream. There is,
however, an effective lost time when neither traffic stream flows.
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If r} and g represent the red and green times for the second traffic
s{ream, we can write

_ ri=g;+L and r—g,+L ‘
in which L is the effective lost time per cycle. The cycle time is given by
| ri+g£"”‘ri+gi gi+gi+ L

For just two traffic streams with arrival rates A;and A} and service rates
pand g, the wait per cycle is, according to (2.14)

(gi+LPA | g+ L} 4

200 —A/p) * 2(1=2i/u)

wait in ith cycle =
provided -
Ailgi+gi+ L)< pg, and Aig+gi+Ly<pg;. (223)

If the arrival rates are constant, 4, = 4,4} = A, and the signal is
perlodlc gi=¢,r;=r,etc, then the wa:t per unit time is

(g+L)y*A (g + LR
g+g+ L0141y 2g+g + L)1 -A/y)

provided (2.23} is true; otherwise the queues grow from cycle to cycle.
In {2.23). A/u can be interpreted as the fraction of the cycle time
necessary to serve the flow 4. A necessary condltlon for (2.23) to hold
is that

(2.24)

é—!rfl— <1 —————L—'—“—. (2.25)
_ nooy (g+4 +1)
~ Typically a traflic engineer has the option of choosing the g and ¢’
within some practical range of values satisfying (2.23). He might
choose them so as to minimize (2.24). For most reasonable values of
the parameters, the minimum of {2.24) occurs at the boundary (2.23),
i.e., for the shortest possible g and g' which can accommodate the
flows. The issues of traffic signal setting are more complex than this,
however, because stochastic effects become very important as the g
and g’ approach their minimum values. If one includes the delays due
to stochastic effects, the minimum delay per unit time actually occurs
for a cycle time approximately twice that predicted above. The
deterministic theory, however, describes at least a first (but very crude)
approxnmatlon to the delays. Some of the stochastic effects w111 be
discussed in Chapter 9.
In practice, the values of g and g’ are usually constrained also by the
time it takes a pedestrian to cross the road.



48 -APPL!CATIONS OF QUEUEING THEORY

(b) Bus dispatching

In selecting the headways between buses, it is clearly advantageous to -

make E{R} and C? (R) as small as possible. Since buses are subject to
various random disturbances generated by traffic congestion; si ignals,

loading times, etc., it is usually necessary to introduce some types of
control in order to keep C*(R) small. The most common scheme of
regulation is to impose a schedule.

It is easy to prevent buses from runmng ahead of schedule but more

difficult to prevent them from running late. To obtain a two-sided
control, one must provide some slack time in the scheduie s0 that
buses can gain on the schedule once they have fallen behind, The more
slack one introduces, however, the slower the speed and, for a fixed
number of buses, the longer is the average headway. The minimum
average wait per passenger involves a compromise- between a_small
E{R} (loose control} and a small C?(R) (tight control). The best

strategy will not generally involve exactly equal headways, C 2(R)=
If one controls headways so that C? (R) < 1, theissue of selectmg an

optimal E {R} usually centers around the fact that there is a cost {per.

unit time or per trip) associated with each bus dispatched. In principle,

this cost should be balanced against the cost or inconvenienice of
delay. If it costs y to despatch a vehicle and it costs p per unit of wait,

the cost per unit time of bus operationisy/ E {R} and the total cost per
unit time (for C2(R) < 1) is approximately

7 {} A
AR e

If A(t) varies only slightly during : a headway, the minimum total cost
over a long period of time can be achieved by choosing E {R}so as to
minimize the cost rate (2.26) at every t. Thus the optimal E{R} at time

tis
" 2.27)
With this choice of E{R}, the costs of delay and of operation are
equal. .
The number of passengers on each bus is ,
2? 1/2
AME{R} = [—;A(t)] . {2.28)

If over some long period of time A(t) should increase by a factor of 4
(but y and p remain constant), the increased passengers would be
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accommodated by dispatching twice as many buses w1th each bus
carrying twice as many passengers.

If buses have limited capacity and (2.28) should exceed the capacity
of the bus, the optimal strategy is to dispatch the buses so that they are
barely full. If one were to dispatch at any longer headway, passengers
would be left behind and the delays would grow arbitrarily large. It is
generally true that once a vehicle is full; it should be dispatched
immediately. Nothing can be gamed by havmg it sit waiting for
passengers who cannot board

{c) . Queueing for gaps -

For pedestrians crossing a highway or cars Whlch must yield to
another traffic stream the delays to these customers depend upon the
time interval between acceptable gaps. The time between services is, of
course, quite sensitive to the arrival rates of the opposing traffic
stteam and its headway distribution.

The typieal question which arises here is whether or not one shouid
install a traffic signal which, in effect, changes the headway distri-
bution on the opposing stream. As in example (a), the issue now
becomes a balance between the delays for the two traffic streams.

Problems

2.1° A service facility (highway) is capablé of serving customers (cars)
at a constant rate of u customers per hour. Customers artiveata
constant rate A; < p until some time ¢ = 0 (7.00a.m.), but from
t = 0 until some time 7 (9.00 a.m.) they arrive at a rate A, > 4,.
After time 71 the arrival rate returns to the value 4, and remains
there until time =’ (7.00 a.m. the next day) when the pattern
repeats itself. I A, > u, customers who. cannot be served
immediately form a queue and are served first-in, first-out.

Draw curves for the cumulative arrivals and departures of

customers starting at time t =0 when there is no queue.
Evaluate and identify geometrically

(a) the maximum queue length

(b) the longest delay to any customer

(c) the duration of the queue

(d) the total delay to all customers during the time 0 to 7',

2.2 Asin Section 2.2, let A(r) represent the cumulative number of
customers to arrive by time t and D_(¢) the cumulative number
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to enter the service. Suppose, howevet, that there is a storage
space for only ¢ customers {enotigh to keep the server busy atall
times when A(t) > p); anyone who arrives when the storage: is
full goes away (he may be sérved elsewhere). If the server can
serve at a maximum rate y and A(t), A(t) are as shown in Fig.

2.3(a), (b), determine D_(t) and u(t). -

2.3 Inselectinga facility to serve the arrival pattern of problem 2. 1, a

24

25

_designer has the option of choosing any values of . The cost per
“unit time of providing a service rate p (iabor interest on -

investment, et¢.), however is proportlonal to u, ie.,
service cost durmg time t' = apt o= constaﬂt

regardiess of whether or not the facility is fully utihzed The
designer proposes that the value of a customer’s time is worth p

per unit time ($ per hour) i.e., the total cost of delay is p times the

total delay.

Determine the choice of p which the deszgner would select if
his objective is to minimize the sum of service cost and delay
COSts. :

Suppose that on day j the arrival curve of customers toa facﬂaty
with fixed service rate g has the form

_ Ay = AF 4F (t) o
with F (1) independent of j. On day 0 the arrival rate has a single

_.maximum of the type

AolB)=p—Ple—t)
i.e., the maximum arrival rate on day Ois just equal to the service
rate. :
If the demand increases at a constant fractional rate of o per
day :
A;= Ag[1+o] for j=0

how will the total delay W, on day j increase with j.

An automobile assembly plant can assemble cars only at a single
rate of p cars per day or close down. It costs $p per day to store
an assembled car. There is a fixed cost per day that is
independent of whether the factory is operating or not. In
addition, there is a cost of $« per day (labour) to operate at rate u
and the equivalent of 2 weeks of operating cost to close the
factory and start again (no matter how long it is closed). :

g
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What strategy of operation should be used to minimize the
long time average cost per day of operation if the factory must
satisfy a steady demand of A cars per day, 4 < 4?

2.6 A vehicle-actuated traffic signal serves two traffic streams with
. cumulative arrival curves 4, (f) and As(t). Show how one could

graphicaliy construct departures curves D; (f) and D, (1) for the
two traffic streams if the queue discipline alternates as follows:

stream 1 is served at a rate guntil the queue in stream 1 vanishes,

then there is a lost time L during which no one is served, then
stream 2.is served at a rate g until that queue vanishes, then is
another lost time L followed by service to stream 1, etc.

2.7 Two bus rotites, one with headways of 10 minutes, another with

headways of 20 minutes, merge along a common section of
route. The schedules are synchronized so as to create headways -
in the sequence 5,5, 10,5, 5,10, . . ..Ifa passenger who wishesto -

travel along the common route arrives at a random time, what is

the probablhty that he must wait for a time greater than 17 What
is his average waiting time?

2.8 Each of two buses carries passengers from a depot to various

destinations and return for another trip with a round trip time
very nearly equal to7" The buses are run by independent drivers,
however, who make no attempt to coordinate their schedules.
Actually, one bus runs slightly faster than the other so that over
many trips the fraction of trips that the second bus leaves within
a time ¢ after the first bus is t/T, 0 < t <7 In effect, the times
between ‘departures of the buses are random with a uniform
distribution over the interval 0 <t <T.

If passengers arrive at the depot at a constant rate, what is the
average time that a passenger must wait for the next bus?
Compare this with the wait if the headways are controlled so as
to be T/2.

2.9 Two shuttle buses, each of which can carry ¢ passengers, serve

the same bus depot. The time between dispatches of the same
bus is 15 minutes, but one of the buses is dispatched 10 minutes
after the other so as to create headways 10, 5, 10, 5, etc.
Passengers arrive at the depot at a constant rate of 4 per minute.

If any passenger who arrives at the depot and finds a queue of
¢ passengers goes away, what is the long time average number of
passengers served per unit time by the buses, as a function of 1?7
What is the average wait per passenger for those passengers who
actually board a bus?




