
Service Engineering

Class 9

Stochastic Markovian Service Station in Steady State

- Part I: Classical Queueing Birth & Death Models

• Service Engineering: Starting to Close the Circle.

• Workforce Management (WFM): Hierarchical Operational View.

• 4CallCenters – A Personal Tool for Workforce Management.

• Markov Jump Processes (MJP): Ergodicity; The Method of

Cuts; Reversibility.

• The M/M/1 Queue.

• Infinite-Server Queues (M/M/∞).

• The Erlang-C (M/M/n) model.

• Pooling.

• Queueing Models with Blocking.

1

Service Engineering: A Subjective View

Goal (Subjective):

Develop scientifically-based design principles (rules-of-thumb)

and tools (software) that support the balance of service quality,

process efficiency and business profitability, from the (often

conflicting) views of customers, servers and managers.

Contrast/Complement the traditional and prevalent

• Service Management (U.S. Business Schools)

• Industrial Engineering (European/Japanese Engineering Schools)

Examples:

• Staffing - How many agents required for balancing service-

quality with operational efficiency (or, for maximizing profit).

• Skills-Based Routing (SBR) - Platinum and Gold and

Silver customers, all seeking Information or Purchase or Tech-

nical Support, via Telephone or IVR or e.mail of Chat.

• Service Process Design + Staffing + SBR.

Recipe for Progress in Research, Teaching, Applications:

Simple Models at the Service of Complex Realities, with a pinch

of a Multidisciplinary View (Operations, HRM, Marketing, MIS)

= Service Engineering.

2

Workforce Management (WFM):
Hierarchical Operational View

 74

 Workforce Management:
 Hierarchical Operational View

Forecasting Customers: Statistics, Time-Series

 Agents : HRM (Hire, Train; Incentives, Careers)

Staffing: Queueing Theory

 Service Level, Costs

 # FTE’s (Seats)
 per unit of time

Shifts: IP, Combinatorial Optimization; LP

 Union constraints, Costs

 Shift structure

Rostering: Heuristics, AI (Complex)

 Individual constraints

 Agents Assignments

Skills-based Routing: Stochastic Control

3

Software Tool: 4CallCenters (4CC)

- Mathematical Engine: Technion M.Sc. thesis of Ofer Garnett.

- Used in Germany, India, Brazil, ..., Israel.

- Important tool in our course.

- Free download from

http://iew3.technion.ac.il/serveng/4CallCenters/Downloads.htm

4

Example of 4CC Output: Congestion Curves

% Abandon vs. Calls/Hour for various Number of Agents

(E[Service] = 3:30 min, E[(Im)Patience] = 6:00 min.)%Abandon vs. Calls per Interval for various Number of Agents

.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

40 60 80 100 120 140 160 180 200 220

Calls per Interval

%
A

ba
nd

on

4
5
6
7
8
9
10
11
12
13
14
15
16

45

Pooling Queues at a NYC Supermarket

A Long Line for a Shorter Wait at the Supermarket

Sam Baris directing customers at Whole Foods in Columbus Circle, where the long line moves quickly.

By MICHAEL BARBARO
Published: June 23, 2007

Show New Yorkers a checkout line and they’ll tell you whether it’s

worth the wait.

Starbucks at 9 a.m.? Eight minutes,

head to the next one down the street.

Duane Reade at 6 p.m.? Twelve

minutes, come back in the morning.

But now a relative newcomer to Manhattan is trying to

teach the locals a new rule of living: the longer the line, the

shorter the wait.

Come again?

For its first stores here, Whole Foods, the gourmet supermarket, directs customers to form

serpentine single lines that feed into a passel of cash registers.

Banks have used a similar system for decades. But supermarkets, fearing a long line will

scare off shoppers, have generally favored the one-line-per-register system.

By 7 p.m. on a weeknight, the lines at each of the four Whole Foods stores in Manhattan

can be 50 deep, but they zip along faster than most lines with 10 shoppers.

Robert Caplin for The New York Times

SIGN IN TO E-MAIL
OR SAVE THIS

PRINT

REPRINTS

SHARE

Readers’ Opinions

Share Your Thoughts

What are some of your recent
checkout experiences?

Multimedia

Post a Comment

Page 1 of 4A Long Line for a Shorter Wait at the Supermarket - New York Times

23/06/2007http://www.nytimes.com/2007/06/23/business/23checkout.html?_r=1&th&emc=th&o...

6

Markov Jump Processes: Brief Review

Characterization: i, j ∈ S;

π0 = (π0
i) - initial distribution, Q = [qij] - generator matrix.

Steady-state equations:





0 = πQ
∑
i πi = 1, πi ≥ 0





Ergodic Theorem: Let X be irreducible (i ↔ j). Assume

that there exists a solution π to its steady-state equations. Then

π is its (unique) stationary and limit-distribution.

Transition rates: πiqij = long-run (steady-state) transition-

rate (number of transitions per unit of time) from i to j.

Balance equations: For each state j ∈ S, its long-run (steady-

state) entry-rate equals its exit-rate. Formally,

∑

i 6=j
πiqij = −πjqjj =

∑

i 6=j
πjqji, ∀ j.

Cuts: ∀B ⊂ S, the long-run (steady-state) transition rate from

B to Bc equals that from Bc to B. Formally,

∑
i∈B

∑
j∈Bc πiqij =

∑
i∈Bc

∑
j∈B πiqij.

B
Bc

7

Markov Jump Processes:
Time-Reversibility, Birth & Death.

Reversibility: A stochastic process X = {Xt, −∞ < t <∞}
is called reversible if for any r

{Xt, 0 ≤ t ≤ r} d= {Xr−t, 0 ≤ t ≤ r} .

Fact. Ergodic MJP in steady-state is reversible if and only if the

detailed-balance equations hold:

πiqij = πjqji , ∀ i, j ∈ S .

Birth & Death process: MJP on S = {0, 1, 2, . . .}, with

jumps only between adjacent states: qij = 0 if |i− j| > 1.

10 2 i+1
µi+1

ii-1
λi-1λ0 λ1 λi

µ2µ1 µi

Cuts: πiλi = πi+1µi+1 (πiqi,i+1 = πi+1qi+1,i).

(Take B = {0, 1, . . . , i} and Bc = {i + 1, i + 2, . . .}.)

Corollary. Every ergodic Birth & Death process is reversible.

(Follows from the cut-equations.)

8

Service Station: Birth & Death Animation

10 2 i+1
µi+1

ii-1
λi-1λ0 λ1 λi

µ2µ1 µi

• i – number-in-system;

• λi – arrival rate, with i customers in system;

• µi – service rate, with i customers in system.

Cuts at i↔ i + 1: πiλi = πi+1µi+1, i ≥ 0,

which yields

πi+1 =
λi
µi+1

πi =
λiλi−1

µi+1µi
πi−1 = · · · = λ0λ1 . . . λi

µ1µ2 . . . µi+1
π0 .

Stability: Steady-state (Limit) distribution exists if and only if

∞∑

i=0

λ0 . . . λi
µ1 . . . µi+1

<∞ ,

in which case it is given by




πi = λ0...λi−1
µ1...µi

π0 , i ≥ 0,

π0 =
[
∑
i≥0

λ0...λi
µ1...µi+1

]−1

9

Classical Markovian Queues

Assumptions (from now on):

• n statistically identical independent (iid) servers;

• FCFS discipline – First Come First Served;

• Work conservation: a server does not go idle if there are

customers in need of service;

• Arriving customers all join and remain till end of service (do

not abandon).

Queueing Notations: Ga/Gs/n/K, where

• Ga: General Arrivals (M for Poisson arrivals),

• Gs: General Services (M for Exponential service times),

• n = number of servers,

• K = maximal number in system.

Next: M/M/1,M/M/∞,M/M/n,M/M/n/k,M/M/n/n.

10

Measures of Performance
(Steady-State, Long-Run)

• λ =
∑
i≥0 πiλi - arrival rate = service rate - µ =

∑
i≥1 πiµi

• L - number of customers in system (sometimes Ls);

• Lq - number of customers in queue;

• W - sojourn time through the system (Ws);

• Wq - waiting time in the queue.

In steady state (in the long run),

E[L] =
∑

k≥0
k · πk = lim

T→∞
1

T
·
∫ T
0
L(t)dt .

E[Lq] =
∞∑

k=n+1
(k − n) · πk .

Little’s formula yields average times:

E[L] = λ · E[W]; E[Lq] = λ · E[Wq] .

Average service time, E[S], must satisfy:

E[W] = E[Wq] + E[S] .

11

Review: MJP 1

MJP X = {Xt, t ≥ 0} on S = {i, j, . . .} countable.
Markov property: Pr{Xt = j|Xr, r < s; Xs = i} = Pij(s, t), ∀ s < t, ∀ i, j ∈ S.
Time homogeneity: Pr{Xs+t = j|Xs = i} = Pij(t), ∀ s, t, i, j, transition probabilities.

Characterization: π0 = initial distribution and P (t) = [Pij(t)], t ≥ 0, stochastic.
Finite-dimensional distributions:
Pr{X0 = i0, Xt1 = i1, . . . , Xtn = in} = π0(i0)Pi0,i1(t1) . . . Pin−1,in(tn − tn−1).

P (t) : stochastic ; P (s+ t) = P (s)P (t), ∀ s, t (Chapman Kolmogorov);

∃P (0) = I ; ∃ Ṗ (0) = Q = [qij], infinitesimal generator
(∑

j∈S qij = 0
)
.

Micro to Macro : Ṗ (t) = P (t)Q (= QP (t)) and P (0) = I
Forward (Backward) equations.

Solution : P (t) = exp[tQ] =
∑∞
n=0

tn

n!
Qn , t ≥ 0.

Animation: i
qij−→ j; ∀ i, j ∈ S ∃ exponential clock at rate qij, call it (i, j).

Given i, consider clocks (i, j), j ∈ S; move to the “winner” when rings.
Thus: stay at i ∼ exp(qi =

∑
j 6=i qij) and switch to j with probability Pij = qij/qi

(qij = qiPij, i 6= j; qii = −qi).

Transient analysis vs. long-run/limit stability/steady-state
∃ limt↑∞ Pij(t) = πj, ∀ i; π = πP (t), ∀ t.

Calculation via steady-state equations: Ṗ (∞) = P (∞)Q⇒
{

0 = πQ∑
i πi = 1, πi ≥ 0

}

or balance equations:
∑
i 6=j πiqij = −πjqjj =

∑
i 6=j πjqji, ∀ j.

Transition rates: πiqij = long-run average number of switches from i to j.

Cuts:
∑
i∈B

∑
j∈Bc πiqij =

∑
i∈Bc

∑
j∈B πiqij, ∀B ⊂ S.

B
Bc

12

Review: MJP 2

Ergodic Theorem: Let X be irreducible (i↔ j). Assume that there exists a solution π
to its steady-state equations. Then, X must be “unexplosive” and π must be its stationary
distribution, its limit distribution and

SLLN • lim
T↑∞

1
T

∫ T
0 f(Xt)dt =

∑

i

πif(i) (“=”Ef(X∞)) ; eg. f(x) = 1B(x).

• lim
T↑∞

1
T

∑

t≤T
g(Xt−, Xt) =

∑

i

πi
∑

j

qijg(i, j), for g(x, x) = 0, ∀x; e.g. g(x, y) = 1C(x, y).

Birth-and-death process: MJP on S = {0, 1, 2, . . .}, where all jumps are between
adjacent states: qij = 0 if |i− j| > 1.

Cuts: πiqi,i+1 = πi+1qi+1,i.
(Take B = {0, 1, . . . , i} and Bc = {i+ 1, i+ 2, . . .}.)

Reversibility: A stochastic process X = {Xt, −∞ < t < ∞} is called reversible if for
any τ

{Xt, −∞ < t <∞} d
= {Xτ−t, −∞ < t <∞} .

Fact. Ergodic MJP in steady-state is reversible if and only if the detailed balance equations
hold:

πiqij = πjqji , ∀ i, j ∈ S .

Corollary. Every ergodic birth-and-death process is reversible.

(Follows from the cut equations.)

13

The M/M/1 Queue

• Poisson arrivals, at rate λ;

• Single exponential server, at rate µ (E[S] = 1/µ).

i+1
λ

µ
10 2 ii-1

λ λλ

µ µ µ

Transition rates: λi ≡ λ, i ≥ 0; µi ≡ µ, i ≥ 1.

Cut equations: λπi = µπi+1 , i ≥ 0 .

Traffic intensity ρ = λ
µ < 1 (iff stability).

Steady-state distribution:

L d= Geometric(p = 1− ρ) (from 0):

πi = (1− ρ)ρi, i ≥ 0.

Hence, can calculate:

E[L] = ρ/(1− ρ), then E[W], then E[Wq], finally E[Lq].

Insightful calculations:

Effective (actual) service rate =
∑

n≥1
πn · µ = µ(1− π0) = µ · ρ = µ · λµ = λ.

Contrast with

Service Capacity (potential service rate) = µ.

14

M/M/1: Sojourn Time

Sojourn time is exponentially distributed:

W d= exp


mean =

1

µ(1− ρ)
=

1

µ


1 +

ρ

1− ρ





 .

Proof: By PASTA and the memoryless-properly of Exponentials,

W d=
N∑

i=1
Xi , Xi ∼ exp(µ) i.i.d. ,

N ∆= L + 1 d= Geom(1− ρ) (from 1);

N and {Xi} are all independent.

Conclude by recalling: Geometric sum of iid Exponentials is

Exponentially distributed. (The parameter is calculated via Wald.)

Aside: The latter property is essentially Poisson-Splitting. A self-

contained proof can be give via Moment generating functions:

φW (t) ∆= E [exp{tW}] = E


exp{t ·

N∑

i=1
Xi}




= E


E


exp{t ·

N∑

i=1
Xi}

∣∣∣∣∣∣N






(Xi independent with E [exp{tXi}] = µ
µ−t)

= E







µ

µ− t



N

 =

∞∑

k=1
(1− ρ)ρk−1




µ

µ− t



k

=
µ(1− ρ)

µ− t ·
∞∑

k=0



µρ

µ− t



k

=
µ(1− ρ)

µ(1− ρ)− t
= φexp(µ(1−ρ))(t) .

15

M/M/1: Further Properties

• Delay probability (PASTA):

P{Wq > 0} = ρ .

• Waiting time in queue (given delay, it is exp):

Wq

1/µ
d=





0 wp 1− ρ
exp

(
mean = 1

1−ρ
)

wp ρ

Note: E[
Wq

1/µ] = 0× (1− ρ) + 1
1−ρ × ρ = ρ

1−ρ.

• Number-in-system/queue:

E[L] =
ρ

1− ρ ; E[Lq] =
ρ2

1− ρ .

• Server’s utilization (occupancy) is ρ = λ/µ.

Via Little’s formula, applied to “system = server”:

ρ = lim
T→∞

1

T

∫ T
0
LServer(u) du = λ× 1

µ
.

• Departure process in steady state is Poisson (λ) (Burke’s

theorem) – useful in queueing networks.

Support: Reversibility implies that the departure process equals

(in distribution) the arrival process. Furthermore,

Average inter-departure time =

1

µ
· ρ +




1

λ
+

1

µ


 · (1− ρ) =

1

λ
.

16

M/M/1 Queue: 4CallCenters

Average Waiting Times =

E[S], for ρ = 50%; 4 · E[S], for ρ = 80%;

9 · E[S], for ρ = 90%; . . ., 19 · E[S], for ρ = 95% (via model).

4CallCenters, performance measures:

• Average Speed of Answer (ASA) = E[Wq]

(will be very different with abandonment);

• % Answer within Target = P{Wq ≤ T};
(T = 0 important, as we’ll learn later, but hardly used.)

• Average Queue Length = E[Lq].

17

M/M/∞ Queue (Ample Servers)

• Poisson arrivals, rate λ;

• Infinite number of exponential servers, rate µ (E(S) = 1/µ).

10 2 i+1
(i+1)µ
ii-1

λ λ λλ

µ 2µ iµ

λi ≡ λ, i ≥ 0; µi = i · µ, i ≥ 1.

Cut equations:

λ · πi = (i + 1)µ · πi+1 , i ≥ 0 .

Always stable.

Steady-state distribution is Poisson:

πi = e−R · R
i

i!
, i ≥ 0 ;

R =
λ

µ
is the offered load, (measured in units of Erlangs)

= Average amount of work-units (time-units of service) that arrives

to the system per time-unit

= Average number of customers in steady-state (via Little’s Law).

Offered-Load Extension to a time-varying environment:

Consider Mt/M/∞ (time-inhomogeneous Poisson arrivals, at rate

λ(t), t ≥ 0):

R(t) = E
∫ t
t−S λ(u) du = Eλ(t− S) , t ≥ 0 .

18

M/M/∞ Queue: Continued

Very useful: ∞-server models provide bounds (ideal):

Recall, DS-PERT’s with Infinite-Servers.

Later, queues with abandonment.

Average number-in-system in steady-state

(via Little’s formula):

E[L] = E(# Busy Servers) = λ× 1

µ
= R .

All the steady-state results are valid, as is, also for M/G/∞ –

generally distributed service times.

(Insensitivity of performance to the service-time distribution.)

Time-Varying Arrivals: The observation R = E[L] paves the

way to the definition of offered-load in a time-varying environ-

ment: In Mt/G/∞, with a time-inhomogeneous Poisson arrival

process at rate {λ(t), t ≥ 0}), the average number-in-system at

time t is:

R(t) = E
∫ t
t−S λ(u) du = Eλ(t− Se) , t ≥ 0 .

Here S denotes a service-time and Se a residual service-time (as

in biased-sampling).

In the special case of S exponential, Se has the same exponential

distribution as S, due to the memoryless property.

19

The Erlang-C (M/M/n) Queue

• Poisson arrivals, rate λ;

• n exponential servers, each at rate µ.

Widely used in call centers - the workhorse of WFM.

5

Erlang-C

arrivals queue
ACD

agents

Erlang-B

arrivals

agents

Lost Calls

Transition-rate diagram:

n+1 n+2
λ λ

nµ nµ
10 2 nn-1

nµ

λ λλ

µ 2µ

λj ≡ λ, j ≥ 0,

µj = (j ∧ n)µ, j ≥ 1.

Agents’ utilization

ρ =
λ

nµ
.

Assume ρ < 1 (R < n) to ensure stability (in analogy to M/M/1).

20

Example of Instability, via 4CallCenters

Steady-state distribution:

πi =
Ri

i!
π0, i ≤ n,

=
nnρi

n!
π0, i ≥ n,

π0 =



n−1∑

j=0

Rj

j!
+

Rn

n!(1− ρ)




−1

,

where R = λ/µ is the offered load.

21

M/M/n Queue: Properties

Erlang-C Formula (1917) for the Delay probability:

P{Wq > 0} ∆= E2,n =
∑

i≥n
πi =

Rn

n!

1

1− ρ · π0 .

Erlang-C computation: via recursion, see Erlang-B below.

Erlang-C approximations: important later in course.

Number-in-queue:

P{Lq = i} = E2,n · (1− ρ)ρi , i > 0,

or

Lq =





0 wp 1− E2,n

Geom≥0(1− ρ) wp E2,n

Waiting time distribution:

Wq

1/µ
=





0 wp 1− E2,n

Exp
(
mean = 1

n · 1
1−ρ

)
wp E2,n

Compare with M/M/1!

Departure process: Poisson(λ) in steady-state.

Proof via reversibility, as with M/M/1.

22

M/M/n Queue:
Waiting-Time Distribution

In analogy to M/M/1,

1

E[S]
·Wq|Wq > 0 d= exp(n(1− ρ)) ,

P





1

E[S]
·Wq > t|Wq > 0



 = e−n(1−ρ)t .

Formally:

P{Wq > t} =
∞∑

k=1
P{Lq = k − 1} · P{Ek > t}

(where Ek
d= Erlang(k, nµ))

= E2,n ·
∞∑

k=1


(1− ρ)ρk−1 ·

∫ ∞
t

nµ(nµx)k−1

(k − 1)!
e−nµxdx




= E2,n · nµ(1− ρ) ·
∫ ∞
t


e−nµx

∞∑

k=1

(nµρx)k−1

(k − 1)!


 dx

= E2,n · nµ(1− ρ) ·
∫ ∞
t
e−nµ(1−ρ)xdx

= E2,n · e−nµ(1−ρ)t .

23

Pooling: Economies of Scale

Example: Kleinrock, L. Vol.II, Chapter 5 (1976)

Kleinrock, L. Vol. II, Chapter 5 (1976) (Pelephone’s Call Center)

Resource Sharing

m

(a)

C m

C m

m

m

(b)

m

C m

C m

(c)

 C

m

(d)
C

 C

(e)

m
 m

C

 C

(f)

mC

m

Simplest is Best! Do not model complicated undesirable scenarios!

m×M/M/1
scale-up−→ M/M/m

technology−→ M/M/1
λ, µ mλ, µ mλ, mµ

Combine: queues servers
Saved inefficiency idleness lost capacity

(1 long queue, 2 idle) (rate mµ at all times)

Remark EWq

(
m,λ, µ

m

)
≤ EWq(1, λ, µ)

while EWs

(
m,λ, µ

m

)
≥ EWs(1, λ, µ)

↑
individual server’s capacity

(Explain, via Pm(Wait > 0), noting Wq | Wq > 0.)

Summary (pg. 287)

Large systems (scaling up input rate and system capacity) yield improvements
(in average response-time) that are proportional to the scaling factor.

For a given scale factor, the single-server (fast) system is superior to the
multiple-server (slow) system, as far as total time a system in concerned.
The opposite is true, however, when restricting to only waiting time. (See
Homework).

27

4CallCenters output

24

Pooling M/M/1 to M/M/n

Pooling Queues (one vs. many) and Servers (slow vs. fast)

Erlang-C

3

| |1M M

,n nλ μ

2

| |M M n

,nλ μ

1

| |1×n M M

,λ μ

Single queue

Single server

Single queue

Multiple Servers

Multiple queues

Multiple Servers

Slow vs. fast server Separate vs. single queue Tradeoff

Technology Process design Enabler

Maximal capacity t∀

n≤ μ vs. nμ

Load balancing t∀

(avoid a long queue & idle servers)
Gain

()
()
n
n
λ

ρ
μ

=
()
()
n
n
λ

ρ
μ
=

λ ρ
μ
= Utilization

ρ

2, ()nE ρ

ρ
 { 0}>qP W

1 1
1nμ ρ
⋅
−

1 1

1nμ ρ
⋅
−

1 1

1μ ρ
⋅
−

 | 0⎡ ⎤>⎣ ⎦q qE W W

1
(1)n
ρ

μ ρ
⋅

−

2,1
(1)

nE
nμ ρ
⋅

−

1
1
ρ

μ ρ
⋅
−

[]| 0 { 0}> ⋅ >

⎡ ⎤ =⎣ ⎦

q q q

q

E W W P W

E W

1
nμ

1
μ

1
μ

 []E S

1 1
1nμ ρ
⋅
−

2,1 1

(1)
nE

nμ ρ
⎡ ⎤
⋅ +⎢ ⎥−⎣ ⎦

1 1

1μ ρ
⋅
−

[] []

⎡ ⎤ =⎣ ⎦
= +

sys

q

E W

E W E S

nλ
1 nμnλ

μ1

n μ

. . .

λ

λ

1

n

. . .

μ

μ

2

1

4

5

2

3

6

=

> =

25

Basic Relations:

2,2, ()1
1

Intuition ?1
nn EE

n
⇒ ≤− ⎛ ⎞

≤ ≤ ⎜ ⎟− ⎝ ⎠

ρ ρ
ρ

Proof:

2,

1
1

1 ()

{ } (1)
{ }

{ } 1
. . .

n

n
n

i
i

E P

P i n
P i

P i
q e d

=
=

− = =

⎧
≤ = −⎛ ⎞ ⎪= ⎨⎜ ⎟

⎝ ⎠ ⎪≥ = −⎩

∑∪ ρ

ρ

at least oneserver idle

server idle
server idle

server idle

Corollary: 2, 2,1 1 n nE Eρ ρ− ≤ − ⇒ ≤ ⇒

Corollary: 2,
2,

11 (1) 1
(1) (1)

n
n

E
E n

n n
ρ

ρ ρ
− ≤ − ⇒ ≤ + ⇒

− −

 (, ,) (1, ,) (, ,) (1, ,)

Multiple-slow Single-fast Multiple-slow Single-fast
q q sys sysEW n n EW n n EW n n EW n nλ μ λ μ λ μ λ μ≤ ≥

≤ ≥

8 8

Intuition: 2, ()nE ≤ρ ρ

 vs.

 2, ()nE ρ ≤ ρ

 since have an earlier commitment

2 3 6

nλ
μ 1

n μ

. . .

λ

λ

1

n

. . .

μ

μ
nλ

random

6

2 3

26

Pooling M/M/1 to M/M/n: Conclusions

1 → 2 : Pooling yields E[Wq] decrease by more than factor n;

1 → 3 : Fast server yields E[W] and E[Wq] decrease by factor n;

2 → 3 : Fast server better for E[W];

Pooling better for E[Wq].

27

M/M/n/K Queue

• Poisson arrivals, rate λ;

• n exponential servers, rate µ;

• K trunks (K ≥ n);

• If all trunks busy, arriving customer blocked (busy signal).

10 K
nµ

K-1n+1
λ λ

nµ

λ λ
n-1 n

µ nµ

λj = λ, 0 ≤ j ≤ K − 1,

µj = (j ∧ n)µ, 1 ≤ j ≤ K.

Formulae straightforward but cumbersome

(simply truncate M/M/n).

Always reaches steady state.

28

M/M/n/K Queue: 4CallCenters

Use Change Settings =⇒ Features =⇒ Trunks.

Note new indicators:

Average Trunks Utilized and %Blocked.

4CallCenters: Advanced Profiling

Arrival rate varied from 900 to 1017 per hour,

in step 9.

Excel interface: graphs and spreadsheets.

29

M/M/n/K vs. Erlang-C

Average service time = 6 min, 100 agents, 150 trunks.

0

50

100

150

200

250

300

350

400

900 920 940 960 980 1000

Calls per Interval

A
ve

ra
ge

 S
pe

ed
 o

f A
ns

w
er

 (s
ec

s)

M/M/100/150 M/M/100

Similar performance for light loads.

Erlang-C “explodes” as ρ =
λ

nµ
↑ 1.

30

The Erlang-B (M/M/n/n) Queue

10 2 nn-1
nµ

λ λλ

µ 2µ

λi ≡ λ, 0 ≤ i ≤ n− 1 ,

µi = i · µ, 1 ≤ i ≤ n .

Steady-State:

πi =
Ri

i!
/

n∑

j=0

Rj

j!
, 0 ≤ i ≤ n.

Note: The above applies to M/G/n/n - again, insensitivity.

31

M/M/n/K vs. Erlang-B

Average service time = 6 min, 100 agentsl

0%

5%

10%

15%

20%

25%

30%

35%

40%

900 1000 1100 1200 1300 1400

Calls per Interval

%
B

lo
ck

M/M/100/150 M/M/100/100

Moderate load: additional trunks prevent blocking.

Heavy load: % blocking ≈ 1− 1/ρ (“fluid limit”).

32

Erlang-B Formula (1917)

Loss probability:

E1,n
∆= πn =

Rn

n!

/ n∑

j=0

Rj

j!
.

Follows from PASTA.

Recall: Erlang-B valid for M/G/n/n (General services.)

λπn – rate of lost customers,

λ(1− πn) – effective throughput.

Erlang-B Computation via recursion:

E1,n =
RE1,n−1

n + RE1,n−1
=

ρE1,n−1

1 + ρE1,n−1
E1,0 = 1 .

Erlang-B Computation:

E1,n =
(n−R)E2,n

n−RE2,n
; E2,n =

E1,n

(1− ρ) + ρE1,n
;

E2,n > E1,n, as expected: why?

33

Telephone Call Center

arrivals

lost calls

retrials

retrials

abandonment

returns

queue
ACD

agents
busy

1

2

n

…
1 2 3 k

lost calls

Two customer-centric (subjective) operational measures of perfor-

mance:

• Abandonment due to (im)patience, or need;

• Retrials/Redials, which can often be absorbed into the

Poisson arrival process).

How to model Abandonment?

The Palm / Erlang-A model.

34

