

REVIEW: MARKOV JUMP-PROCESS (MJP)

MJP $X = \{X_t, t \geq 0\}$ on $\mathcal{S} = \{i, j, \dots\}$ countable.

Markov property: $P_r\{X_t = j | X_r, r < s; X_s = i\} = P_{ij}(s, t), \forall s < t, \forall i, j \in \mathcal{S}.$

Time homogeneity: $P_r\{X_{s+t} = j | X_s = i\} = P_{ij}(t), \forall s, t, i, j$, transition probabilities.

Characterization: π^0 = initial distribution and $P(t) = [P_{ij}(t)]$, $t \geq 0$, stochastic.

Finite-dimensional distributions:

$$P_r\{X_0 = i_0, X_{t_1} = i_1, \dots, X_{t_n} = i_n\} = \pi^0(i_0)P_{i_0, i_1}(t_1) \dots P_{i_{n-1}, i_n}(t_n - t_{n-1}).$$

$$P(t) : \text{stochastic} ; P(s+t) = P(s)P(t), \forall s, t \text{ (Chapman Kolmogorov)}; \\ \exists P(0) = I ; \exists \dot{P}(0) = Q = [q_{ij}], \text{ infinitesimal generator } \left(\sum_{j \in \mathcal{S}} q_{ij} = 0 \right).$$

Micro to Macro : $\dot{P}(t) = P(t)Q$ ($= QP(t)$) and $P(0) = I$
Forward (Backward) equations.

$$\text{Solution} : P(t) = \exp[tQ] = \sum_{n=0}^{\infty} \frac{t^n}{n!} Q^n, t \geq 0.$$

Animation: $i \xrightarrow{q_{ij}} j; \forall i, j \in \mathcal{S} \exists$ exponential clock at rate q_{ij} , call it (i, j) .

Given i , consider clocks (i, j) , $j \in \mathcal{S}$; move to the “winner” when rings.

Thus: stay at $i \sim \exp(q_i = \sum_{j \neq i} q_{ij})$ and switch to j with probability $P_{ij} = q_{ij}/q_i$
($q_{ij} = q_i P_{ij}, i \neq j; q_{ii} = -q_i$).

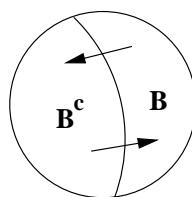
$$\text{Transient analysis} \quad \text{vs. long-run/limit} \quad \text{stability/steady-state} \\ \exists \lim_{t \uparrow \infty} P_{ij}(t) = \pi_j, \forall i; \quad \pi = \pi P(t), \forall t.$$

Calculation via **steady-state equations**: $\dot{P}(\infty) = P(\infty)Q \Rightarrow \left\{ \begin{array}{l} 0 = \pi Q \\ \sum_i \pi_i = 1, \pi_i \geq 0 \end{array} \right\}$

or balance equations: $\sum_{i \neq j} \pi_i q_{ij} = -\pi_j q_{jj} = \sum_{i \neq j} \pi_j q_{ji}, \forall j.$

Transition rates: $\pi_i q_{ij}$ = long-run average number of switches from i to j .

Cuts: $\sum_{i \in B} \sum_{j \in B^c} \pi_i q_{ij} = \sum_{i \in B^c} \sum_{j \in B} \pi_i q_{ij}, \forall B \subset \mathcal{S}.$

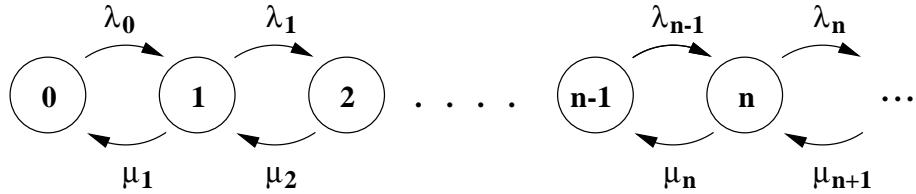


Ergodic Theorem: Let X be *irreducible* ($i \leftrightarrow j$). Assume that there exists a solution π to its steady-state equations. Then, X must be “unexplosive” and π must be its stationary distribution, its limit distribution and

$$\text{SLLN} \bullet \lim_{T \uparrow \infty} \frac{1}{T} \int_0^T f(X_t) dt = \sum_i \pi_i f(i) \text{ ("=") } Ef(X_\infty); \text{ eg. } f(x) = 1_B(x).$$

$$\bullet \lim_{T \uparrow \infty} \frac{1}{T} \sum_{t \leq T} g(X_{t-}, X_t) = \sum_i \pi_i \sum_j q_{ij} g(i, j), \text{ for } g(x, x) = 0, \forall x; \text{ e.g. } g(x, y) = 1_C(x, y).$$

Birth & Death Model of a Service Station (Hall, §5.4)



Cuts at $n \leftrightarrow n + 1$ yield: $\pi_n \lambda_n = \pi_{n+1} \mu_{n+1}$, $n \geq 0$;

$$\pi_{n+1} = \frac{\lambda_n}{\mu_{n+1}} \pi_n = \frac{\lambda_n \lambda_{n-1}}{\mu_{n+1} \mu_n} \pi_{n-1} = \dots = \frac{\lambda_0 \lambda_1 \dots \lambda_n}{\mu_1 \mu_2 \dots \mu_{n+1}} \pi_0.$$

The required solution exists if and only if

$$\sum_{n=0}^{\infty} \frac{\lambda_0 \dots \lambda_n}{\mu_1 \dots \mu_{n+1}} < \infty.$$

The Ergodic Theorem then yields

$$\begin{cases} \pi_n &= \frac{\lambda_0 \dots \lambda_{n-1}}{\mu_1 \dots \mu_n} \pi_0, \quad n \geq 0 \\ \pi_0 &= \left[\sum_{n \geq 0} \frac{\lambda_0 \dots \lambda_n}{\mu_1 \dots \mu_{n+1}} \right]^{-1} \end{cases}$$

Measures of Performance (MOP's), in steady-state:

L = number of customers at the service station (also denoted L_s);

L_q = number of customers in the queue;

W = sojourn time of a customer at the service station (also denoted W_s);

W_q = waiting time of a customer in the queue;

$$E(L) = \sum_{n \geq 0} n \pi_n = \lim_{T \uparrow \infty} \frac{1}{T} \int_0^T L(t) dt.$$

Let $m(n)$ = number of active servers at state n , $0 \leq m(n) \leq n$; the servers are **statistically identical**.

$$E(L_q) = \sum_{n \geq 0} [n - m(n)]\pi_n = \text{also long-run average, as above.}$$

Service rate per server is $\mu(n)/m(n)$, $n \geq 1$.

Average (actual) service rate: $\sum_{n \geq 1} \frac{\mu(n)}{m(n)} \pi_n = E[\mu(L)/m(L)].$

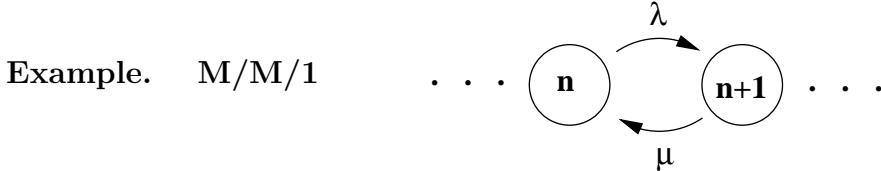
Potential service rate of each server: $E[\mu(L)/m(L)|L > 0] = \frac{E[\mu(L)/m(L)]}{1 - \pi_0}.$

Inflow rate: $\lambda = \sum_{n \geq 0} \pi_n q_{n,n+1} = \sum_{n \geq 0} \pi_n \lambda(n) = E\lambda(L).$
 $\uparrow \text{arrival}$

Outflow rate: $\delta = \sum_{n \geq 0} \pi_n q_{n,n-1} = \sum_{n \geq 0} \pi_n \mu(n) = E\mu(L).$ (Assume $\mu(0) = 0$.)
 $\downarrow \text{departure}$

Note: in steady state, $\pi_n \lambda_n = \pi_{n+1} \mu_{n+1}$, $\forall n \geq 0 \Rightarrow$ inflow rate = outflow rate.

Throughput rate: $E\lambda(L) = E\mu(L)$ (the common quantity).



$$\lambda_j = \lambda, j \geq 0; \quad \mu_j = \mu \cdot 1_{j \geq 1}.$$

$$\rho = \frac{\lambda}{\mu} < 1 \quad \text{assumed for steady state (traffic intensity).}$$

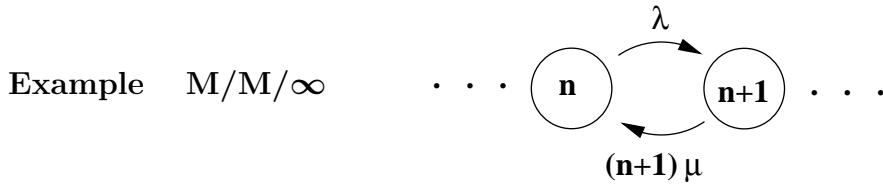
$$\pi_n = (1 - \rho)\rho^n, \quad n \geq 0. \quad \text{Geometric distribution!}$$

$$\text{Actual service rate} = \sum_{n \geq 1} \pi_n \cdot \mu = \mu(1 - \pi_0) = \mu \cdot \rho = \mu \cdot \frac{\lambda}{\mu} = \lambda, \text{ contrasted with}$$

$$\text{Potential service rate} = \frac{\lambda}{1 - \pi_0} = \frac{\lambda}{\rho} = \mu, \text{ as anticipated.}$$

Additional properties: $W \sim \exp \left(\text{mean} = \frac{1}{\mu(1-\rho)} = \frac{1}{\mu} \left[1 + \frac{\rho}{1-\rho} \right] \right)$, geometric mixture of exp's.
 Departure process is Poisson (λ) (Burke's Theorem).

$$\frac{W_q}{1/\mu} \stackrel{d}{=} \begin{cases} 0 & \text{wp } 1 - \rho \\ \exp \left(\text{mean} = \frac{1}{1-\rho} \right) & \text{wp } \rho \end{cases}$$



Always stable.

$$\pi_n = e^{-\rho} \frac{\rho^n}{n!}, \quad n \geq 0, \quad \text{Poisson distribution!}$$

$$E(\# \text{ busy servers}) = \lambda \cdot \frac{1}{\mu} = \frac{\lambda}{\mu} = \rho.$$

Very useful: ∞ -server models provide upper bound (e.g., Israel Electric Company).

Example M/M/S

$$\mu_j = (j \wedge s)\mu, \quad \lambda_j \equiv \lambda,$$

$$\rho = \frac{\lambda}{s\mu} < 1 \quad \text{assumed, as before, to ensure stability.}$$

$$\begin{aligned} \pi_k &= \frac{a^k}{k!} \pi_0, \quad k \leq S, \\ &= \frac{s^s \rho^k}{s!} \pi_0, \quad k \geq S, \\ \pi_0 &= \left[\sum_{j=0}^{s-1} \frac{a^j}{j!} + \frac{a^s}{s!(1-\rho)} \right]^{-1}, \quad \text{where } a = \frac{\lambda}{\mu}, \text{ offered load.} \end{aligned}$$

Note: “Wait | Wait > 0” is exponential, having the same distribution as that in an M/M/1 queue with arrival rate λ and service rate $S \cdot \mu$.

Erlang-C Formula (1917):

$$E_{2,S} = \sum_{k \geq s} \pi_k = \frac{a^S}{S!} \frac{1}{1-\rho} \cdot \pi_0, \quad \text{delay probability (PASTA).}$$

Example M/M/S/S

$$\lambda_j \equiv \lambda, \quad j = 0, \dots, S-1, \quad \mu_j = j \cdot \mu \quad \text{for } j = 1, 2, \dots, S.$$

Always reaches steady state.

$$\pi_k = \frac{a^k}{k!} \left/ \sum_{j=0}^S \frac{a^j}{j!} \right., \quad k = 0, 1, \dots, S.$$

Erlang-B Formula:

$$E_{1,S} = \pi_S = \frac{a^s}{s!} \left/ \sum_{j=0}^s \frac{a^j}{j!} \right. , \quad \text{loss probability (PASTA).}$$

$\lambda\pi_s$ – rate of lost customers,
 $\lambda(1 - \pi_s)$ – effective throughput.

Note: Useful relations between the Erlang-B and Erlang-C formulae are

$$E_{1,S} = \frac{(S-a)E_{2,S}}{S-aE_{2,S}} ; \quad E_{2,S} = \frac{E_{1,S}}{(1-\rho) + \rho E_{1,S}} ;$$

$E_{2,S} > E_{1,S}$, as expected: why?

The expression of $E_{2,S}$ in terms of $E_{1,S}$ will become especially useful later on.

Example **M/M/S/N** $(S \leq N)$

$$\lambda_j = \lambda, \quad 0 \leq j \leq N-1, \quad (\lambda_N = 0)$$

$$\mu_j = (j \wedge S)\mu, \quad 1 \leq j \leq N. \quad (\mu_0 = 0)$$

Formulae straightforward but cumbersome (simply truncate M/M/S).

Always reaches steady state.

Note: Mainly M/M/S (Erlang-C) and sometimes M/M/S/S (Erlang-B) are the prevalent models used in the world of call centers. However, M/M/S/N is more appropriate, and even more so M/M/S/N + Abandonment: Erlang-A.

But the following question then arises: How to model Abandonment?

Erlang's Formulae

(Exact Results for M/M/m = Erlang-C, and M/M/m/m = Erlang-B)

$$R = \text{offered load } (= \lambda/\mu = m \cdot \rho ; \rho = \frac{R}{m})$$

Erlang B: $E_{1,m} = \frac{\frac{R^m}{m!}}{\sum_{k=0}^m \frac{R^k}{k!}}$ Probability of *blocking/loss*

Erlang C: $E_{2,m} = \frac{\frac{R^m}{m!} \frac{1}{1-\rho}}{\sum_{k=0}^{m-1} \frac{R^k}{k!} + \frac{R^m}{m!} \frac{1}{1-\rho}}$ Probability of *delay*

Relations (Palm, 1943?)

- Some observations on the Erlang formulae. pg. 18
- Contributions to the Theory of Delay Systems pg. 37

$$1. \quad E_{2,n} = \frac{nE_{1,n}}{(n-R) + RE_{1,n}} = \frac{E_{1,n}}{(1-\rho) + \rho E_{1,n}} \quad \text{for } \begin{cases} \rho < 1 \\ (\rho = \frac{R}{n}) \end{cases}$$

$$E_{2,n} > E_{1,n} ; \quad \frac{d}{dR} E_{2,n}(n) = \frac{1}{nE_{1,n}(n)}$$

$$2. \quad E_{2,n} = \frac{R(n-1-R)E_{2,n-1}}{(n-1)(n-R) - RE_{2,n-1}} \quad \text{for } R < n-1.$$

(Must have $R < 1$ to start with $E_{2,1} = \rho$)

$$3. \quad E_{1,n} = \frac{RE_{1,n-1}}{n + RE_{1,n-1}} = \frac{\rho E_{1,n-1}}{1 + \rho E_{1,n-1}} ; \quad E_{1,0} = 1.$$

Recursions are useful for calculations.

For example, to calculate $E_{2,n}$, it is convenient to calculate recursively $E_{1,n}$ via 3. and then calculate $E_{2,n}$ via 1.

They will also be useful for us in asymptotic analysis of systems with many servers.

For example, to analyze the behavior of $E_{2,n}$, as $n \uparrow \infty$, it is convenient to analyze first $E_{1,n}$, and then use 1.

Recall: Erlang B/C/A formulae, and much more, are implemented in 4CallCenters that you have been using.