

Service Engineering

Class 11

Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

- G/G/1 Queue: Virtual Waiting Time (Unfinished Work).
- GI/GI/1: Lindley's Equations and Stability.
- M/GI/1 (=M/G/1): The Khintchine-Pollaczek Formula.
- G/G/1 and G/G/n: Allen-Cunneen Approximation;
Kingman's Exponential Law.
- Call Centers: The M/G/n+G queue.
- Queueing Systems with Priorities (Recitation).

The G/G/1 Queue

Non-Parametric model of a service station.

“Exact” model but Approximate analysis (vs. Markovian queues).

We start with Single-Server models.

(Will be generalized to Multi-Servers.)

Building Blocks:

- **Arrivals:** Counting Process $A = \{A(t), t \geq 0\}$, with **arrivals** (jumps) at $\{A_1, A_2, \dots, A_i, \dots\}$.
- **Services:** $\{S_1, S_2, \dots, S_i, \dots\}$ denote **service durations**.
- First Come First Served (FCFS = FIFO here).

Work arriving up to time t : $\sum_{i=1}^{A(t)} S_i, t \geq 0$.

Virtual Waiting Time $V = \{V(t), t \geq 0\}$: $V(t)$ is the amount of time that a (possibly virtual) arrival *at time t* would have to wait.

(Sometimes referred to as *Unfinished Work*, but Virtual Waiting Time is more appropriate for multi-server queues.)

It is possible to create the sample paths of V from those of Work.

We prefer a direct **visual (seesaw) construction**:

Assume $V(0) = 0, \dots$

GI/GI/1

Number in system is NOT a Markov process (in contrast to Markovian queues).

For some analysis need some minimal **Assumptions**:

- Arrival times $A_1, A_2, \dots, A_n, \dots$ are jumps of a **renewal process**:
 - **Inter-arrival times** $T_i = A_i - A_{i-1}$, $i \geq 1$, are iid ($A_0 = 0$).
 - $E[T_1] = 1/\lambda$; $C^2(T_1) = C_a^2$.
 - Note: λ = Arrival rate.
- **Service durations** $S_1, S_2, \dots, S_n, \dots$ are iid.
 - $E[S_1] = 1/\mu$; $C^2(S_1) = C_s^2$.
 - Note: μ = Service rate.
- Independence between arrivals and services.
- Service discipline is First Come First Served .

G/G/1: Lindley's Equations (1952)

Let $W_q(n)$ = Waiting Time of customer number n, n=1,2,...

Recursion:

$$W_q(n) = \begin{cases} 0, & A_n \geq \overbrace{A_{n-1} + W_q(n-1) + S_{n-1}}^{\text{departure time of customer } (n-1)} \\ A_{n-1} + W_q(n-1) + S_{n-1} - A_n, & \text{otherwise.} \end{cases}$$

In short,

$$\begin{aligned} W_q(n) &= [A_{n-1} - A_n + W_q(n-1) + S_{n-1}]^+ \quad (x^+ = x \vee 0) \\ &= [W_q(n-1) + X_{n-1}]^+, \end{aligned}$$

where $X_{n-1} = S_{n-1} - T_n$, $n \geq 2$ (iid in GI/GI/1).

Note: X_1, X_2, \dots are data, enabling calculation of successive waiting times via

Lindley's Equations:

$$\boxed{\begin{aligned} W_q(n) &= [W_q(n-1) + X_{n-1}]^+, \quad n \geq 2, \\ W_q(1) &= 0. \end{aligned}}$$

Useful: Recursion amenable for spreadsheet calculations.

GI/GI/1 Queue: Stability

Explicit representation of $W_q(n)$:

$$W_q(n) = \max(0, X_{n-1}, X_{n-1}+X_{n-2}, \dots, X_{n-1}+X_{n-2}+\dots+X_1).$$

(Try unfolding the recursion with, say, $n = 3$.)

We have $GI/GI/1$, in which X_i 's are iid. Hence,

$$W_q(n) \stackrel{d}{=} \max(0, X_1, X_1 + X_2, \dots, X_1 + X_2 + \dots + X_{n-1}).$$

Define the **Random Walk** $Y_k = \sum_{i=1}^k X_i$, $Y_0 = 0$.

Fact: $P\{\sup_{k \geq 0} Y_k < \infty\} = 1 \Leftrightarrow E[X_1] < 0$.

Proof: By the Strong Law of Large Numbers,

$$\lim_{k \rightarrow \infty} \frac{1}{k} (X_1 + \dots + X_k) = E[X_1] < 0.$$

Hence, $\lim_{k \rightarrow \infty} Y_k = -\infty$, and their $\sup = \max$ is finite.

Consequence:

$$W_q(n) \stackrel{d}{\rightarrow} \sup_{k \geq 0} Y_k < \infty \text{ as } n \rightarrow \infty$$

if and only if $\lambda < \mu$ ($\rho = \lambda/\mu < 1$).

Conclude: **GI/GI/1 stable if and only if $\rho < 1$.**

From now on, all models are in steady-state.

M/G/1 (=M/G/1) in Steady-State **The (Khintchine-Pollaczek) Formula**

M/G/1 Queue: Poisson arrivals,
generally distributed (iid) service durations.

Theorem. (Khintchine-Pollaczek)

$$E(W_q) = E(S) \cdot \frac{\rho}{1 - \rho} \cdot \frac{1 + C^2(S)}{2}.$$

Remarks:

- A remarkable second-moment formula quantifying congestion.
- “**Congestion Index**” = $E(W_q)/E(S)$ (unitless).
- Decomposes “Congestion” into two multiplicative components (the two congestion-drivers, in our simple M/G/1 context):
 - **Server-Utilization**: ρ ;
 - **Stochastic-Variability**, arising from Services: $C(S)$; (“Where are the Arrivals”? - to be discussed momentarily).
- Quantifies the effect of the service-time distribution (via its CV); for example, changing from a human-service to a robot.
- The Number-in-System is not Markov; however at instants of service completions it is an (embedded) Markov-chain.

Illuminating derivation, with the ingredients:
Little, PASTA, Biased sampling; Wald.

$$\text{Congestion Index} : \frac{E W_q}{E S} = \frac{\bar{L}_q}{N P} \xrightarrow{\text{observable}} \frac{P/C/N}{}$$

כד-דופקים אן האזרא

גשuder הרטשען חולון

מחכימ שעתנאים בשכל 19 שבועות

1 "גַּמְלָנָה וְלִקְרָבָה" כִּי אַזְדָּנוּ כִּי יְהִי רָחֵל

pop? > 6 10/10 53/100

→ "N/A/CX

1322 5-13 10/16/19 11/17/2010
1323 18 10/16/19 11/18/2010

Derivation of Khintchine-Pollaczek

For customer $n = 1, 2, \dots$, denote

$W_q(n)$ = waiting-time of n -th customer.

$R(n)$ = residual service time, at time of the n -th arrival;
 $(= 0$, for arrivals without waiting).

$L_q(n)$ = # of customers in queue, at time of n -th arrival.

$\{S_n\}$ = sequence of service-times.

$$W_q(n) = R(n) + \sum_{k=n-L_q(n)}^{n-1} S_k , \quad n \geq 1 .$$

$$EW_q(n) = ER(n) + E(S_1) \cdot EL_q(n) , \quad \text{by \textcolor{blue}{Wald}},$$

$$E(W_q) = E(R) + E(S_1)E(L_q) , \quad n \uparrow \infty , \text{ assuming} \\ \exists \text{ limit} + \text{\textcolor{blue}{PASTA}},$$

$$= E(R) + \lambda E(S_1)E(W_q) , \quad \text{by \textcolor{blue}{Little}},$$

$$E(W_q) = E(R) + \rho E(W_q) , \quad \rho < 1 \Leftrightarrow \exists \text{ steady-state},$$

$$E(W_q) = E(R)/(1 - \rho) .$$

Left to calculate $E[R]$?

Via **Biased Sampling** (see next page):

- $\rho = \text{Prob. of arriving to a busy server.} \quad (\textcolor{blue}{PASTA+Little})$

- $E(R) = (1 - \rho) \cdot 0 + \rho \cdot E(S) \cdot \frac{1 + C^2(S)}{2} . \quad \text{q.e.d.}$

Biased Sampling (via PASTA)

A *renewal process* is a counting process with iid interarrivals.

Descriptions: $R = \{R(t), t \geq 0\}$ or $\{T_1, T_2, \dots\}$ iid, or $\{S_1, S_2, \dots\}$

Example: Poisson exponential Erlang

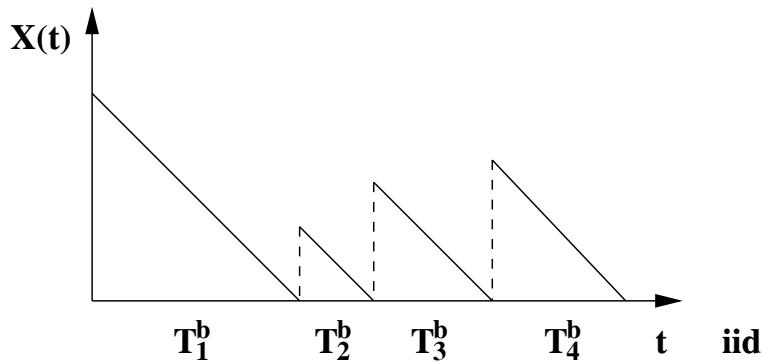
Story: Buses arrive to a bus stop according to a renewal process $R_b = \{R_b(t), t \geq 0\}$.

T_i^b — times between arrivals of the buses.

Passengers arrive to the bus stop in a completely random fashion (Poisson).

S_i^p — arrival times of the passengers.

Question: How long, on average, do they wait? Plan service-level.



$A = \{A(t), t \geq 0\}$ = Poisson arrivals of passengers.

$X = \{X(t), t \geq 0\}$ = state = *Virtual waiting time*.

PASTA: $\lim_{T \uparrow \infty} \frac{1}{T} \int_0^T X(t) dt = \lim_{N \uparrow \infty} \frac{1}{N} \sum_{n=1}^N X(S_n^p -) = \bar{\tau}$

$$\begin{aligned}
 \Rightarrow \bar{\tau} &= \frac{1}{T} \cdot (\text{area under } X, \text{ over } [0, T]) \\
 &\approx \frac{1}{T} \cdot \left(\frac{1}{2}(T_1^b)^2 + \frac{1}{2}(T_2^b)^2 + \dots + \frac{1}{2}(T_{R_b(T)}^b)^2 \right) \\
 &= \frac{R_b(T)}{T} \cdot \frac{1}{2} \cdot \frac{T_1^b + \dots + T_{R_b(T)}^b}{R_b(T)} \xrightarrow{T \uparrow \infty} \frac{1}{E(T_1^b)} \cdot \frac{1}{2} \cdot E(T_1^b)^2, \text{ by SLLN} \\
 &= \underbrace{\frac{1}{2}E(T_1^b)}_{\text{"Deterministic" answer}} \quad \underbrace{[1 + c^2(T_1^b)]}_{\text{Bias, due to variability}}, \quad c = \frac{\sigma}{E} \text{ coefficient of variation.}
 \end{aligned}$$

Check Poisson bus arrivals to derive Paradox:

1 ("stochastic" answer) = $\frac{1}{2}$ ("deterministic" answer).

GI/GI/1

The Allen-Cunneen Approximation

Assume General Arrivals (renewal) and General Services (iid):

Facts:

- Exact for M/G/1.
- Upper bound in general.
- Asymptotically exact as $\rho \uparrow 1$ - in **Heavy Traffic**.
(But then can actually say much more - momentarily).

Internalize: Assume $C^2(A) = C^2(S) = 1$, as in M/M/1:

$$\frac{E(W_q)}{E(S)} = \frac{\rho}{1 - \rho}.$$

Now substitute $\rho = 0.5$ (1), 0.8 (4), 0.9 (10), 0.95 (19).

Finally think in terms of “5 minute telephone service-time” (or “1 week job-shop processing-time”).

Other Measures of (Average) Performance:

$$E(W) = E(S) + E(W_q), \quad E(L_q) = \lambda E(W_q), \\ E(L) = \lambda E(W) = E(L_q) + \rho.$$

GI/GI/1 Kingman's Exponential Law

Fact (Kingman, 1961):

In heavy-traffic, “Waiting-Time is Exponential”.

Get its mean from the Allen-Cunneen approximation.

Formally: **Kingman's Exponential Law of Congestion:**

$$\frac{W_q}{E(S)} \approx \begin{cases} \exp \left(\text{mean} = \frac{1}{1-\rho} \cdot \frac{C^2(A) + C^2(S)}{2} \right), & \text{wp } \rho, \\ 0 & \text{wp } 1-\rho, \end{cases}$$

Remarks:

- “**Congestion Index**” = $E(W_q)/E(S)$ (unitless):
The Allen-Cunneen Approximation.
- Decomposes “Congestion” into two multiplicative components (the two congestion-drivers, in our simple G/G/1 context):
 - **Server-Utilization**: ρ ;
 - **Stochastic-Variability**, which arises from **Arrivals** - $C(A)$ and **Services** - $C(S)$.
- Both ρ and $C(S)$ effect congestion non-linearly – draw congestion curves.
- M/M/1 – Special case in which $C^2(A) = C^2(S) = 1$: Exact.
M/G/1 – Only $E(W_q)$ is Exact.

Justifying the Law of Congestion: Why $W_q \approx \exp \left(\text{mean} = \frac{1}{\mu} \frac{\rho}{1-\rho} \frac{C_a^2 + C_s^2}{2} \right)$?

via *Strong Approximations*. (*Heavy Traffic* Theory)

$$\begin{aligned}
 S(t) &= \sum_{n=1}^{\lfloor t \rfloor} S_n \approx \frac{1}{\mu} t + \sigma_s B_s(t) && \text{(Donsker for partial sums)} \\
 A(t) &\approx \lambda t + \lambda^{3/2} \sigma_a B_a(t) = \lambda t + \lambda^{1/2} C_a B_a(t) && \text{(for renewals)} \\
 L(t) &= S[A(t)] \approx \frac{1}{\mu} \left[\lambda t + \lambda^{3/2} \sigma_a B_a(t) \right] + \sigma_s B_s(\lambda t) && \text{(B - fluctuations)} \\
 &= \frac{\lambda}{\mu} t + \frac{\lambda^{1/2}}{\mu} C_a B_a(t) + \frac{\lambda^{1/2}}{\mu} C_s \lambda^{-1/2} B_s(\lambda t) \\
 X(t) &= L(t) - t \approx -(1-\rho)t + \frac{\lambda^{1/2}}{\mu} \left[C_a B_a(t) + C_s \frac{1}{\sqrt{\lambda}} B_s(\lambda t) \right] \\
 &\stackrel{d}{=} -(1-\rho)t + \frac{\lambda^{1/2}}{\mu} (C_a^2 + C_s^2)^{1/2} B(t) \\
 &\uparrow \quad \text{sum of independent $BM \stackrel{d}{=} BM$; selfsimilarity (both by characterization)} \\
 &= -(1-\rho)t + \sigma B(t), \quad \text{where } \sigma^2 = \frac{1}{\mu} \rho (C_a^2 + C_s^2)
 \end{aligned}$$

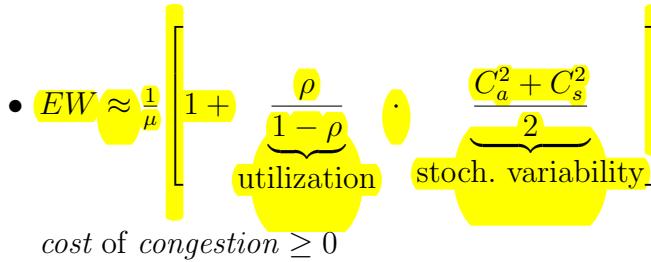
Recall: V obtained from X through *reflection*, and reflection is Lipshitz *continuous*.

$V \approx RBM(-(1-\rho), \sigma)$ with stationary distribution $\exp \left(\text{mean} = \frac{\sigma^2}{2(1-\rho)} \right)$.

Hence, $V(\infty) \stackrel{d}{\approx} \exp \left(\text{mean} = \frac{1}{\mu} \frac{\rho}{1-\rho} \frac{C_a^2 + C_s^2}{2} \right)$

\uparrow \uparrow
 v. significant Generalized $P - K$, for EW_q

- Approximation improves as $\rho \uparrow 1$ (heavy traffic)



strictly convex, increasing in ρ, C_a, C_s .

Approximating $G/G/n$

Stability condition: $\rho = \frac{\lambda}{n\mu} < 1$.

Kingman's Exponential Law:

$$\frac{W_q}{E(S)} \approx \begin{cases} \exp \left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1-\rho} \cdot \frac{C^2(A) + C^2(S)}{2} \right) & , \text{ wp } E_{2,n}, \\ 0 & , \text{ otherwise.} \end{cases}$$

In particular, a popular measure for service-level, used to determine the number-of-servers n , is:

$$P\{W_q > x \cdot E(S)\} \approx E_{2,n} \cdot \exp \left(-x \cdot \frac{2n(1-\rho)}{C^2(A) + C^2(S)} \right), \quad x > 0.$$

Allen-Cunneen Approximation:

$$E(W_q) \approx E(S) \cdot \frac{1}{n} \cdot \frac{E_{2,n}}{1-\rho} \cdot \frac{C^2(A) + C^2(S)}{2}.$$

or equivalently,

$$E(W_q) \approx E(W_{q,M/M/n}) \cdot \frac{C^2(A) + C^2(S)}{2}.$$

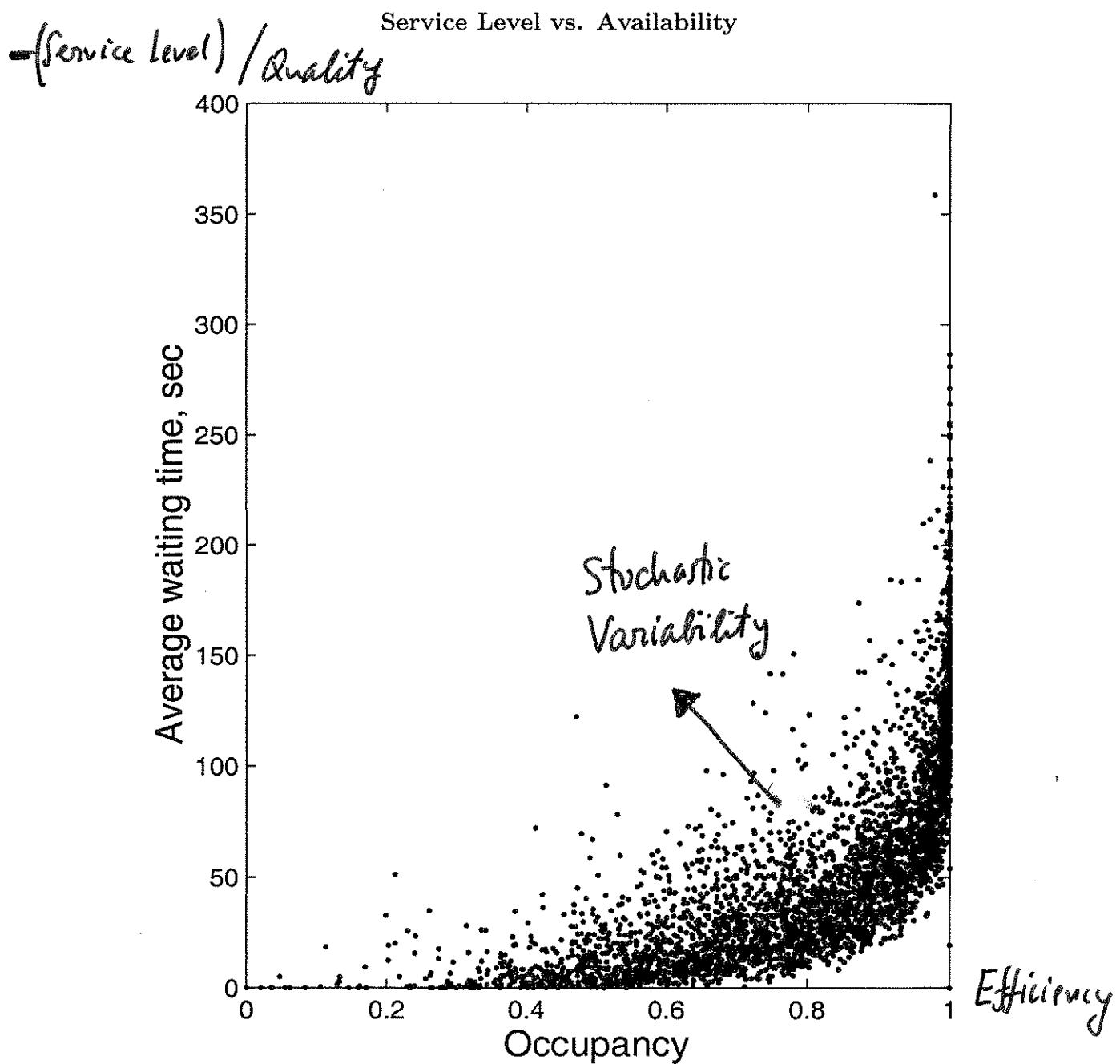
- Above accurate in **Efficiency-Driven (ED)** systems.

Rules-of-thumb (ED-Characterization): In small systems (few servers), over 75% of the customers are delayed in queue prior to service; in large systems (many 10's or several 100's of servers), essentially all customers delayed - more on that in future classes.

The Efficiency - Quality Tradeoff

Congestion Curves

(Empirical Proof of Khinchine-Pollatcheck Formula)

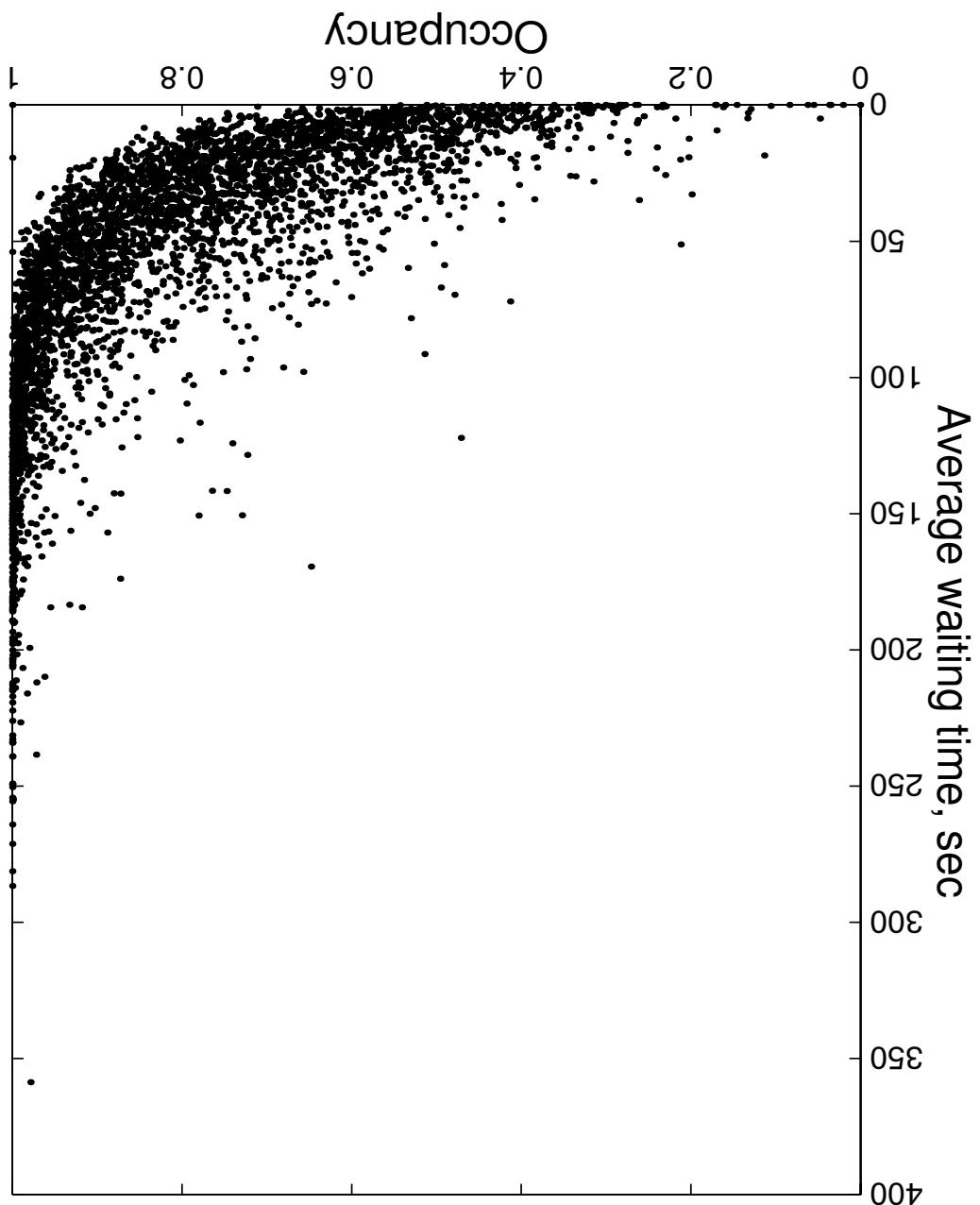


The 2nd Law:

Congestion Index:
$$\frac{E(W_q)}{E(S)} \approx \frac{1}{N} \frac{\rho}{1-\rho} \frac{C_a^2 + C_s^2}{2} \quad (N = \text{number of servers})$$

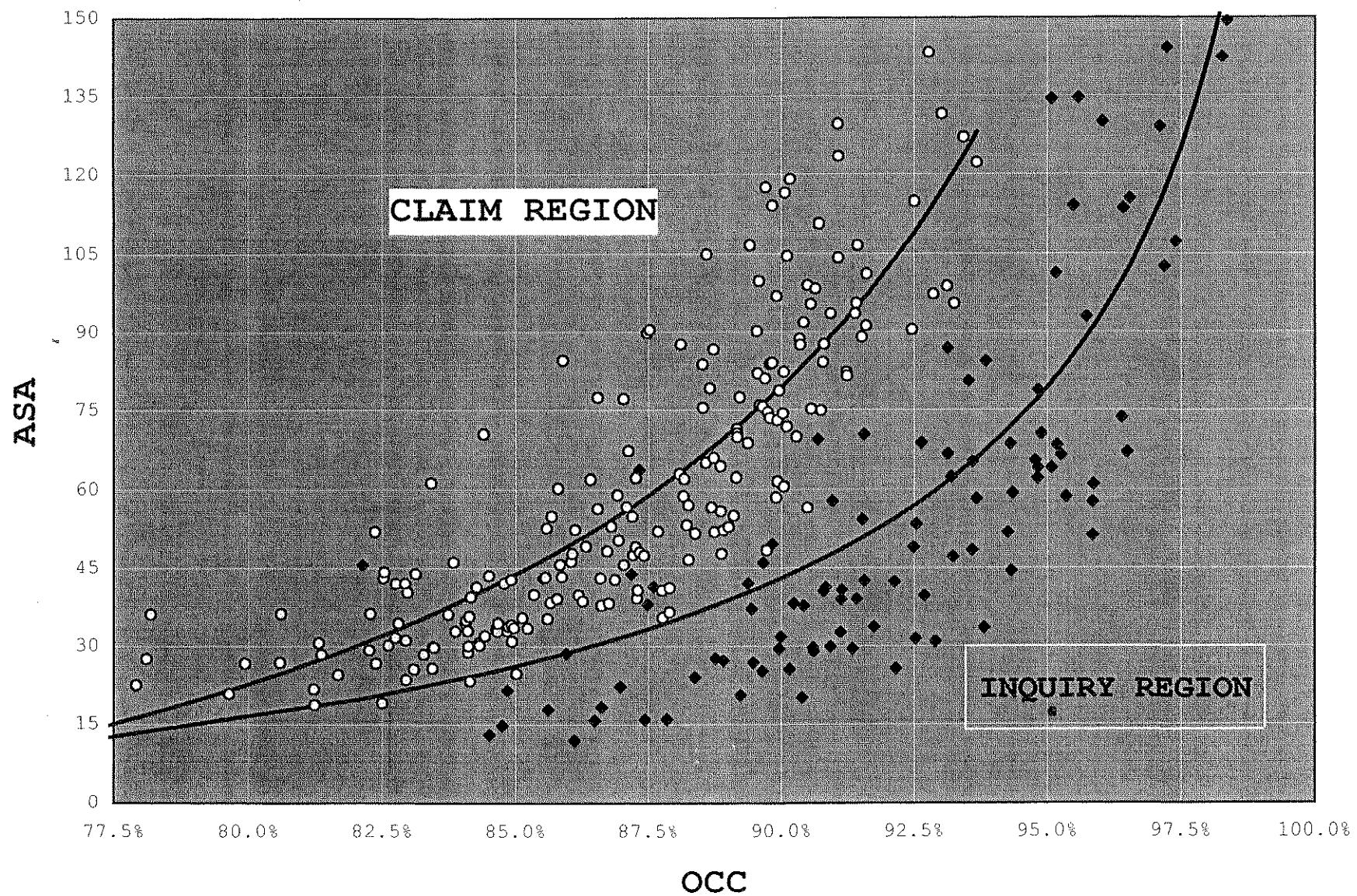
$$= \frac{1}{N} \cdot \frac{\rho}{1-\rho} C^2$$

Performance vs. Availability \ Accessibility



Queueing Science: Measurements
Model
Validation

K-P/A-C Law (2 moments; ^{performance} averages)



$$\frac{\bar{W}_q}{\bar{S}} = \frac{1}{N} \cdot \frac{1}{1-p} \cdot \text{efficiency} \rightarrow ?$$

index

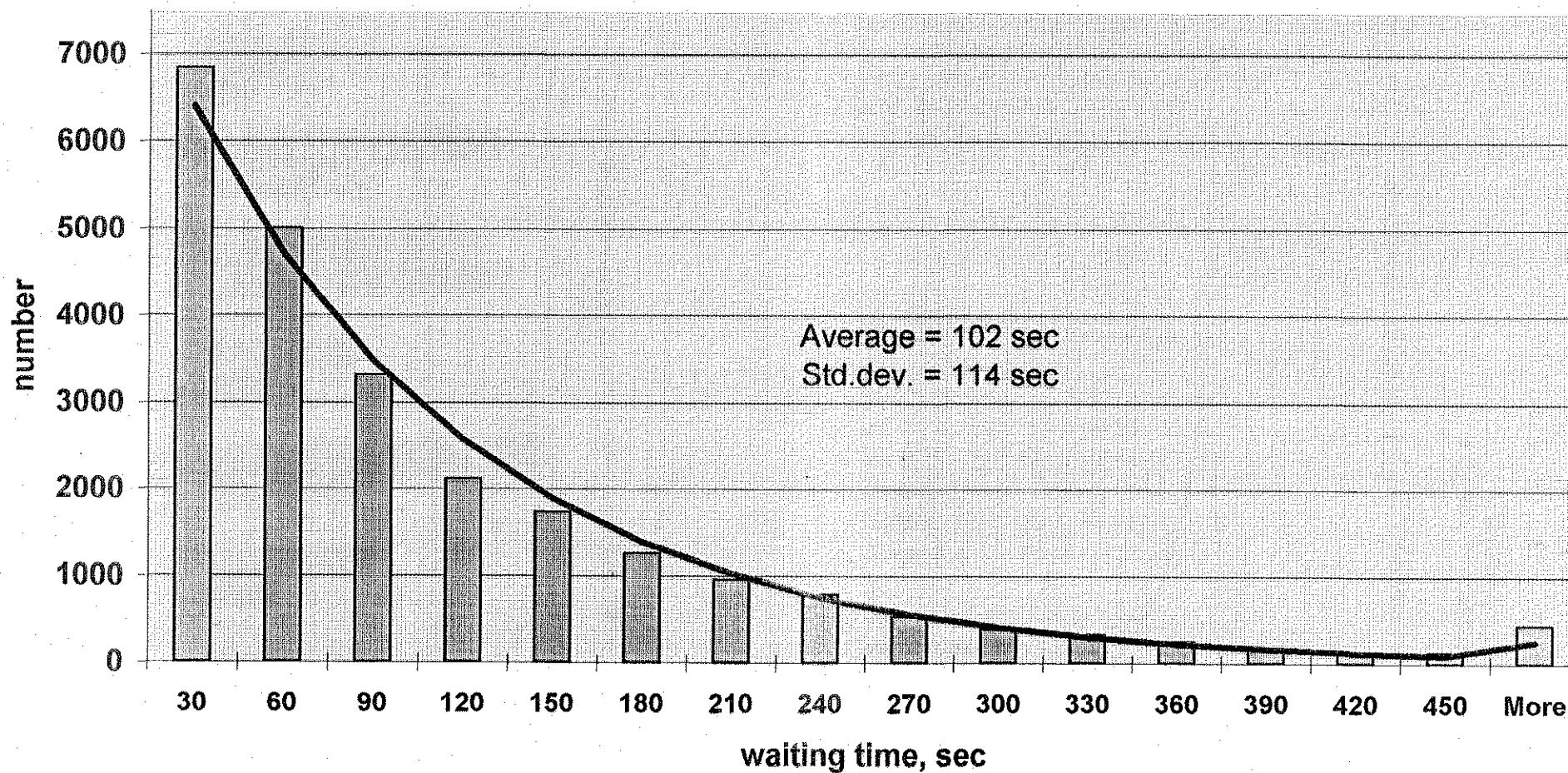
Kingman's Exponential

Invariance Law for the Distribution ^{waitcha} of Congestion :

The 3rd Law :

$$P(W_q > T | W_q > 0) \approx e^{-T/\bar{W}_q}$$

November. Waiting times.



- $W_q | W_q > 0 \sim \text{exponential}$ (heavy traffic) frequency exponential ← Kingman, Tylchart - Leibnitz, ...
- $\exists \gamma, k \in \mathbb{R} \quad e^{-\gamma x} P(W_q > x) \rightarrow \alpha, \text{ as } x \uparrow \infty$ (Exponential decay) ← Whitt 93, §4.2

M/G/n+G: The Basic Call Center Model

Why fundamental? since, in call centers, and elsewhere,

- **Arrivals** reasonably-approximated by **Poisson**,
- **Services** typically **not Exponential**,
- **(Im)Patience** typically **not Exponential**.

From M/G/n+G to M/M/n+M (Erlang-A):

1. M/**M/n+G**: “Assume” Exponential service times with the same mean (Whitt, 2005, via simulations);
2. M/M/n+**M**: “Assume” Exponential (im)patience times;
3. Estimate the patience-parameter θ via $P\{\text{Ab}\}/E[W_q]$ (with Zeltyn, 2005).

Possible inaccuracies in the exponential approximation for service times, when

- Very large or very small $C(S)$;
- Very patient customers (very small θ).

Theoretical Congestion Curves: Staffing Tools (4CallCenters)

Economies of Scale
Average Waiting Time - But Only of Those Who Wait

$E[W_q|W_q > 0]$ (Load: 10 per server)

