
Service Engineering
Last Revised: January 2005

Multi-Server Queues

“Our” model of a service station M / M / m / B +M: Birth & Death; 4CallCenters

M / GI / m +GI: Research Challenge (Whitt, Dec. 2003)

e.g. M / M / m +GI: Current Ph.D. (Zeltyn)

Parameters: Markovian λ µ θ ⇒ practical (Palm, Garnett)

General C2
a C2

s ? Efficiency-Driven (Kingman)

(heavy-tails current, in telecommunication)

G/G/m Stability ⇔ ρ = λ
mµ

< 1 (fluid-logic, but subtle); ρ utilization factor, via Little.

[With Finite Patience: Always Stable (via Abandonment).]

GI/GI/m: Approximate Analysis of Exact Model (Efficiency-Driven)

[M/M/m, M/M/m+GI: Either Exact Analysis of Approximate Model, or
Asymptotics, with Many Servers (QED Call Centers)]

Natural extensions: heterogeneous servers (there exists some theory; networks)
heterogeneous customers (important - CRM)
heterogeneous both (important - SBR)

1ρ0

?Importance:
Phenomena: Servers “help” each other (Pooling)

Few fast vs. many slow?
Economies of Scale (EOS) - Stochastic
Kleinrock’s Cycle

Tools: Staffing (offline)
Congestion Curves

In this teaching note: Focus on GI/GI/m (E-Driven Approximations, for practical staffing)
and M/M/m (Exact Analysis, to demonstrate Phenomena)
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Reducing Delay Through Changes in the Service Process
Hall, Chapter 7 (pg. 208–269); see also Chapter 5.

Types of queues: Perpetual (All customers Always wait)
Predictable (Queueing at known times)
Stochastic (Queueing at random)

Typically, eliminating a perpetual queue exposes predictable queues, and
eliminating a predictable queue exposes stochastic queues,

which is our focus here.

Managing Stochastic Q’s: λ,C2
a arrivals ← Chapter 8: how?

µ,C2
s services ← Chapter 7, here: how?

m, b resources & facility.

Table 7.1, page 213: Ways to reduce service time (increase service rate).
E.g., Team service (idle ⇒ help out, as in a garage).
Automate, standardize,. . .

Add servers: Staffing: who, when and, for how long, how many?
↓ ↓ ↓

Tough work shift HW, based on lectures

Inspirational useful reading: Case study on pg. 257–266:

Buffa, E.S., M.J. Cosgrove and B.J. Luce. “An integrated work shift scheduling system”,
from Decision Sciences, 7, 1976, pages 620630.

First systematic hierarchical staffing of a telephone exchange (call center), which is still
very useful as it describes current practice:

• Forecasting: Forecast load, namely λ(t), 0 ≤ t ≤ T = 1 day, via
Time-Series Analysis;

• Staffing: Determine (desired) number of agents, during say each 1/2 hour, namely
m of M/M/m ∗, based on MOP’s in steady state.

• Shift Scheduling: Determine shifts (timing, duration, structure) via
Optimization (LP/IP, as in HW)

• Rostering: Assign “servers” to shifts (heuristics, AI)

∗Erlang-C dominates practice. We are capable of using Erlang-A, and sometimes more.
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Ancillary Activities / Dynamic Staffing
(Trading-off Customers’ Waiting-time vs. Servers’ Interruption )

- Thresholds ensure that help obtained when truly needed, yet not too frequently.
- Visible Q’s: Manage fairly by opening new Q’s for the longest-waiting customers.
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415-1
Dynamic Staffing (of Bottlenecks)
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Mapping Offered Load (Branch of a Bank)

Business

Services

Private

Banking 

Banking 

Services

      Department 

Time Tourism Teller Teller Teller Comprehensive 

8:30 – 9:00 

9:00 – 9:30 

9:30 – 10:00 

10:00 – 10:30 

10:30 – 11:00 

11:00 – 11:30 

11:30 – 12:00 

12:00 – 12:30 

Break

16:00 – 16:30 

16:30 – 17:00 

17:00 – 17:30 

17:30 – 18:00 

Legend:

Not Busy 

Busy 

Very Busy 

Note: What can / should be done at 11:00 ?

Conclusion: Models are not always necessary but measurements are !
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415-1
Mapping Offered Load (Call Center)
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Steady-State Analysis
(From Hall, Chapter 5, page 144.)
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Staffing a Large Call Center
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415-1
Staffing Matters
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Case Study: A Large Utility Company
Average Waiting Time

Commonly used MOP: E(Wq)
Total Service Time = 3.3 min.
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Economies of Scale
Average Waiting Time - But Only of Those Who Wait

E[Wq|Wq > 0] (Load: 10 per server)
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% Immediate Response (Often Not Measured)

P(Wait = 0)
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% Abandoned

(My #1 MOP: Subjective; Determines Operational Regime - Later.)
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% Accessibility (Fraction of “Idle” Time)
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High utilization (low accessibility), combined with high-pressure, results in very-high
turnover rates (perhaps the most significant call-center management challenge).
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Case Study: A Cable Company

% Calls Encountering a Busy-Tone

% Answer vs. Calls per Interval for various Num ber of Agents
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Combining the fraction of “busy-tone calls” - i.e., calls that arrive when all the
lines/trunks are busy (hence the caller receives a busy-tone), with the amount of requests
that are handled in an hour, allows one to estimate the total number of calls (successful
or not) performed during, say, an hour in order to access the call center. This could be
done using the following formula:

Number of calls =
Handled requests

100 − % “Busy-tone calls”
× 100

The percentage of “busy-tone calls” increases as the amount of calls in an hour in-
creases. Also, for a fixed number of handled requests, the percentage of “busy-tone calls”
decreases as the number of operators increases. This is clearly manifested in the above
congestion curve, trading off the fraction busy-signals with arrival rates.

Note: In order to generate the above graph, we used an average call time of 3.8 minutes,
which is 3.52 minutes (inferred from that data) multiplied by 1.08.
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What is “Service Time”? or “Managing Accessibility”

MOP’s in Three Call Centers that are Doing the Same Thing !

Service Time - Average

Waiting Time - Average

% Abandonment
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Utilization Profiles
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M/M/m Hall, Section 5.4.1 ; Whitt “Approx. . .” Sections 2.3 and 4.1.

   0           1           2 m       m + 1

m m2 3

Birth & Death rates:

λn = λ, µn = µ(m ∧ n) , n = 0, 1, 2, . . .

Offered load: λ
µ

both service work arriving per unit of time

and average number of busy servers
(
L = λ · 1

µ

)
.

Traffic intensity ρ = λ
mµ

, also each server’s utilization. Assume ρ < 1 for stability.

(Careful: Hall denotes ρ = λ
µ
, unlike here.

I have used R, and sometimes a, for the offered load.)

Steady-state equations (via “cuts”):

λπk = µ((k + 1) ∧m)πk+1, k ≥ 0 .

Recursion:

πk+1 =
λ

µ((k + 1) ∧m)
πk, k ≥ 0 .

Solution:

πk =
mk

k!
ρkπ0 0 ≤ k ≤ m

=
mm

m!
ρkπ0 k ≥ m

where

π0 =

[
m−1∑

k=0

(mρ)k

k!
+

(mρ)m

m!
· 1

1− ρ

]−1

.

Erlang-C Formula: P(Wait > 0) =
(mρ)m

m!(1− ρ)
· π0 , denoted E2,m.

(Erlang Delay Formula)
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Proof: P(Wait > 0) = P (L(∞) ≥ m) =
∑
k≥m

mm

m!
ρkπ0

↑
PASTA

=
mm

m!

ρm

1 − ρ
π0. q.e.d.

Additional MOP: E(Lq) =
ρ

1 − ρ
P(Wait > 0),

as in Hall (5.38)–(5.40), but a nicer representation is:

M/M/m
E(Wq)

E(S)
=

1

m

P(Wait > 0)

1 − servers’ utilization

In fact†,
1

E(S)
Wq|Wq > 0 ∼ exp

(
mean =

1

m

1

1 − ρ

)

(compare with M/M/1), which “suggests” the following

Kingman’s Exponential Law of Congestion ‡ for GI/GI/m: as ρ ↑ 1,

GI/GI/m
1

E(S)
Wq ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 with probability P(Wait = 0)

exp

[
mean =

1

m

1

1 − ρ

C2
a + C2

s

2

]
otherwise.

It is left to approximate P(Wait > 0). See Whitt§ (and later) for details. A reasonable
approximation is to simply use Erlang-C (E2,m). In particular, for the special case M/G/m
(Poisson arrivals), one gets the following expression for the “tail” of the waiting time:

M/G/m Pr {Wq > x · E(S)} ≈ P{Wait > 0} · exp

[
−x · 2m(1 − ρ)

1 + C2
s

]

where P{Wait > 0} = (mρ)m

m!(1−ρ)
π0 = E2,m, as given for the M/M/m model.

†Recall Gazolco: What happens if
√

m(1 − ρm) ∼ β > 0, m large?
or equivalently m ≈ R + β

√
R, with R being the offered load?

‡Invariance Principle (with respect to Distributions). This provides a 2nd moment approximation for
Efficiency-Driven services, namely those in which essentially all customers are delayed prior to service.
(With m large, this necessitates

√
m(1 − ρm) ∼ 0; an example is m(1 − ρm) ∼ γ > 0, or equivalently

m = R + γ, as will be discussed below.)
§ Whitt, W.: Recent Book (2002)

Paper: Approx G/G/m
Internet site (at Columbia)
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Erlang’s Formulae
(Exact Results for M/M/m = Erlang-C, and M/M/m/m = Erlang-B)

R = offered load
(
= λ/µ = m · ρ ; ρ = R

m

)

Erlang B: E1,m =
Rm

m!∑m
k=0

Rk

k!

Probability of blocking/loss

Erlang C: E2,m =
Rm

m!
1

1−ρ∑m−1
k=0

Rk

k!
+ Rm

m!
1

1−ρ

Probability of delay

Relations (Palm, 1943?)

- Some observations on the Erlang formulae. . . . . . . . .pg. 18

- Contributions to the Theory of Delay Systems . . . . . .pg. 37

1. E2,n =
nE1,n

(n−R) + RE1,n

=
E1,n

(1− ρ) + ρE1,n

for ρ < 1(
ρ = R

n

)

E2,n > E1,n ; d
dR

E2,n(n) = 1
nE1,n(n)

2. E2,n =
R(n− 1−R)E2,n−1

(n− 1)(n−R)−RE2,n−1

for R < n− 1.

(Must have R < 1 to start with E2,1 = ρ)

3. E1,n =
RE1,n−1

n + RE1,n−1

=
ρE1,n−1

1 + ρE1,n−1

; E1,0 = 1.

Recursions are useful for calculations.
For example, to calculate E2,n, it is convenient to calculate recursively E1,n via 3. and
then calculate E2,n via 1.
They will also be useful for us in asymptotic analysis of systems with many servers.
For example, to analyze the behavior of E2,n, as n ↑ ∞, it is convenient to analyze first
E1,n, and then use 1.

Recall: Erlang B/C/A formulae, and much more, are implemented in 4CallCenters that
you have been using.
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GI/GI/m/∞ (or G/G/m for simplicity)

Recall: m servers, statistically identical and independent, attending to a single queue:

2

m

1

A

Primitives: distributions of an inter-arrival time and a service-duration.

Stability (subtle, since not always “periodically empty”).
Via Fluid view: Stability iff λ < mµ (load less than capacity),
or equivalently ρ = λ

mµ
< 1 (servers’ utilization).

(Recall: Hall denotes ρ = λ/µ absolute utilization, which we have been referring to as
offered load, and denoting by R and sometimes a.)

G/G/m defies exact analysis: One thus resorts to “Approximate Analysis of an Exact
Model,” in an operational regime that is Efficiency-Driven: essentially all customers
are delayed prior to service.
An E-driven operation prevails, for example, when a few-to-moderate number of servers
are highly-utilized (ρ ↑ 1).

Approximations, in the E-Driven Regime:
(Whitt; Hall, Chapter 5; Congestion-Laws Handout)

Fundamental: Kingmans’s Exponential-Invariance Law (on page 20 of the present note),
using only first and second moments. This implies the Allen-Cunneen 2nd moment
approximations for average congestion measures:

E[Lq(G/G/m)] ≈ E[Lq(M/M/m)]
C2

a + C2
s

2
;

E(Lq) = λE(Wq) ;

⇒ E[Wq(G/G/m)] ≈ E[Wq(M/M/m)] · C2
a + C2

s

2

=
1

m
E(S)

E2,m

1− ρ

C2
a + C2

s

2

≈ 1

m
E(S)

ρ

1− ρ

C2
a + C2

s

2
;

E(Ws) = E(Wq) + 1/µ ; E(Ls) = E(Lq) + E (# busy servers) = E(Lq) + λ/µ.
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“Strategic” Q-Theory

• L = λ · W
↑ ↑ ↖

manager server customer

Human resources
↓

• Laws of congestion: parameters λ,C2
a ; µ,C2

s ; m, b
↑ ↑ ↑

arrivals services technology

distributions: Exponential (small values, fat tails)
(Role of the Normal distribution ? later)

• Congestion curves:

– Determine (operational) service quality.

– Deduce parameter values, typically m (Staffing).

– Cross-Check MOP’s (eg. Sufficient Idleness)

– Tradeoff: Efficiency vs. Quality.

– Continuous improvement/management control

• Economies of Scale/Scope (Mass customization, Flexible specialization).

Information Technology is the enabler (reduce “friction”).

• Service/Process design: Pooling Queues and Resources (Today);

• Pooling Tasks/Services (Later).
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Recall M/M/m (Erlang-C):

P{Wait > 0} = E2(m, ρ)

Wq| Wait > 0 = Exponentially Distributed

E[Wq| Wait > 0] = E(S) · 1

m
· 1

1− ρ

E[Lq| Wait > 0] =
ρ

1− ρ
, independent of m.

(E(Wq) = E(Wq| Wait > 0) P(Wait > 0), E(Lq) = λE(Wq))

Economies of Scale: First Observations

• Simple Example: Increase m, together with λ, while keeping ρ = servers’ utilization
fixed. Total queue unchanged (on average), hence queue per-server and average wait (for
those waiting) “shrink” by the same factor that m increases in.

• GO TO Congestion Curves, e.g., E[Wq/Wq > 0].

General EOS: “Cost/Quality” changes in a favorable direction as scale increases.

Simple example:
Fixed cost + Variable cost × Scale

Scale
=

F

S
+ V ↓ in S.

Subtle example: Poisson (λm) has CV =

√
λm

λm
=

1√
λm

↓ 0, hence SLLN !.

Another Subtle Example: Given ρ fixed, how does E2(m, ρ) vary as m increases?

Why EOS ?

1. Servers help each other (load shared dynamically) 1st order

2. Stochastic variability decreases with scale 2nd order
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Additional simple manifestations of EOS:

M/M/1: EWq = 1
µ

ρ
1−ρ

, ELq = ρ2

1−ρ
; EW = 1

λ
ρ

1−ρ

1. ρ = λ
µ

= nλ
nµ

, unchanged as n ↑ ∞.

Hence, ELq unchanged with n, but EWq = 1
n

1
µ

ρ
1−ρ

↓ 0, ∀ ρ!

2. Fix EWq, or EW . Then ρ = λ
λ+1/E(W )

As λ ↑ ∞, ρ ↑ 1 regardless of EW .
EW achievable at higher ρ (efficiency), as λ ↑.

Numerical demonstration (ALWAYS necessary for understanding))

λ =282 customers per hour, arrive (on average) to an airport terminal.
µ = 1 per min. = 60 per hour.
m = 5 separate M/M/1, without jockeying:

ρ = 282/5
60

= 0.94 very busy!

Wq = 15.7min., Lq = 14.73 customers per queue.

M/M/5: Wq = 2.85min., Lq = 13.4 (close to the previous case)

Note: With λ = 150, ρ ≈ 0.5 (utilization halved), but Wq = 3 seconds, Lq = 0.13
(performance 50 times “better”).
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Pooling in a Q-Net (Part I)

Pooling queues : geographic pooling (virtual service center)
servers : capacity pooling (fast vs. slow)

tasks : job design (later)

Recall Rafaeli’s lecture: Operational + Psychological Aspects.

Rothkopf & Beth, 1987:

Common belief: combining queues is beneficial . . .
e.g. banks and other counter systems.

But many operations do not combine queues
e.g. supermarkets, toll booths, rabbinate, doctors,. . .

In favour:

(1) m× M/M/1 (λ, µ) vs. M/M/m (mλ, µ)
∀λ, ∀m > 1, the latter has smaller average wait + variance.

(2) Share equipment

(3) Fairness perception: no slips or skips

Against

Homogeneous services

(1) m× M/M/1 not always the “right” alternative to M/M/m;
human (intelligent) customers jockey, join shortest queue, renege

(2) Often alternative to m× M/M/1 is M/M/m with overhead,
namely M/M/m (mλ, µ− δ).

(3) Physically or psychologically prohibitive:
e.g., lines too long scare customers: cars, customers with luggage,

⇓ ⇑
snake-like queues airports’ customs.

Heterogeneous customers/servers (To discuss later)

(4) Depersonalization (doctors, rabbinate)

(5) Think of combining the express-lines with the rest

(6) Flexible servers expensive to hire, train, maintain.

Question: Design that “mixes” efficiency and fairness (physical queues)?

Business Growth (Strategic Q-Theory): Kleinrock’s cycle. (1976, Classic)
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Kleinrock, L. Vol. II, Chapter 5 (1976) (Pelephone’s Call Center)

Resource Sharing

m

(a)

C m

C m

m

m

(b)

m

C m

C m

(c)

  C

m

(d)
C

  C

(e)

m
 m

C

  C

(f)

mC

m

Simplest is Best! Do not model complicated undesirable scenarios!

m×M/M/1
scale-up−→ M/M/m

technology−→ M/M/1
λ, µ mλ, µ mλ, mµ

Combine: queues servers
Saved inefficiency idleness lost capacity

(1 long queue, 2 idle) (rate mµ at all times)

Remark EWq

(
m,λ, µ

m

)
≤ EWq(1, λ, µ)

while EWs

(
m,λ, µ

m

)
≥ EWs(1, λ, µ)

↑
individual server’s capacity

(Explain, via Pm(Wait > 0), noting Wq | Wq > 0.)

Summary (pg. 287)

Large systems (scaling up input rate and system capacity) yield improvements
(in average response-time) that are proportional to the scaling factor.

For a given scale factor, the single-server (fast) system is superior to the
multiple-server (slow) system, as far as total time a system in concerned.
The opposite is true, however, when restricting to only waiting time. (See
Homework).

27

user
Cross-Out

user
Highlight

user
Highlight

user
Highlight



Appendix: Service System Design
Technion IE&M Project 1996
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From a Stanford MBA Exam (A “True story” - my first encounter with the subject):

Question 12: QUTE & City Bank (20 points)

Consider the following quotation from the case “First National City Bank Operating
group (A)” (HBS Case). (There is no need for you to consult the case itself; the quotation
is all that is required to answer the question below.):

“By tradition, the method of meeting increased work load in banking was to
increase staff. If an operation could be done at the rate of 800 transactions
per day, and the load increased by 800 pieces per day, then the manager in
charge of that operation would hire another person; it was taken for granted

But, in the late 1960s, the work load began to rise faster than the hiring rate
could keep up . . .. Backlogs of work to be done would pile up in one OPG
department or another, and they could not be cleared away without overtime.
Even with extensive reassignment of people and with major overtime efforts,
some departments would periodically fall behind by two or even three weeks,
generating substantial numbers of complaints from customers.”

Evaluate the above practice of meeting increased demand. In particular, explain why
backlogs started to build up. Support your answer with facts acquired in class discussions,
course readings or assignments. On the next page, there is a summary of some QUTE
output, with parameters that fit the above quotation. (The time unit is “day’s work”, and
the arrival rate is in 100’s of transactions per day.) Refer to this output in your answer:
Either reason why the output supports your answer or explain why it does not.

Evaluation:

The QUTE program output summarizes an M/M/S model whose input represents
transaction load (in 100’s per day), S is the number of workers, U is the utilization of a
worker, Wq is the average time in queue for a transaction, Lq is the average backlog, L is
the number of transactions in the system (queued and in-process).

QUTE tells us that “linear” response to increasing load has the following effects:
Workers utilization increases with load (for example, 50% utilization with S = 2, 83%
with S = 32, 98% with S = 51). The average waiting time for a transaction also increases,
but not as dramatically as might be first expected from the high utilization rates. (The
reason is the economies of scales, or pooling of resources, as observed in class and as
exploited by the 411 directory in N.J.). In the bank operation during the 1960s, in
contrast to 411 in the 80’s, pooling was not carried out electronically. Hence the actual
performance, under heavy loading and a large number of workers, should be in fact worse
than what the M/M/S model predicts (probably much worse). Add to that the high
utilization rates per worker, which are likely to be impossible to sustain over a full day’s
work, and you deduce the large backloads which City Bank was lead to suffer.
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Strategic Q-Theory: EOS

QUTE Output M/M/S

λ = 8k, k = 1, 2, . . . (i.e. λ = 8, 16, 24, . . .),

1/µ = 1/8 = 0.125,

n = k + 1, k = 1, 2, . . . (i.e. S = 2, 3, 4, 5, . . .),

λ n U Wq Lq L

8 2 50% 0.04 0.33 1.33
16 3 66.7% 0.056 0.89 2.89
24 4 75% 0.064 1.53 4.53
32 5 80% 0.069 2.22 6.22
40 6 83% 0.073 2.94 7.94
48 7 85.7% 0.076 3.68 9.68
56 8 87.5% 0.079 4.45 11.45
64 9 88.9% 0.082 5.23 13.23

120 16 93.7% 0.091 10.95 25.95
400 51 98% 0.097 41.93 91.91
640 81 98.8% 0.105 67.18 147.2

↓
E(S) = 0.125

Animation: - Bank
- Teller capable of handling 800 transactions per day.
- Policy: load increased by 800 per day ⇒ hire another person.

Analysis: In the n-th system (m = n + 1) we have

ρn =
λn

(n + 1)∆
=

λ0 + n∆

∆ + n∆
=

λ0

n
+ ∆

∆
n

+ ∆
↑ 1 , as n ↑ ∞.

Here we assume λ0 < ∆ (above: λ0 = 0; ∆ = 8 for 800 transactions)

Key observation: n(1− ρn) =
n(∆− λ0)

∆ + n∆
→ ∆− λ0

∆
, as n ↑ ∞.

⇒ ρn → 1 (Efficient)

⇒ Pn{Wait > 0} → 1 (later: Efficiency-Driven regime)

⇒ Wq ≈ exp

(
mean =

E(S)

(n + 1)(1− ρn)

)
d→ exp

(
mean = E(S)× ∆

∆− λ0

)
: congestion index
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4CallCenters
Garnett’s Software (Internet Version)
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