

Service Engineering – a Subjective View

- Contrast with the traditional and prevalent
Service Management (Business Schools; U.S.A.)
Industrial Engineering (Engineering Schools; Europe)
- **Goal:** Develop scientifically-based design principles (**rules-of-thumb**) and tools (**software**) that support the balance of service quality, process efficiency and business profitability, from the (often conflicting) views of customers, servers and managers.
 - Theoretical Framework: **Queueing Networks**
 - Applications focus: **Call (Contact) Centers**

Example: **Staffing** - How many agents required for balancing service-quality with operational-efficiency.

Example: **Skills-Based Routing (SBR)** – Platinum and Gold and Silver customers, all seeking Support or Purchase, via the Telephone or IVR or e.mail or Chat.

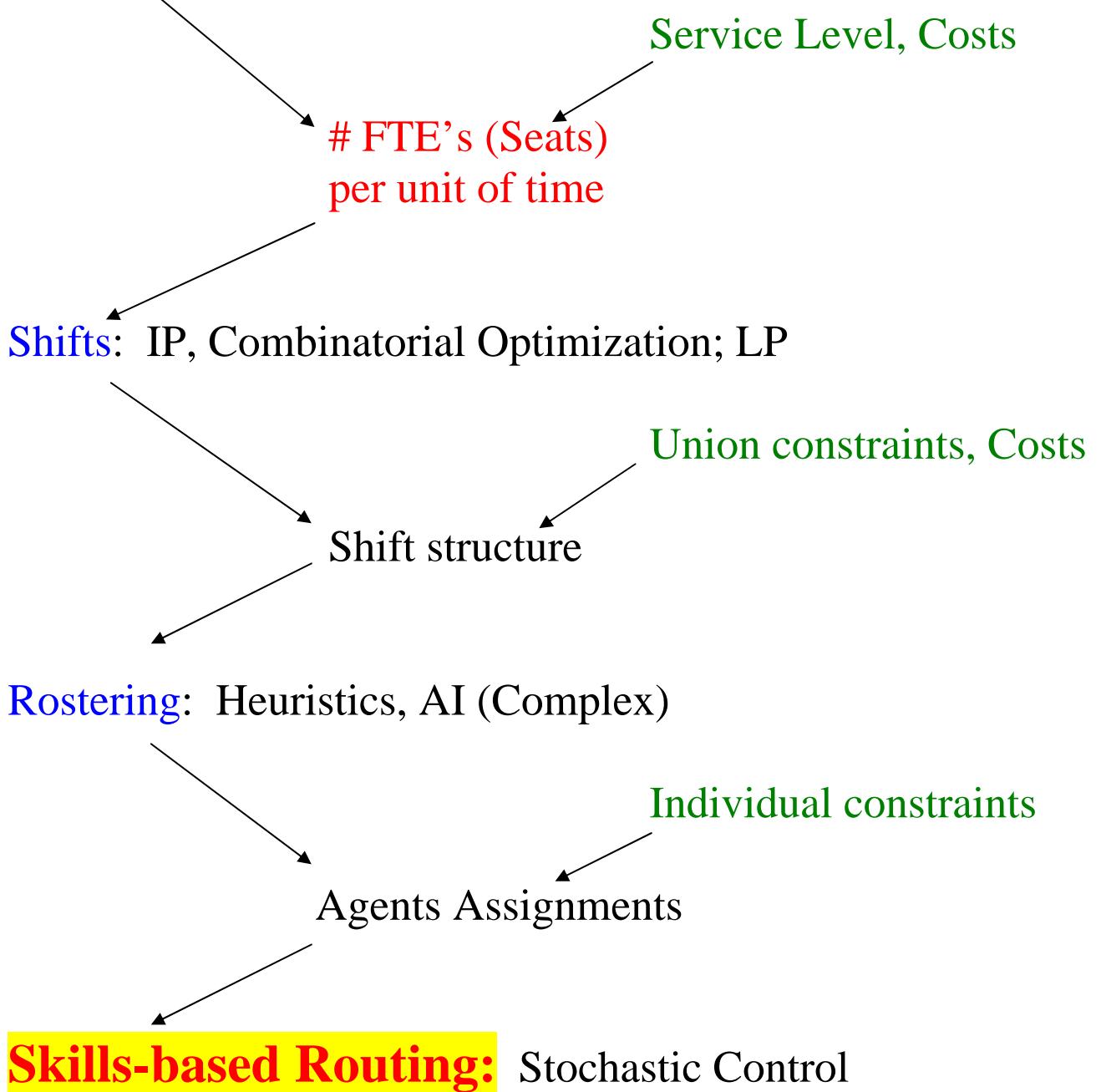
Example: Service Process **Design** + Staffing + SBR

Multi-Disciplinary: Typical (IE/OR, Marketing, CS, HRM)

Workforce Management: Hierarchical Operational View

Forecasting Customers: Statistics, Time-Series
Agents : HRM (Hire, Train; Incentives, Careers)

Staffing: Queueing Theory



4CallCenters™

Personal Optimization Tools for Call Centers

Downloads:

1. [4CallCenters v2.01](#) (zip file- **5.4mb**)

Desktop application offering personal profiling and optimization tools.

- **For installation:** Download the zip file, open it, activate setup.exe and follow the instructions.

- **To uninstall the installed software:** Go to Start/Programs/4CallCenters v2.01/Uninstall 4CallCenters v2.01

2. [4CallCenters v2.01 - Help Document](#) (90kb)

Word document containing the 4CallCenters application's help pages.

QSetup

Performance Profiler Staffing Query Advanced Profiling Advanced Queries What-if Analysis

Performance Profiler **Performance Profiler** allows you to determine and optimize the Performance Level of your Call Center. Enter your call center's parameters below, then press 'Compute'.

Your Call Center's Parameters

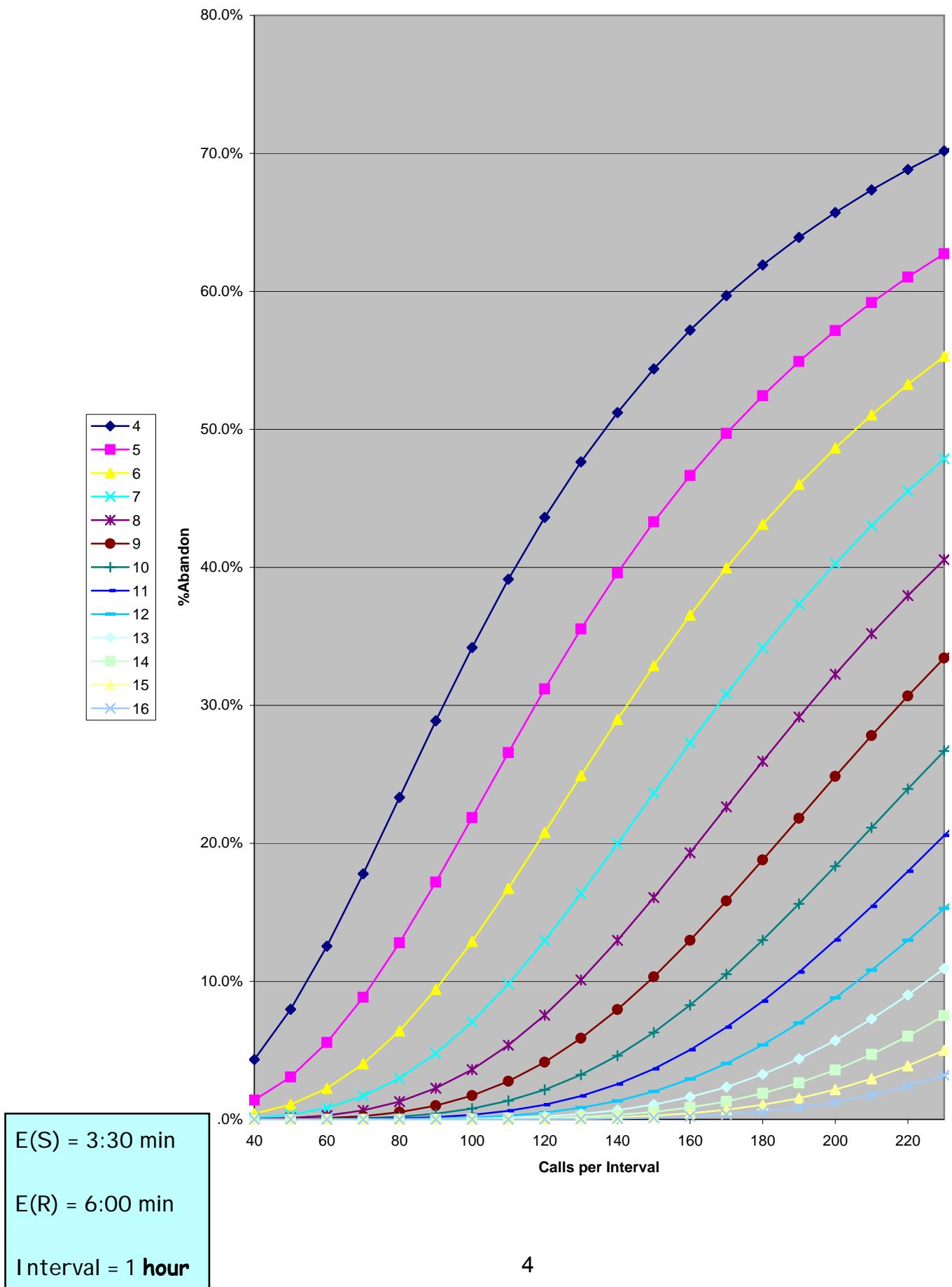
◆ Number of Agents Answering Calls	<input type="text" value="10"/>	◆ Features:	Abandons
◆ Average Time to Handle One Call (mm:ss)	<input type="text" value="01:00"/>	◆ Basic Interval:	60 minutes
◆ Calls per 60 minute Interval	<input type="text" value="100"/>	◆ Target Time:	00:00 (mm:ss)
◆ Average Callers' Patience (mm:ss)	<input type="text" value="01:00"/>	<input type="button" value="Change Settings"/>	

Compute

	Average Patience	Agent's Occupancy	%Answer	%Abandon	Average Speed of Answer	Average Time in Queue	%Answer within Target	%Abandon within Target	Average Queue Length
Results									
1									
2									
3									
4									
5									
6									
7									

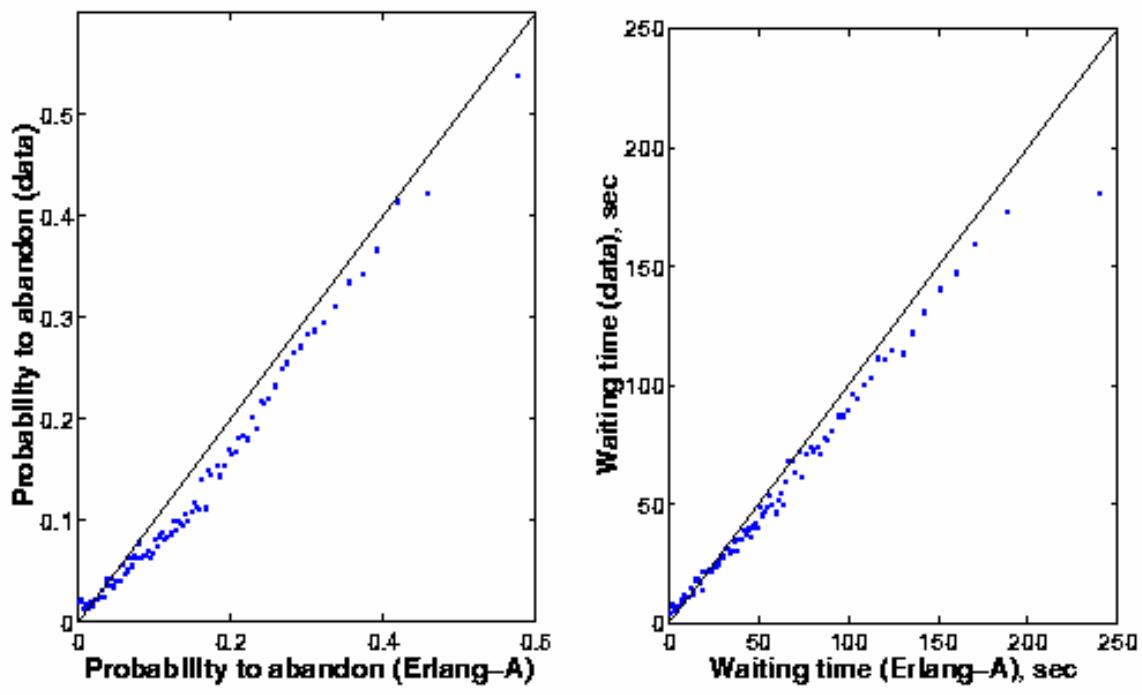
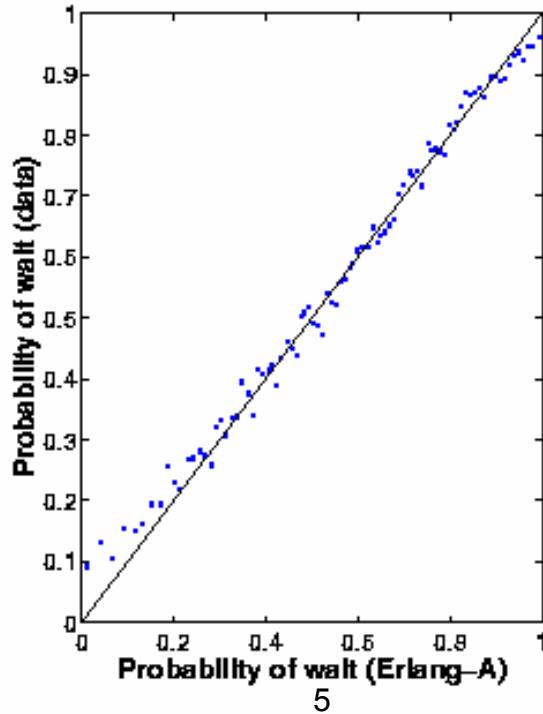
Ready 5/3/2004 3:27 PM

%Abandon vs. Calls per Interval for various Number of Agents

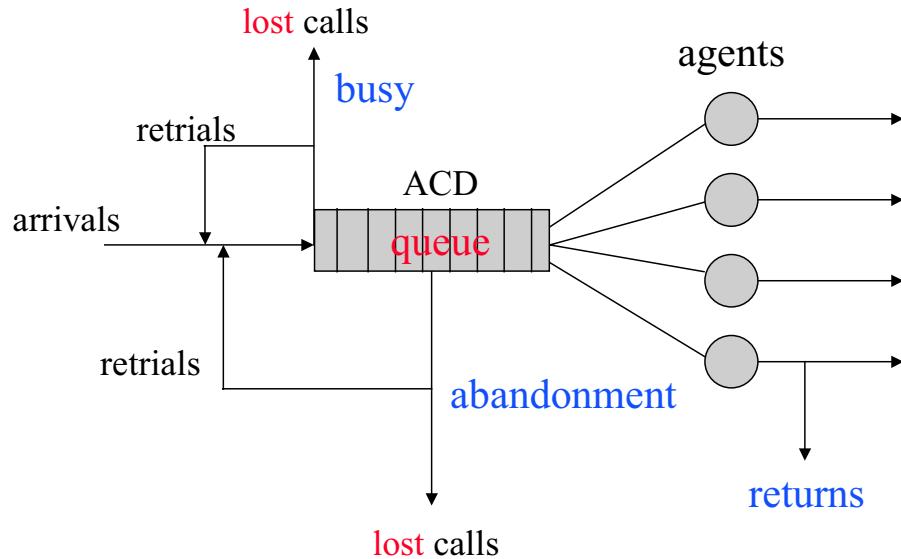


Fitting a Simple Model to a Complex Reality

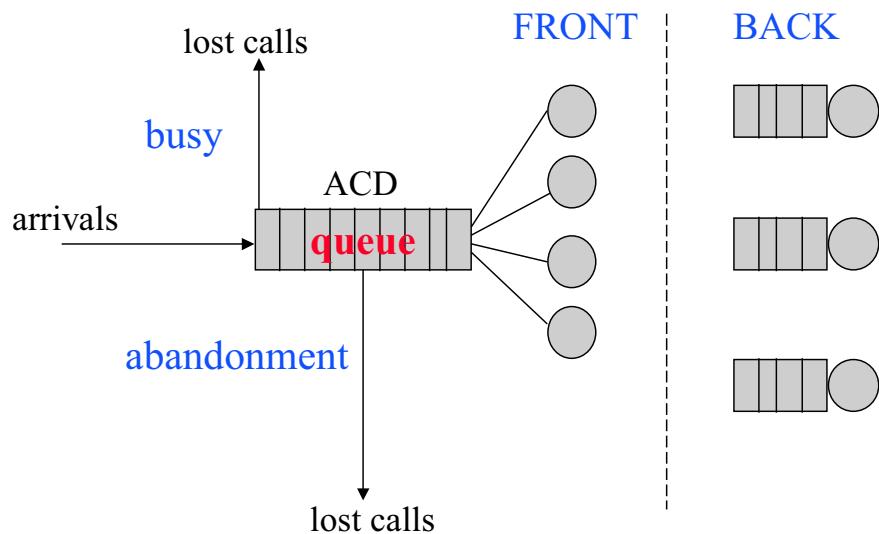
Erlang-A Formulae vs. Data Averages



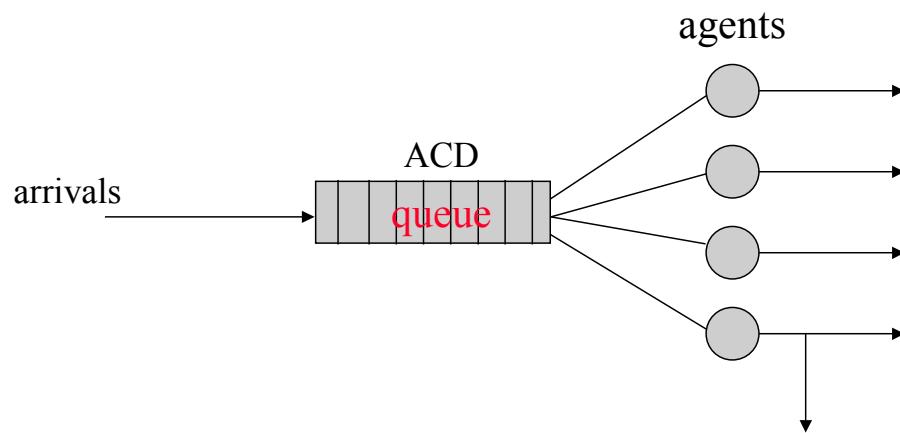
A Basic Call Center



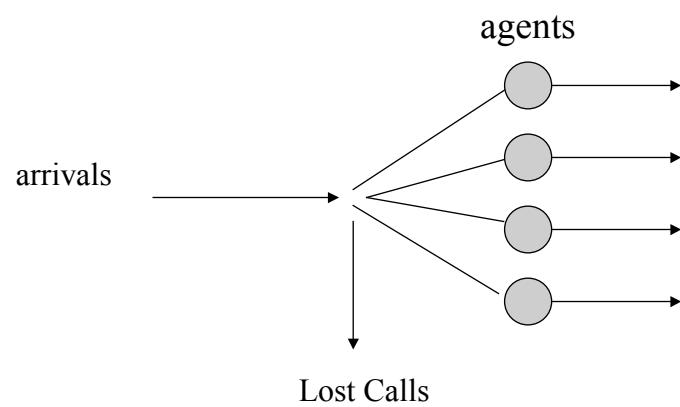
4CallCenters (Erlang-A)



Erlang-C



Erlang-B



Review: Markov Jump-Processes (MJP)

MJP $X = \{X_t, t \geq 0\}$ on $\mathcal{S} = \{i, j, \dots\}$ countable.

Markov property: $P_r\{X_t = j | X_r, r < s; X_s = i\} = P_{ij}(s, t), \forall s < t, \forall i, j \in \mathcal{S}$.

Time homogeneity: $P_r\{X_{s+t} = j | X_s = i\} = P_{ij}(t), \forall s, t, i, j$, transition probabilities.

Characterization: π^0 = initial distribution and $P(t) = [P_{ij}(t)]$, $t \geq 0$, stochastic.

Finite-dimensional distributions:

$$P_r\{X_0 = i_0, X_{t_1} = i_1, \dots, X_{t_n} = i_n\} = \pi^0(i_0)P_{i_0, i_1}(t_1) \dots P_{i_{n-1}, i_n}(t_n - t_{n-1}).$$

$P(t)$: stochastic ; $P(s + t) = P(s)P(t), \forall s, t$ (Chapman Kolmogorov);

$$\exists P(0) = I ; \exists \dot{P}(0) = Q = [q_{ij}], \text{ infinitesimal generator } \left(\sum_{j \in \mathcal{S}} q_{ij} = 0 \right).$$

Micro to Macro : $\dot{P}(t) = P(t)Q$ ($= QP(t)$) and $P(0) = I$
Forward (Backward) equations.

$$\text{Solution} : P(t) = \exp[tQ] = \sum_{n=0}^{\infty} \frac{t^n}{n!} Q^n, t \geq 0.$$

Animation: $i \xrightarrow{q_{ij}} j; \forall i, j \in \mathcal{S} \exists$ exponential clock at rate q_{ij} , call it (i, j) .

Given i , consider clocks (i, j) , $j \in \mathcal{S}$; move to the “winner” when rings.

Thus: stay at $i \sim \exp(q_i = \sum_{j \neq i} q_{ij})$ and switch to j with probability $P_{ij} = q_{ij}/q_i$ ($q_{ij} = q_i P_{ij}, i \neq j; q_{ii} = -q_i$).

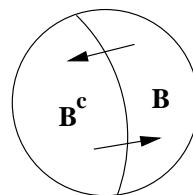
Transient analysis vs. long-run/limit stability/steady-state
 $\exists \lim_{t \uparrow \infty} P_{ij}(t) = \pi_j, \forall i; \pi = \pi P(t), \forall t.$

Calculation via **steady-state equations**: $\dot{P}(\infty) = P(\infty)Q \Rightarrow \left\{ \begin{array}{l} 0 = \pi Q \\ \sum_i \pi_i = 1, \pi_i \geq 0 \end{array} \right\}$

or balance equations: $\sum_{i \neq j} \pi_i q_{ij} = -\pi_j q_{jj} = \sum_{i \neq j} \pi_j q_{ji}, \forall j$.

Transition rates: $\pi_i q_{ij}$ = long-run average number of switches from i to j .

Cuts: $\sum_{i \in B} \sum_{j \in B^c} \pi_i q_{ij} = \sum_{i \in B^c} \sum_{j \in B} \pi_i q_{ij}, \forall B \subset \mathcal{S}$.



Ergodic Theorem: Let X be *irreducible* ($i \leftrightarrow j$). Assume that there exists a solution π to its steady-state equations. Then, X must be “unexplosive” and π must be its stationary distribution, its limit distribution and

$$\text{SLLN} \bullet \lim_{T \uparrow \infty} \frac{1}{T} \int_0^T f(X_t) dt = \sum_i \pi_i f(i) \quad (\text{“=” } Ef(X_\infty)) ; \text{ eg. } f(x) = 1_B(x).$$

$$\bullet \lim_{T \uparrow \infty} \frac{1}{T} \sum_{t \leq T} g(X_{t-}, X_t) = \sum_i \pi_i \sum_j q_{ij} g(i, j), \text{ for } g(x, x) = 0, \forall x; \text{ e.g. } g(x, y) = 1_C(x, y).$$

Birth-and-death process: MJP on $S = \{0, 1, 2, \dots\}$, where all jumps are between adjacent states: $q_{ij} = 0$ if $|i - j| > 1$.

Cuts: $\pi_i q_{i,i+1} = \pi_{i+1} q_{i+1,i}$.

(Take $B = \{0, 1, \dots, i\}$ and $B^c = \{i+1, i+2, \dots\}$.)

Reversibility: A stochastic process $X = \{X_t, -\infty < t < \infty\}$ is called *reversible* if for any τ

$$\{X_t, -\infty < t < \infty\} \stackrel{d}{=} \{X_{\tau-t}, -\infty < t < \infty\}.$$

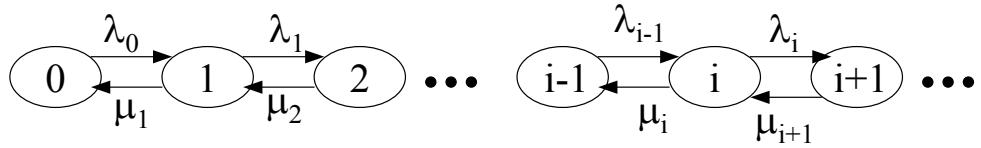
Fact. Ergodic MJP in steady-state is reversible if and only if the *detailed balance equations* hold:

$$\pi_i q_{ij} = \pi_j q_{ji}, \quad \forall i, j \in \mathcal{S}.$$

Corollary. Every ergodic birth-and-death process is reversible.

(Follows from the cut equations.)

Birth & Death Model of a Service Station



- i – number-in-system;
- λ_i – arrival rate given i customers in system;
- μ_i – service rate given i customers in system.

Cuts at $i \leftrightarrow i + 1$ yield:

$$\pi_i \lambda_i = \pi_{i+1} \mu_{i+1}, \quad i \geq 0, \text{ and}$$

$$\pi_{i+1} = \frac{\lambda_i}{\mu_{i+1}} \pi_i = \frac{\lambda_i \lambda_{i-1}}{\mu_{i+1} \mu_i} \pi_{i-1} = \dots = \frac{\lambda_0 \lambda_1 \dots \lambda_i}{\mu_1 \mu_2 \dots \mu_{i+1}} \pi_0 .$$

Steady-state distribution exists iff

$$\sum_{i=0}^{\infty} \frac{\lambda_0 \dots \lambda_i}{\mu_1 \dots \mu_{i+1}} < \infty .$$

Then

$$\begin{cases} \pi_i = \frac{\lambda_0 \dots \lambda_{i-1}}{\mu_1 \dots \mu_i} \pi_0, & i \geq 0 \\ \pi_0 = \left[\sum_{i \geq 0} \frac{\lambda_0 \dots \lambda_i}{\mu_1 \dots \mu_{i+1}} \right]^{-1} \end{cases}$$

$$\text{Arrival rate} = \sum_{i=0}^{\infty} \pi_i \lambda_i = \sum_{i=1}^{\infty} \pi_i \mu_i = \text{Departure rate.}$$

Additional assumptions (classical queues):

- n statistically identical servers;
- FCFS discipline – First Come First Served;
- Work conservation: a server does not go idle if there are customers in need of service;
- Customers do not abandon.

Measures of Performance

- L - number of customers at the service station (sometimes L_s);
- L_q - number of customers in the queue;
- W - sojourn time of a customer at the service station (W_s);
- W_q - waiting time of a customer in the queue.

In steady state (in the long run):

$$\begin{aligned} \mathbb{E}[L] &= \sum_{k \geq 0} k \cdot \pi_k = \lim_{T \rightarrow \infty} \frac{1}{T} \cdot \int_0^T L(t) dt . \\ \mathbb{E}[L_q] &= \sum_{k=n+1}^{\infty} (k - n) \cdot \pi_k . \end{aligned}$$

If λ – arrival rate to the system, Little's formula implies:

$$\mathbb{E}[L] = \lambda \cdot \mathbb{E}[W]; \quad \mathbb{E}[L_q] = \lambda \cdot \mathbb{E}[W_q] .$$

4CallCenters Software.

Mathematical engine based on the M.Sc. thesis of Ofer Garnett
(in References)

Will be taught and used in our course.

Install at

<http://iew3.technion.ac.il/serveng/4CallCenters/Downloads.htm>

4CallCentersTM

Personal Optimization Tools for Call Centers

Downloads:

1. [4CallCenters v2.23](#)(setup.exe file- **3 MB**)

- For installation: Open setup.exe and follow the instructions.
- To uninstall the installed software: Go to Start/Programs/4CallCenters v2.23/Uninstall 4CallCenters v2.23

2. [4CallCenters v2.01 - Help Document \(100 KB\)](#)

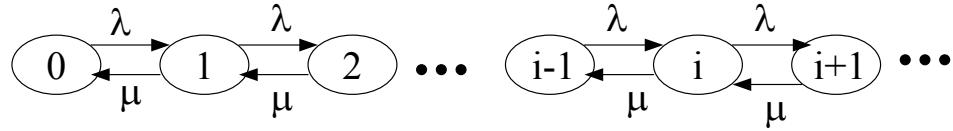
Word document containing the 4CallCenters application's help pages.

QSetup

We are grateful to QSetup for their support.

M/M/1 queue

- Poisson arrivals, rate λ ;
- Single exponential server, rate μ ; $E[S] = 1/\mu$.



$$\lambda_i = \lambda, \quad i \geq 0; \quad \mu_i = \mu \cdot 1_{i \geq 1}.$$

Cut equations: $\lambda\pi_i = \mu\pi_{i+1}, \quad i \geq 0.$

Traffic intensity $\rho = \frac{\lambda}{\mu} < 1$ (assumed for stability).

Steady-state distribution $L \stackrel{d}{=} Geom(p = 1-\rho)$ (from 0):

$$\pi_i = (1 - \rho)\rho^i, \quad i \geq 0.$$

Properties:

- Sojourn time is exponentially distributed:

$$W \sim \exp \left(\text{mean} = \frac{1}{\mu(1 - \rho)} = \frac{1}{\mu} \left[1 + \frac{\rho}{1 - \rho} \right] \right).$$

Proof: Via moment generating functions.

According to PASTA, with $N = L + 1$,

$$W \stackrel{d}{=} \sum_{i=1}^N X_i, \quad X_i \sim \exp(\mu) \text{ i.i.d.}, \quad N \stackrel{d}{=} \text{Geom}(1-\rho) \text{ (from 1);}$$

N and $\{X_i\}$ are all independent.

Moment generating function:

$$\begin{aligned}
\phi_W(t) &\stackrel{\Delta}{=} \mathbb{E}[\exp\{tW\}] = \mathbb{E}\left[\exp\left\{t \cdot \sum_{i=1}^N X_i\right\}\right] \\
&= \mathbb{E}\left[\mathbb{E}\left[\exp\left\{t \cdot \sum_{i=1}^N X_i\right\} \middle| N\right]\right] \\
&= \text{(Moment generating function of Erlang r.v.)} \\
&= \mathbb{E}\left[\left(\frac{\mu}{\mu-t}\right)^N\right] = \sum_{k=1}^{\infty} (1-\rho)\rho^{k-1} \left(\frac{\mu}{\mu-t}\right)^k \\
&= \frac{\mu(1-\rho)}{\mu-t} \cdot \sum_{k=0}^{\infty} \left(\frac{\mu\rho}{\mu-t}\right)^k = \frac{\mu(1-\rho)}{\mu(1-\rho)-t} \\
&= \phi_{\exp(\mu(1-\rho))}(t).
\end{aligned}$$

- Delay probability (PASTA): $\mathbb{P}\{W_q > 0\} = \rho$.
- Waiting time in queue, given delay, is exp:

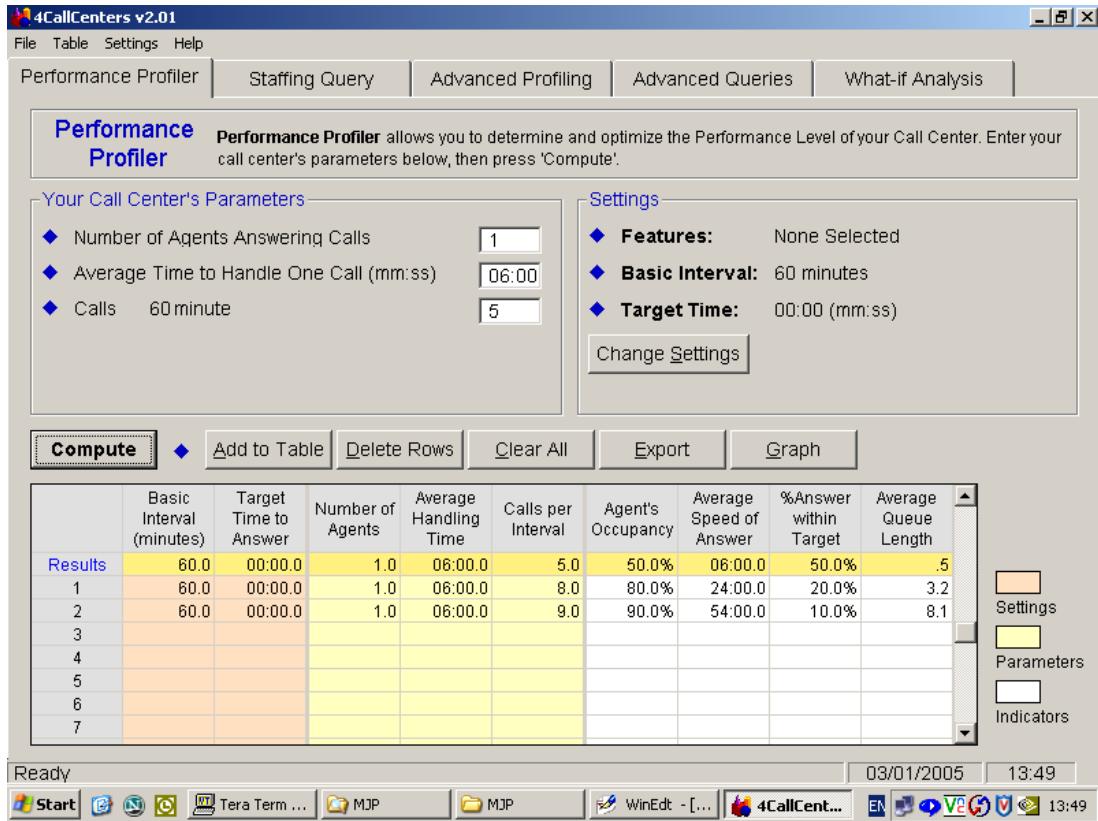
$$\frac{W_q}{1/\mu} \stackrel{d}{=} \begin{cases} 0 & \text{wp } 1 - \rho \\ \exp\left(\text{mean} = \frac{1}{1-\rho}\right) & \text{wp } \rho \end{cases}$$

- Number-in-system: $\mathbb{E}[L] = \frac{\rho}{1-\rho}$; $\mathbb{E}[L_q] = \frac{\rho^2}{1-\rho}$.
- Server's utilization (occupancy) is $\rho = \lambda/\mu$.
(Little's formula, system = server.)
- Departure process in steady state is Poisson (λ)
(Burke theorem) – important in queueing networks.

Partial support : average inter-departure =

$$\frac{1}{\mu} \cdot \rho + \left(\frac{1}{\mu} + \frac{1}{\lambda}\right) \cdot (1 - \rho) = \frac{1}{\lambda}.$$

M/M/1. 4CallCenters output



Note large waiting times:

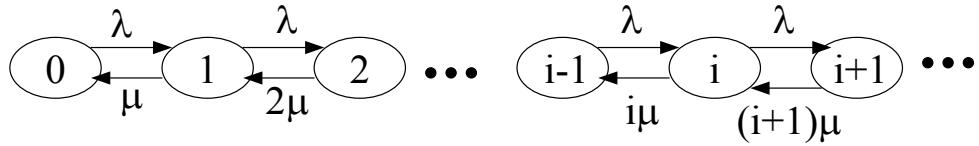
$E[S]$ for $\rho = 50\%$, $9 \cdot E[S]$ for $\rho = 90\%$, $19 \cdot E[S]$ for $\rho = 95\%$.

4CallCenters: performance measures.

- Average Speed of Answer = $E[W_q]$
(will be different in queues with abandonment);
- %Answer within Target = $P\{W_q < T\}$;
- Average Queue Length = $E[L_q]$.

M/M/ ∞ queue

- Poisson arrivals, rate λ ;
- Infinite number of exponential servers, rate μ .



$$\lambda_i = \lambda, \quad i \geq 0; \quad \mu_i = i \cdot \mu, \quad i > 0.$$

Cut equations:

$$\lambda \pi_i = (i+1) \cdot \mu \pi_{i+1}, \quad i \geq 0.$$

Always stable.

Steady-state distribution is Poisson:

$$\pi_i = e^{-R} \cdot \frac{R^i}{i!}, \quad i \geq 0,$$

where $R = \frac{\lambda}{\mu} = \lambda \cdot E(S)$ is the **offered load** (measured in Erlangs).

$$E[L] = E(\# \text{ busy servers}) = \lambda \cdot \frac{1}{\mu} = R.$$

(Little's formula, system = service.)

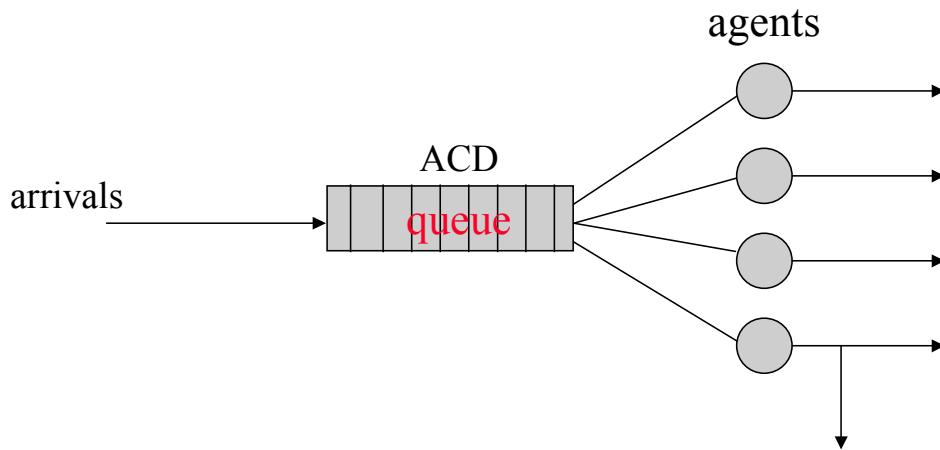
Very *useful*: ∞ -server models provide bounds.

Results above valid for M/G/ ∞ – generally distributed service times. (Insensitivity to the service-time distribution.)

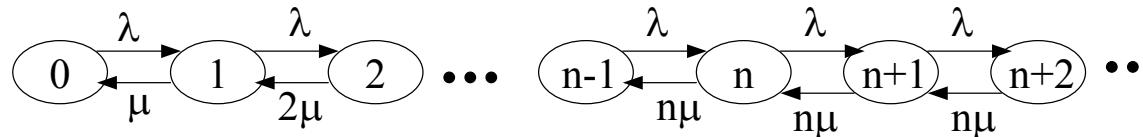
M/M/n (Erlang-C) queue

- Poisson arrivals, rate λ ;
- n exponential servers, rate μ .

Widely used in call centers.



Transition-rate diagram



$$\lambda_j = \lambda, \quad j \geq 0,$$

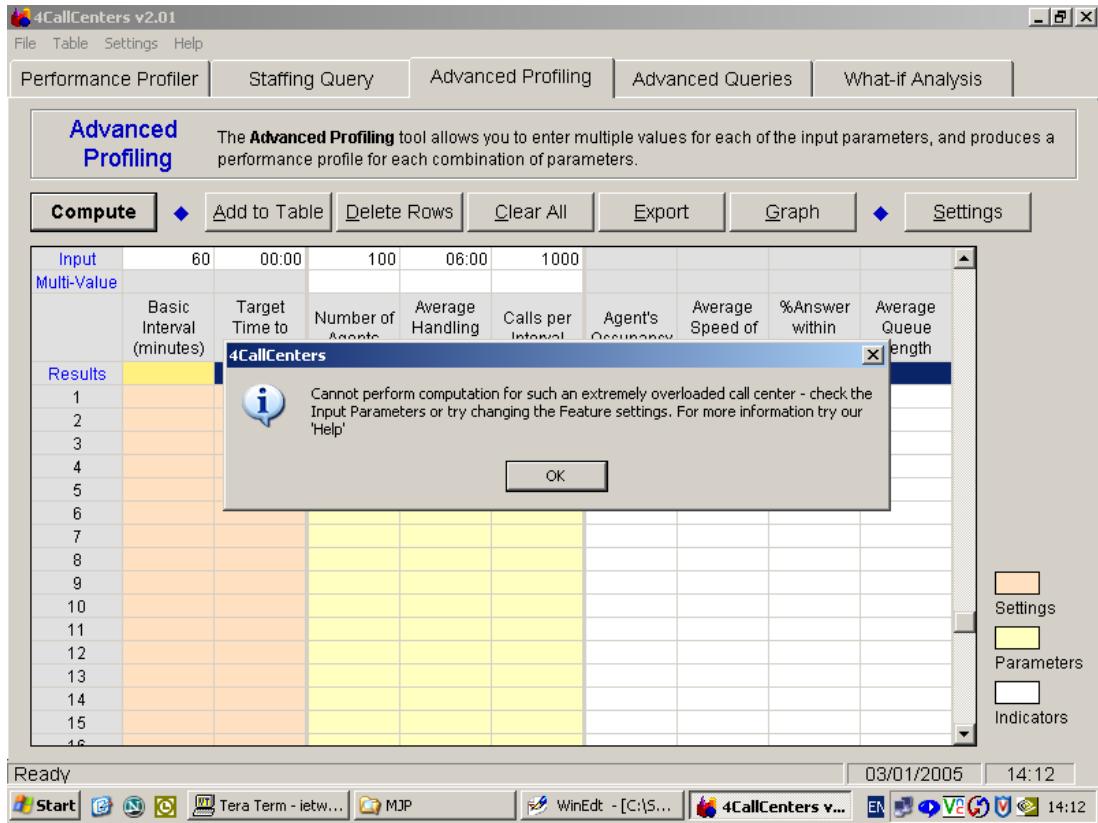
$$\mu_j = (j \wedge n)\mu, \quad j \geq 1.$$

Agents' utilization

$$\rho = \frac{\lambda}{n\mu}.$$

Assume $\rho < 1$ ($R < n$) to ensure stability (as in M/M/1).

4CallCenters output: Instability, $\rho \geq 1$



Steady-state distribution:

$$\begin{aligned}
 \pi_i &= \frac{R^i}{i!} \pi_0, \quad i \leq n, \\
 &= \frac{n^n \rho^i}{n!} \pi_0, \quad i \geq n, \\
 \pi_0 &= \left[\sum_{j=0}^{n-1} \frac{R^j}{j!} + \frac{R^n}{n!(1-\rho)} \right]^{-1},
 \end{aligned}$$

where $R = \frac{\lambda}{\mu}$ is the **offered load**.

Erlang-C Formula (1917):

Delay probability:

$$P\{W_q > 0\} \triangleq E_{2,n} = \sum_{i \geq n} \pi_i = \frac{R^n}{n!} \frac{1}{1 - \rho} \cdot \pi_0.$$

Erlang-C computation: recursion, see Erlang-B below.

Number-in-queue:

$$P\{L_q = i\} = E_{2,n} \cdot (1 - \rho) \rho^i, \quad i > 0,$$

or

$$L_q = \begin{cases} 0 & \text{wp } 1 - E_{2,n} \\ \text{Geom}(1 - \rho) & \text{wp } E_{2,n} \end{cases}$$

Waiting time distribution:

$$\frac{W_q}{1/\mu} = \begin{cases} 0 & \text{wp } 1 - E_{2,n} \\ \exp\left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1-\rho}\right) & \text{wp } E_{2,n} \end{cases}$$

Compare with M/M/1!

Departure process: Poisson(λ) in steady-state.

Proof via reversibility, as with M/M/1.

M/M/n derivation of waiting-time distribution

Via the "M/M/1 - analogy",

$$\frac{1}{E(S)} W_q \mid W_q > 0 \stackrel{d}{=} \exp(n(1 - \rho))$$

$$P\left\{\frac{1}{E(S)} W_q > t \mid W_q > 0\right\} = e^{-n(1-\rho)t}.$$

Formally:

$$P\{W_q > t\} = \sum_{k=1}^{\infty} P\{L_q = k - 1\} \cdot P\{E_k > t\}$$

(where $E_k \sim \text{Erlang}(k, n\mu)$)

$$= E_{2,n} \cdot \sum_{k=1}^{\infty} \left[(1 - \rho) \rho^{k-1} \cdot \int_t^{\infty} \frac{n\mu(n\mu x)^{k-1}}{(k-1)!} e^{-n\mu x} dx \right]$$

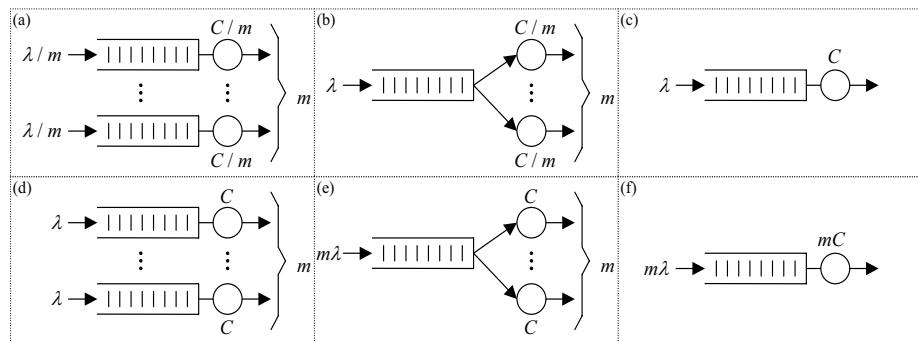
$$= E_{2,n} \cdot n\mu(1 - \rho) \cdot \int_t^{\infty} \left(e^{-n\mu x} \sum_{k=1}^{\infty} \frac{(n\mu \rho x)^{k-1}}{(k-1)!} \right) dx$$

$$= E_{2,n} \cdot n\mu(1 - \rho) \cdot \int_t^{\infty} e^{-n\mu(1-\rho)x} dx$$

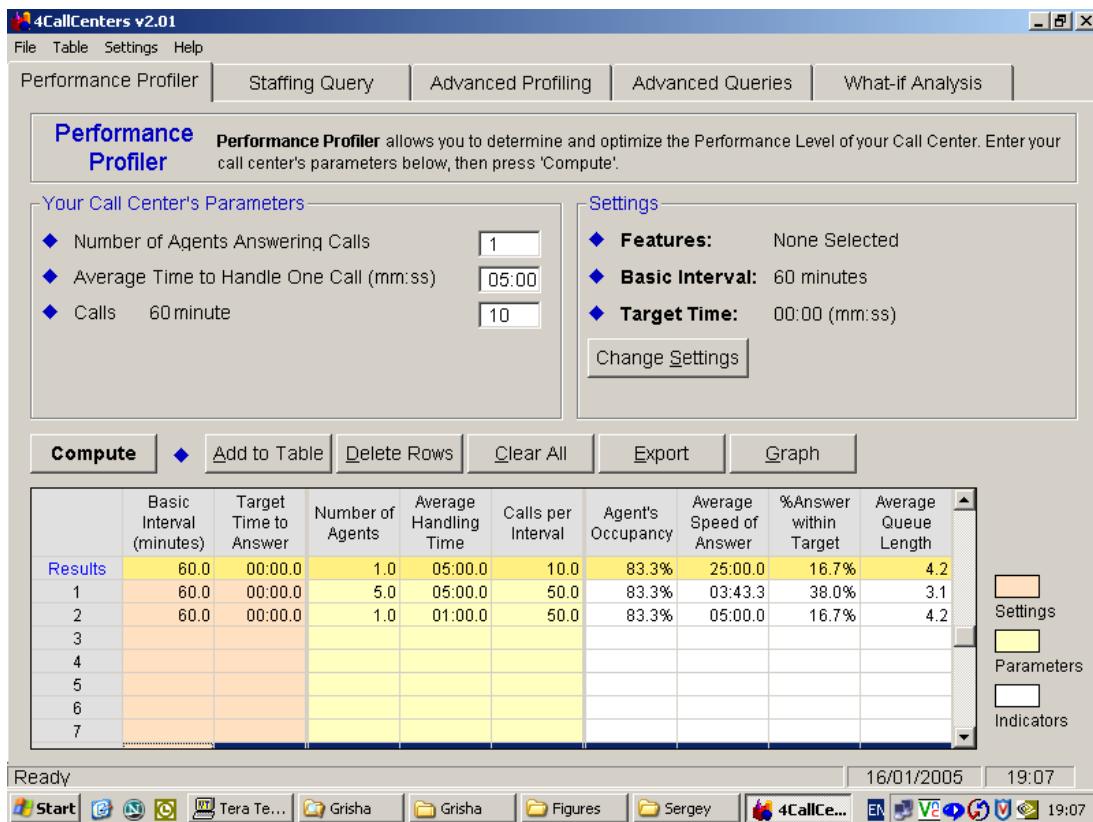
$$= E_{2,n} \cdot e^{-n\mu(1-\rho)t}.$$

Pooling; Economies of Scale

Example: Kleinrock, L. Vol.II, Chapter 5 (1976)



4CallCenters output



	1	2	3
	$n \times M/M/1 \xrightarrow{\text{pooling}}$	$M/M/n$	$\xrightarrow{\text{technology}}$ $M/M/1$
	λ, μ	$n\lambda, \mu$	$n\lambda, n\mu$
$P\{W_q > 0\}$	ρ	$E_{2,n}$	ρ
$E[W_q]$	$\frac{1}{\mu} \cdot \frac{\rho}{1-\rho}$	$\frac{1}{\mu} \cdot \frac{E_{2,n}}{n(1-\rho)}$	$\frac{1}{n\mu} \cdot \frac{\rho}{1-\rho}$
$E[S]$	$\frac{1}{\mu}$	$\frac{1}{\mu}$	$\frac{1}{n\mu}$
$E[W]$	$\frac{1}{\mu} \cdot \frac{1}{1-\rho}$	$\frac{1}{\mu} \cdot \left[\frac{E_{2,n}}{n(1-\rho)} + 1 \right]$	$\frac{1}{n\mu} \cdot \frac{1}{1-\rho}$
(0)			

Statement: $1 - \rho < 1 - E_{2,n} < n(1 - \rho)$.

Proof: Consider $M/M/n$.

$$1 - \rho = P\{\text{server } i \text{ idle}\}, \text{ for } i = 1, \dots, n;$$

$$1 - E_{2,n} = P\{\text{at least one server idle}\} = P\left\{\bigcup_{i=1}^n \{i \text{ idle}\}\right\}$$

$$n(1 - \rho) = \sum_{i=1}^n P\{\text{server } i \text{ idle}\}$$

Conclusions

1 → 2 : Pooling yields $E[W_q]$ decrease by more than factor n ;

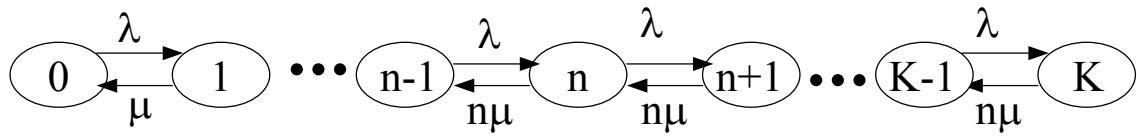
1 → 3 : Fast server yields $E[W]$ and $E[W_q]$ decrease by factor n ;

2 → 3 : Fast server better for $E[W]$;

Pooling better for $E[W_q]$.

M/M/n/K queue

- Poisson arrivals, rate λ ;
- n exponential servers, rate μ ;
- K trunks ($K \geq n$);
- If all trunks busy, arriving customer blocked (busy signal).

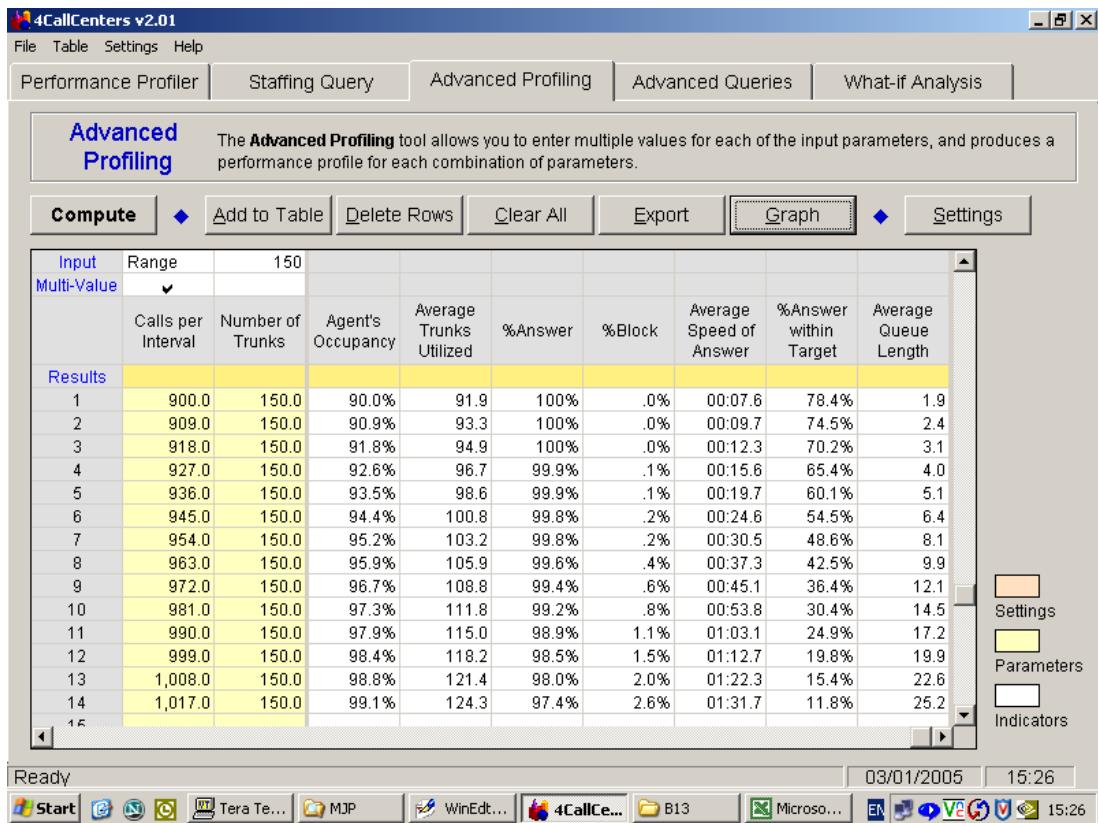


$$\lambda_j = \lambda, \quad 0 \leq j \leq K-1,$$

$$\mu_j = (j \wedge n)\mu, \quad 1 \leq j \leq K.$$

Formulae straightforward but cumbersome (simply truncate M/M/n).
Always reaches steady state.

4CallCenters output.



Use Change Settings \Rightarrow Features \Rightarrow Trunks.

Note new indicators:

Average Trunks Utilized and %Blocked.

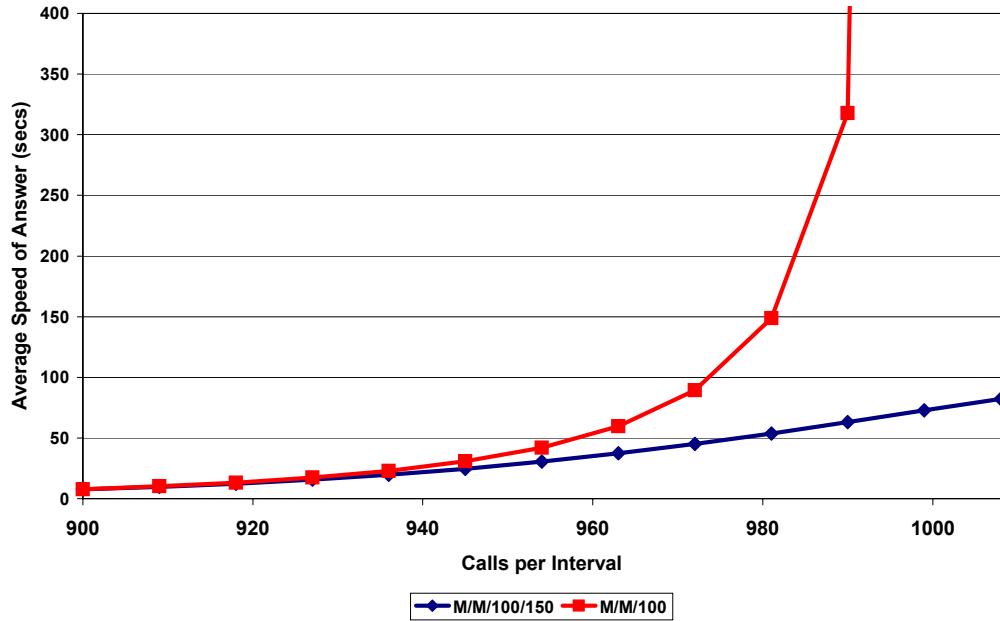
4CallCenters: Advanced Profiling

Arrival rate varied from 900 to 1017 per hour, in step 9.

Excel interface: graphs and spreadsheets.

M/M/n/K vs. Erlang-C

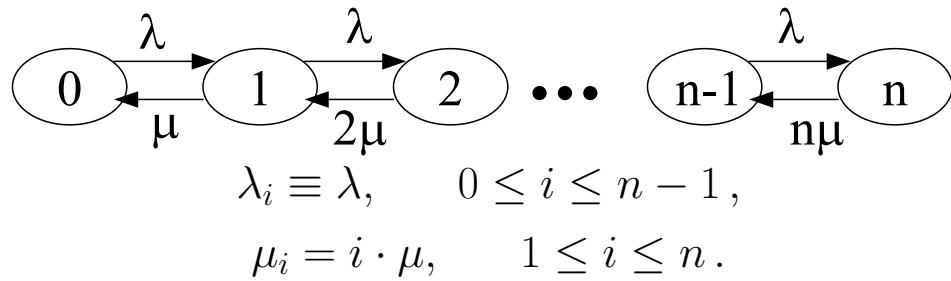
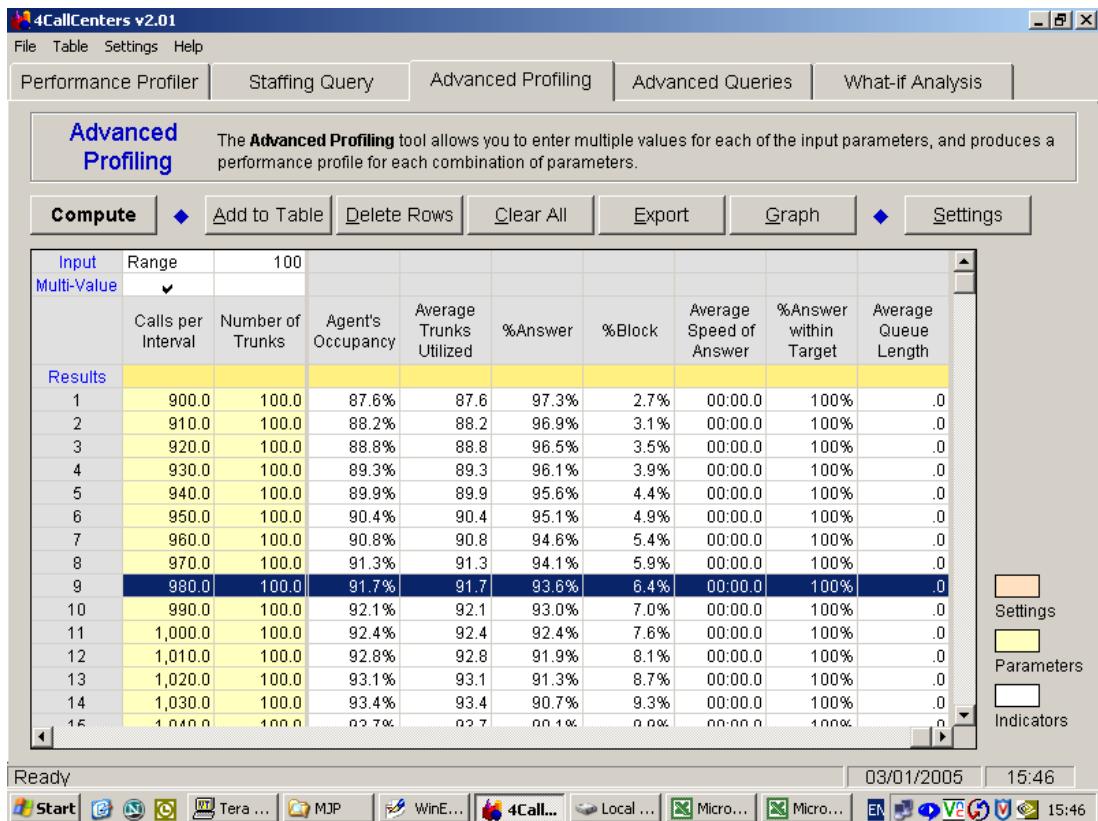
Average service time = 6 min, 100 agents, 150 trunks



Similar performance for light loads.

Erlang-C “explodes” as $\rho = \frac{\lambda}{n\mu} \uparrow 1$.

M/M/n/n (Erlang-B) queue



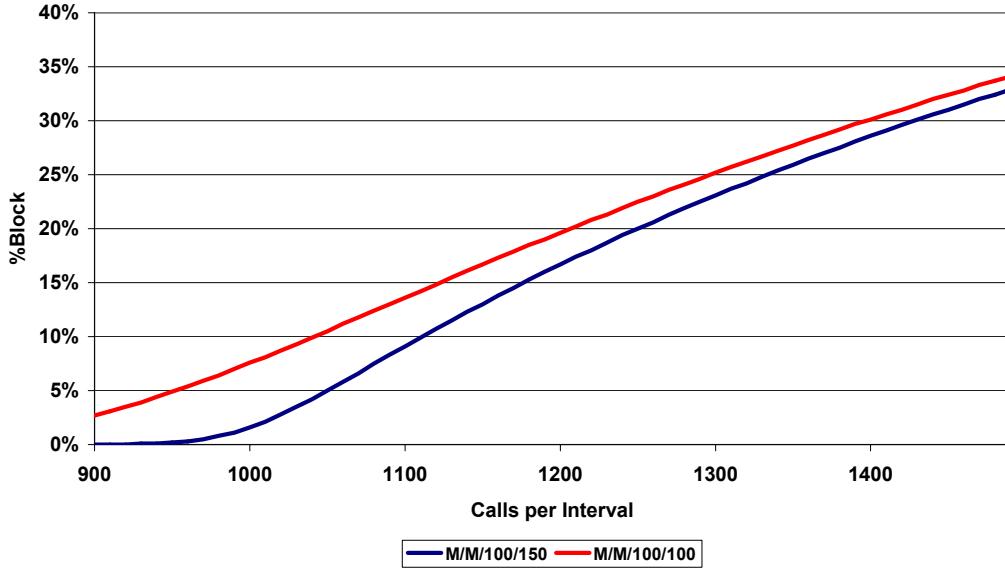
No queue \Rightarrow no wait.

$$\pi_i = \frac{R^i}{i!} \left/ \sum_{j=0}^n \frac{R^j}{j!} \right., \quad 0 \leq i \leq n.$$

Note: interval = 1 hour

M/M/n/K vs. Erlang-B

Average service time = 6 min, 100 agents



Moderate load: additional trunks prevent blocking.

Heavy load: % blocking $\approx 1 - 1/\rho$ ("fluid limit").

Erlang-B Formula (1917):

Loss probability

$$E_{1,n} = \pi_n = \frac{R^n}{n!} \left/ \sum_{j=0}^n \frac{R^j}{j!} \right. \quad (1)$$

Follows from PASTA.

(1) valid for M/G/n/n! (Generally distributed service time.)

$\lambda\pi_n$ – rate of lost customers,

$\lambda(1 - \pi_n)$ – effective throughput.

Erlang-B computation: via recursion

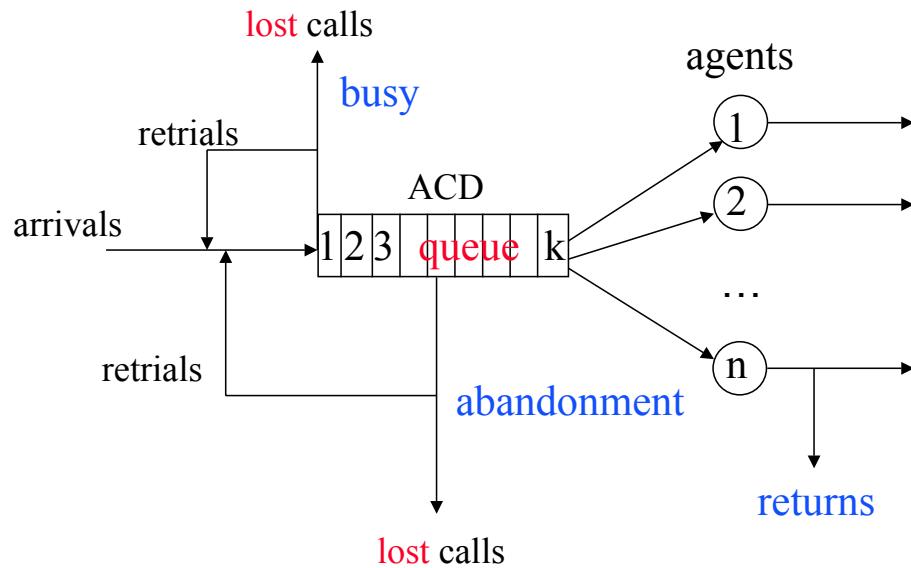
$$E_{1,n} = \frac{RE_{1,n-1}}{n + RE_{1,n-1}} = \frac{\rho E_{1,n-1}}{1 + \rho E_{1,n-1}} \quad E_{1,0} = 1.$$

Note:

$$E_{1,n} = \frac{(n - R)E_{2,n}}{n - RE_{2,n}}; \quad E_{2,n} = \frac{E_{1,n}}{(1 - \rho) + \rho E_{1,n}};$$

$E_{2,n} > E_{1,n}$, as expected: why?

Schematic representation of a telephone call center



Two customer - centric (subjective) operational measures of performance:

- Abandonment (impatient)
- Retrials (often negligible)

How to model Abandonment?