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REVIEW: MARKOV JUMP-PROCESS (MJP)

MJP X = {Xt, t ≥ 0} on S = {i, j, . . .} countable.
Markov property: Pr{Xt = j|Xr, r < s; Xs = i} = Pij(s, t), ∀ s < t, ∀ i, j ∈ S.
Time homogeneity: Pr{Xs+t = j|Xs = i} = Pij(t), ∀ s, t, i, j, transition probabilities.

Characterization: π0 = initial distribution and P (t) = [Pij(t)], t ≥ 0, stochastic.
Finite-dimensional distributions:
Pr{X0 = i0, Xt1 = i1, . . . , Xtn = in} = π0(i0)Pi0,i1(t1) . . . Pin−1,in(tn − tn−1).

P (t) : stochastic ; P (s + t) = P (s)P (t), ∀ s, t (Chapman Kolmogorov);

∃P (0) = I ; ∃ Ṗ (0) = Q = [qij], infinitesimal generator
(∑

j∈S qij = 0
)
.

Micro to Macro : Ṗ (t) = P (t)Q (= QP (t)) and P (0) = I
Forward (Backward) equations.

Solution : P (t) = exp[tQ] =
∑∞

n=0
tn

n!
Qn , t ≥ 0.

Animation: i
qij−→ j; ∀ i, j ∈ S ∃ exponential clock at rate qij, call it (i, j).

Given i, consider clocks (i, j), j ∈ S; move to the “winner” when rings.
Thus: stay at i ∼ exp(qi =

∑
j 6=i qij) and switch to j with probability Pij = qij/qi

(qij = qiPij, i 6= j; qii = −qi).

Transient analysis vs. long-run/limit stability/steady-state
∃ limt↑∞ Pij(t) = πj, ∀ i; π = πP (t), ∀ t.

Calculation via steady-state equations: Ṗ (∞) = P (∞)Q ⇒
{

0 = πQ∑
i πi = 1, πi ≥ 0

}

or balance equations:
∑

i6=j πiqij = −πjqjj =
∑

i 6=j πjqji, ∀ j.

Transition rates: πiqij = long-run average number of switches from i to j.

Cuts:
∑

i∈B

∑
j∈Bc πiqij =

∑
i∈Bc

∑
j∈B πiqij, ∀B ⊂ S.

B
Bc
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Ergodic Theorem: Let X be irreducible (i ↔ j). Assume that there exists a solution π
to its steady-state equations. Then, X must be “unexplosive” and π must be its stationary
distribution, its limit distribution and

SLLN • lim
T↑∞

1
T

∫ T
0 f(Xt)dt =

∑

i

πif(i) (“=”Ef(X∞)) ; eg. f(x) = 1B(x).

• lim
T↑∞

1
T

∑

t≤T

g(Xt−, Xt) =
∑

i

πi

∑

j

qijg(i, j), for g(x, x) = 0, ∀x; e.g. g(x, y) = 1C(x, y).

Birth & Death Model of a Service Station (Hall, §5.4)

0 1 2 nn-1. . . .

λ λ λ

µ µ µ µ

0 1 n

n n+121

λ n-1

. . .

Cuts at n↔n + 1 yield: πnλn = πn+1µn+1, n ≥ 0;

πn+1 =
λn

µn+1

πn =
λnλn−1

µn+1µn

πn−1 = · · · = λ0λ1 . . . λn

µ1µ2 . . . µn+1

π0 .

The required solution exists if and only if

∞∑

n=0

λ0 . . . λn

µ1 . . . µn+1

< ∞ .

The Ergodic Theorem then yields




πn = λ0...λn−1

µ1...µn
π0 , n ≥ 0

π0 =
[∑

n≥0
λ0...λn

µ1...µn+1

]−1

Measures of Performance (MOP’s:

L = number of customers at the service station;
Lq = number of customers in the queue;
W = sojourn time of a customer at the service station;
Wq = waiting time of a customer in the queue;

E(L) =
∑

n≥0

nπn = lim
T↑∞

1

T

∫ T

0
L(t)dt.
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Let m(n) = number of active servers at state n, 0 ≤ m(n) ≤ n; the servers are
statistically identical.

E(Lq) =
∑

n≥0

[n−m(n)]πn = also long-run average, as above.

Service rate per server is µ(n)/m(n), n ≥ 1.

Average (actual) service rate:
∑

n≥1

µ(n)
m(n)

πn = E[µ(L)/m(L)].

Potential service rate of each server: E[µ(L)/m(L)|L > 0] = E[µ(L)/m(L)]
1−π0

.

Inflow rate: λ =
∑

n≥0

πnqn,n+1 =
∑

n≥0

πnλ(n) = Eλ(L).

↑ arrival

↓ departure

Outflow rate: δ =
∑

n≥0

πnqn,n−1 =
∑

n≥0

πnµ(n) = Eµ(L). (Assume µ(0) = 0.)

Note: in steady state, πnλn = πn+1µn+1, ∀ n ≥ 0 ⇒ inflow rate = outflow rate.

Throughput rate: Eλ(L) = Eµ(L) (the common quantity).

Example. M/M/1 ...n+1

µ

λ

n...

λj = λ, j ≥ 0; µj = µ · 1j≥1.

ρ = λ
µ

< 1 assumed for steady state (traffic intensity).

πn = (1− ρ)ρn, n ≥ 0. Geometric distribution!

Actual service rate =
∑

n≥1

πn · µ = µ(1− π0) = µ · ρ = µ · λ
µ

= λ, contrasted with

Potential service rate = λ
1−π0

= λ
ρ

= µ , as anticipated.

Additional properties: W ∼ exp
(
mean = 1

µ(1−ρ)
= 1

µ

[
1 + ρ

1−ρ

])
, geometric mixture of exp’s.

Departure process is Poisson (λ) (Burke’s Theorem).

Wq

1/µ
d
=





0 wp 1− ρ

exp
(
mean = 1

1−ρ

)
wp ρ
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Example M/M/∞ ...n+1

λ

n...

µ(n+1)

Always stable.

πn = e−ρ ρn

n!
, n ≥ 0 , Poisson distribution!

E (# busy servers) = λ · 1
µ

= λ
µ

= ρ.

Very useful: ∞-server models provide upper bound (e.g., Israel Electric Company).

Example M/M/S

µj = (j ∧ s)µ , λj ≡ λ ,

ρ =
λ

sµ
< 1 assumed, as before, to ensure stability.

πk =
ak

k!
π0, k ≤ S,

=
ssρk

s!
π0, k ≥ S,

π0 =




s−1∑

j=0

aj

j!
+

as

s!(1− ρ)



−1

, where a =
λ

µ
, offered load.

Note: “Wait | Wait > 0” is exponential, having the same distribution as that in an
M/M/1 queue with arrival rate λ and service rate S · µ.

Erlang-C Formula (1917):

E2,S =
∑

k≥s

πk =
aS

S!

1

1− ρ
· π0, delay probability (PASTA).

Example M/M/S/S

λj ≡ λ, j = 0, . . . , S − 1, µj = j · µ for j = 1, 2, . . . , S .

Always reaches steady state.

πk =
ak

k!

/
S∑

j=0

aj

j!
, k = 0, 1, . . . , S.
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Erlang-B Formula:

E1,S = πS =
as

s!

/
S∑

j=0

aj

j!
, loss probability (PASTA).

λπs – rate of lost customers,
λ(1− πs) – effective throughput.

Note: Useful relations between the Erlang-B and Erlang-C formulae are

E1,S =
(S − a)E2,S

S − aE2,S

; E2,S =
E1,S

(1− ρ) + ρE1,S

;

E2,S > E1,S, as expected: why?

The expression of E2,S in terms of E1,S will become especially useful later on.

Example M/M/S/N (S ≤ N)

λj = λ, 0 ≤ j ≤ N − 1, (λN = 0)

µj = (j ∧ S)µ, 1 ≤ j ≤ N. (µ0 = 0)

Formulae straightforward but cumbersome (simply truncate M/M/S).

Always reaches steady state.

Note: Mainly M/M/S (Erlang-C) and sometimes M/M/S/S (Erlang-B) are the prevalent
models used in the world of call centers. However, M/M/S/N is more appropriate, and
even more so M/M/S/N + Abandonment: Erlang-A.

But the following question then arises: How to model Abandonment?
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Erlang’s Formulae
(Exact Results for M/M/m = Erlang-C, and M/M/m/m = Erlang-B)

R = offered load
(
= λ/µ = m · ρ ; ρ = R

m

)

Erlang B: E1,m =
Rm

m!∑m
k=0

Rk

k!

Probability of blocking/loss

Erlang C: E2,m =
Rm

m!
1

1−ρ∑m−1
k=0

Rk

k!
+ Rm

m!
1

1−ρ

Probability of delay

Relations (Palm, 1943?)

- Some observations on the Erlang formulae. . . . . . . . .pg. 18

- Contributions to the Theory of Delay Systems . . . . . .pg. 37

1. E2,n =
nE1,n

(n−R) + RE1,n

=
E1,n

(1− ρ) + ρE1,n

for ρ < 1(
ρ = R

n

)

E2,n > E1,n ; d
dR

E2,n(n) = 1
nE1,n(n)

2. E2,n =
R(n− 1−R)E2,n−1

(n− 1)(n−R)−RE2,n−1

for R < n− 1.

(Must have R < 1 to start with E2,1 = ρ)

3. E1,n =
RE1,n−1

n + RE1,n−1

=
ρE1,n−1

1 + ρE1,n−1

; E1,0 = 1.

Recursions are useful for calculations.
For example, to calculate E2,n, it is convenient to calculate recursively E1,n via 3. and
then calculate E2,n via 1.
They will also be useful for us in asymptotic analysis of systems with many servers.
For example, to analyze the behavior of E2,n, as n ↑ ∞, it is convenient to analyze first
E1,n, and then use 1.

Recall: Erlang B/C/A formulae, and much more, are implemented in 4CallCenters that
you have been using.
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