Service Engineering April 15, 1997
Last Revised December 15, 2003

REVIEW: MARKOV JUMP-PROCESS (MJP)

MJP X ={X;, t>0}onS={ij,...} countable.
Markov property: P{X: = j|X,, r <s; Xy =i} = Pj(s,t), Vs<t, Vi,jeS.
Time homogeneity: P {X 1+ = j|X; =i} = P;(t), Vs,t, i,j, transition probabilities.

Characterization: 7° = initial distribution and P(t) = [P;;(t)], t > 0, stochastic.
Finite-dimensional distributions:
PAXo =0, Xpy =1, -, Xp, = in} = 71(i0) Pigiy (t1) - - - iy i (b — tn1).

P(t) : stochastic ; P(s+t) = P(s)P(t), Vs,t (Chapman Kolmogorov);
3P(0) =1 ; 3P(0) = Q = [q;], infinitesimal generator (Zjes ¢ij = O) .

Micro to Macro @ P(t) = P(t)Q (= QP(t)) and P(0) = I

Forward (Backward) equations.

Solution : P(t) =exp[tQ] =X, & Q" , t > 0.

n=0 n!

Animation: i —% J; Vi,j €S 3 exponential clock at rate g;;, call it (¢, 7).
Given i, consider clocks (7,j), j € S; move to the “winner” when rings.

Thus: stay at i ~ exp(q; = >_,; ¢i;) and switch to j with probability Pj; = q;/q;
(@i = @iPij i # J5 @i = — )

Transient analysis vs. long-run/limit stability /steady-state
3 limyyo P (t) = 7, Vi T =mnP(t), Vt.

Calculation via steady-state equations: P(oo) = P(0)Q = { 0=7Q }

or balance equations: >, .; Tiqi; = =TG5 = > ;2 TiQji, ¥V J.

Transition rates: m;g;; = long-run average number of switches from ¢ to j.

Cuts: >icB ZjeBC TiGij — > ieBe ZjeB Tidij, VBCS.
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Ergodic Theorem: Let X be irreducible (i < j). Assume that there exists a solution 7
to its steady-state equations. Then, X must be “unexplosive” and 7 must be its stationary
distribution, its limit distribution and

SLLN efiny £ fi /(X0 = Somaf () (=B (X)) 5 e () = 1 (o).

Nl

olim
TToo

Nl=

Zg(Xt—7Xt) = ZT(ZZQZ].Q(Z?])a for g(l’,.ﬁlﬁ) = Oa V.Z', €.g. g(x>y) - 1C($7y)
i J

t<T

Birth & Death Model of a Service Station (Hall, §5.4)

on @ uol @A“@

Hn+1
Cuts at n—n + 1 yield: m,\, = mpa1ptni1, n > 0;
An AnAn—1 AOAL .- Ay
Tpn41 = —— Tp = Tp—1 = ""=—— To-
Hn+1 Hn+1Hn i - - fnyl

The required solution exists if and only if

S V.
— < 0.
n=0 M1 .- Pn41
The Ergodic Theorem then yields

H1---Hn

To = [Z A0 An

n>0 H1---Bn41

-1

Measures of Performance (MOP’s:

= number of customers at the service station;
number of customers in the queue;

sojourn time of a customer at the service station;
= waiting time of a customer in the queue;

==&
I

:Znﬂn—h%lo f/

n>0
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Let m(n) = number of active servers at state n, 0 < m(n) < n; the servers are
statistically identical.

E(Lg) =Y [n—m(n)m, = also long-run average, as above.
n>0

Service rate per server is u(n)/m(n), n > 1.

Average (actual) service rate: m) o — Elu(L)/m(L)].

m(n)
n>1

Potential service rate of cach server:  E[u(L)/m(L)|L > 0] = ZuE/mL)]

1—mgo

Inflow rate: A= Tnlnpi1 = P mpA(n) = EX(L).
n>0 n>0
T arrival

| departure
Outflow rate: 0= Z Tndnn—1 = Zﬂ-nu(n) = EN(L) (Assume #(O) = O)

n>0 n>0
Note: in steady state, m,\;, = Tpi1ftnt1, V n >0 = inflow rate = outflow rate.

Throughput rate: EXL)= Eu(L) (the common quantity).

A
Example. M/M/1 o @A@
-~
M

A=A 200w =pe s
p= % <1 assumed for steady state (traffic intensity).
T = (1= p)p", n>0. Geometric distribution!

Actual service rate = an p=pl—mp)=p-p=p- ﬁ = ), contrasted with

n>1
Potential service rate = ; _>‘7r =2 = | as anticipated.
0 p
.. s -~ _ 1 _ 1 P . . N
Additional properties: W ~ exp (mean Ty — {1 + l—pD , geometric mixture of exp’s.

Departure process is Poisson (A) (Burke’s Theorem).

Wy al wp Lo

1/p a exp (mean = 1%{)) wp p
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A

A
Example M/M/oco S @ @
~——

(n+1) p
Always stable.
T, =e P2 n >0, Poisson distribution!

n!

E (# busy servers) = A -

==

Very useful: oo-server models provide upper bound (e.g., Israel Electric Company).

Example M/M/S

i o= (GAS), A=A,

A
p = —<1 assumed, as before, to ensure stability.
S
k
a
T =gy 7o, k<S8,
s  k
= o P 05 k > Sa
s!
s—1 j s -1 )\
T = aﬁ + ‘ai , where a = — , offered load.
j=0 J: si(1—p) H

Note: “Wait | Wait > 07 is exponential, having the same distribution as that in an
M/M/1 queue with arrival rate A and service rate S - p.
Erlang-C Formula (1917):

a® 1

Eys = Zﬁk =5 1=, o, delay probability (PASTA).
k>s : —-p

Example M/M/S/S

AN=MN7=0,....5-1, pj=j-p forj=12...,95.

Always reaches steady state.

k /S
wk:z'/za k=0,1,...,5.

TR
j=0 J!
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Erlang-B Formula:

J
Eig=ms=— /> @ loss probability (PASTA).

Am, — rate of lost customers,
A1 — mg) — effective throughput.

Note: Useful relations between the Erlang-B and Erlang-C formulae are

(S — O/)EQ’S ) El,S

E ey _— e N
1,8 g _ CZEQ,S ) 2,S (1 — p) + pELS )

Ey,s > E)g, as expected: why?

The expression of EFy g in terms of F; g will become especially useful later on.

Example M/M/S/N (S <N)
A=, 0<j<N-1, (\y=0)
pj =G A, 1<j<N. (0 = 0)

Formulae straightforward but cumbersome (simply truncate M/M/S).

Always reaches steady state.

Note: Mainly M/M/S (Erlang-C) and sometimes M/M/S/S (Erlang-B) are the prevalent
models used in the world of call centers. However, M/M/S/N is more appropriate, and

even more so M/M/S/N + Abandonment: Erlang-A.

But the following question then arises: How to model Abandonment?
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Erlang’s Formulae
(Exact Results for M/M/m = Erlang-C, and M/M/m/m = Erlang-B)

R = offered load (:)\/,u:m-p; p:ﬂ)

m

R7YL

Erlang B: Eim = ﬁ Probability of blocking/loss

k=0 T

R™ 1

Erlang C: Eym = = mR'k 17pRm : Probability of delay

2h=0 W Tl T
Relations (Palm, 19437)
- Some observations on the Erlang formulae......... pg. 18
- Contributions to the Theory of Delay Systems ...... pg. 37

nEl n El n
1. E,, = ’ = ’ for <1
) (n—R)+REy,  (L=p)+pEin "
(r=1)
E2,n > El,n ; % EQ,n(”) = nEl,ln(”)

R(TL —1- R)Egm_l
(n — 1)(n - R) - RE27n_1

(Must have R < 1 to start with Es; = p)

for R<n-—1.

2. E2,n -

RELn—1 _ ,OEl,n—l
n+ REy 1 I+ pEi1na

3. El,n = 3 El,O = 1.

Recursions are useful for calculations.

For example, to calculate E,,, it is convenient to calculate recursively F,, via 3. and
then calculate Fj,, via 1.

They will also be useful for us in asymptotic analysis of systems with many servers.

For example, to analyze the behavior of Ey,, as n | oo, it is convenient to analyze first
E, ,,, and then use 1.

Recall: Erlang B/C/A formulae, and much more, are implemented in 4CallCenters that
you have been using.

21
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