Service Engineering

Class 11

Non-Parametric Models of a Service System:;
GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

e G/G/1 Queue: Virtual Waiting Time (Unfinished Work).
e GI/GI/1: Lindley’s Equations and Stability.
e M/GI/1 (=M/G/1): The Khintchine-Pollaczek Formula.

e G/G/1 and G/G/n: Allen-Cunneen Approximation;
Kingman’s Exponential Law.

e Call Centers: The M/G/n+G queue.

e Queueing Systems with Priorities (Recitation).



The G/G/1 Queue

Non-Parametric model of a service station.
“Exact” model but Approximate analysis (vs. Markovian queues).

We start with Single-Server models.
(Will be generalized to Multi-Servers.)

Building Blocks:

e Arrivals: Counting Process A = {A(t),t > 0}, with
arrivals (jumps) at {Ay, Ao, ..., A;, ...}

e Services: {S51,5,...,5;,...} denote service durations.

e First Come First Served (FCEFS = FIFO here).

Work arriving up to time ¢: 224:(? Si, t>0.

Virtual Waiting Time V = {V (¢),t > 0}: V(t) is the amount
of time that a (possibly virtual) arrival at time t would have to
walit.

(Sometimes referred to as Unfinished Work, but Virtual Waiting
Time is more appropriate for multi-server queues.)

[t is possible to create the sample paths of V from those of Work.
We prefer a direct visual (seesaw) construction:
Assume V(0) =0,...
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GI/GI/1

Number in system is NOT a Markov process (in contrast to Marko-
vian queues).
For some analysis need some minimal Assumptions:

e Arrival times Ay, Ao, ..., A,,... are jumps of a
renewal process:

— Inter-arrival times T, = A, — A;,_1, 1 > 1, are iid
(Ag=0).
- E[n] =1/ CXTh) =C3.
— Note: A = Arrival rate.
e Service durations Si,.5,,...,5,,... are iid.
— E[S1] = 1/u; C*(S;) = C?.
— Note: u = Service rate.

e Independence between arrivals and services.

e Service discipline is First Come First Served .
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G/G/1: Lindley’s Equations (1952)

Let W,(n) = Waiting Time of customer number n, n=1,2,...

Recursion:
departure time of customer (n—1)
Wq(n) — 07 An > An—l + Wq(n — 1) + Sn—l
A1+ Wyn—1)+ S,-1 — A,, otherwise.
In short,

Wyn) = [Ay 1 — A+ W (n—1)+S,4]" (2" =2V0)
= [Wq(n — 1) + Xn_1]+ ,

where X, 1 =5,.1—T,, n>2 (iidin GI/GI/1).

Note: X, Xy, ... are data, enabling calculation of successive
walting times via

Lindley’s Equations:

Wyn) = [Wyn—1)+ X,-1]", n > 2,
W,(1) = 0.

Usetul: Recursion amenable for spreadsheet calculations.



GI/GI/1 Queue: Stability

Explicit representation of W,(n):

Wq(n) = max((), Xn—h Xn—l"'Xn—Q; c. 7Xn—1+Xn—2+- . —|—X1) .
(Try unfolding the recursion with, say, n = 3.)

We have GI/GI/1, in which X;’s are iid. Hence,

Wq(n) g maX(O,Xl,Xl —|—X2,.. .,Xl —|—X2—|— ce —|—Xn_1) .

k
Define the Random Walk Y, = > X;, Y, =0.
i=1

Fact: P{sup;~(Y; < oo} =1 E[X;] <0.

Proof: By the Strong Law of Large Numbers,

1
lim *(Xl + ... Xk) = E[Xl] < 0.

k—oo k

Hence, limy_, Y = —o0, and their sup = max is finite.

Consequence:
Wy (n) 4, SUPps>g Yr < 00 asn — 00
ifand only if A< (p=Ap<1).

Conclude: GI/GI/1 stable if and only if p < 1.

From now on, all models are in steady-state.
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M/GI/1 (=M/G/1) in Steady-State
The Khintchine-Pollaczek Formula

M /G /1 Queue: Poisson arrivals,
generally distributed (iid) service durations.

Theorem. (Khintchine-Pollaczek)
P 1+ C?(S)
1—p 2 '

E(W,) = E(S) -

Remarks:
e A remarkable second-moment formula quantifying congestion.
e “Congestion Index” = E(W,)/E(S) (unitless).

e Decomposes “Congestion” into two multiplicative components
(the two congestion-drivers, in our simple M/G/1 context):

— Server-Utilization: p ;

— Stochastic-Variability, arising from Services: C(S) ;
(“Where are the Arrivals”? - to be discussed momentarily ).

e Quantifies the effect of the service-time distribution (via its
CV); for example, changing from a human-service to a robot.

e The Number-in-System is not Markov; however at instants of
service completions it is an (embedded) Markov-chain.

Illuminating derivation, with the ingredients:
Little, PASTA, Biased sampling; Wald.
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Derivation of Khintchine-Pollaczek

For customer n = 1,2, ..., denote
W,(n) = waiting-time of n-th customer.
R(n) = residual service time, at time of the n-th arrival;
(= 0, for arrivals without waiting).
L,(n) = 4 of customers in queue, at time of n-th arrival.
{S,} = sequence of service-times.
n—1
Wy(n)= Rn)+ > Sk, n>1.
k=n—Lg(n)
EW,(n)= ER(n)+ E(S,)- EL,/n), by Wald,
E(W,) = E(R)+ E(S1)E(L,) , n T oo, assuming

3 limit + PASTA,
= E(R)+ ) E(S)E(W,) , by Little,
EW,) = E(R)+pE(W,), p < 1 < J steady-state,
B(W,) = E(R)/(1—p).

Left to calculate E[R]?
Via Biased Sampling (see next page):

- p = Prob. of arriving to a busy server. (PASTA+Little)

1+ C*(S)

-E(R)=(1—-p)-0+p-E(S) - 5

q.e.d.
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Biased Sampling (via PASTA)
A renewal process is a counting process with iid interarrivals.

Descriptions: R = {R(t), t >0} or {T3,T5,...} iid, or {Si,S5,...}

Example: Poisson exponential Erlang

Story: Buses arrive to a bus stop according to a renewal process R, = {R,(t),t > 0}.
T? — times between arrivals of the buses.
Passengers arrive to the bus stop in a completely random fashion (Poisson).
SP — arrival times of the passengers.

Question: How long, on average, do they wait? Plan service-level.

X A

iid

=2
er S
3
=
-

A = {A(t), t > 0} = Poisson arrivals of passengers.
X ={X®), t> 0} = state = Virtual waztmg time.

PASTA: lim — / t)dt = llm — Z X(SP—)

TToo

Il
il

1
=T = 5 (area under X, over [0,7T])
1 1 1 1
~ o (A S S (Then)?)
Ry(T) 1 TP+ +TF 11 b2
= C— — -— - E(T7)",by SLLN
T 2 Ry(T) = gy 3 P by
1
= §E(T1b) [1+4T))], c= % coefficient of variation.
—_—

—_—
. . Bias, due to variabilit
“Deterministic” answer ’ Y

Check Poisson bus arrivals to derive Paradox:

1(“stochastic” answer) = 3 (“deterministic” answer).



GI/GI/1

The Allen-Cunneen Approximation

Assume General Arrivals (renewal) and General Services (iid):

C?*(A) + C*(S)
e - _

1 S
Mean Service Time E‘Eellllllgﬁlﬁgf Stochastic Variability

Facts:
e Exact for M/G/1.

e Upper bound in general.

e Asymptotically exact as p T 1 - in Heavy Traffic.
(But then can actually say much more - momentarily).

Internalize: Assume C*(A) = C?*(S) =1, as in M/M/1:
EW,) _ P
E(S) 1-—p

Now substitute p = 0.5 (1), 0.8 (4),0.9 (10),0.95 (19).
Finally think in terms of “5 minute telephone service-time”
(or “1 week job-shop processing-time”).

Other Measures of (Average) Performance:
EW) = E(S)+EW,), E(L,) = AE(W,),
E(L) = AE(W) = E(L,) +p.
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GI/GI/1

Kingman’s Exponential Law

Fact (Kingman, 1961):
In heavy-traffic, “Waiting-Time is Exponential”.
Get its mean from the Allen-Cunneen approximation.

Formally: Kingman’s Exponential Law of Congestion:

1 2 2
W, exp (mean = : S +o (S)) , Wp p,
E(S) L=p :
0 y WP 1 — P,
Remarks:

e “Congestion Index” = E(W,)/E(S) (unitless):
The Allen-Cunneen Approximation.
e Decomposes “Congestion” into two multiplicative components
(the two congestion-drivers, in our simple G/G/1 context):
— Server-Utilization: p ;
— Stochastic-Variability, which arises from

Arrivals - C(A) and Services - C(S5).

e Both p and C(S) effect congestion non-linearly — draw con-
gestion curves.

e M/M/1 — Special case in which C?*(A) = C*(S) =1 : Exact.
M/G/1 - Only E(W,) is Exact.
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Justifying the Law of Congestion: Why W, ~ exp (mean == £

via Strong Approximations. (Heavy Traffic Theory)

t]
1
St) = > Sp=—t+0,B(t) (Donsker for partial sums)
I

n=1

A(t) =~ X+ X20,B,(t) = M + \/2C, B, (1) (for renewals)
1

L(t) = S[A@M)] ~ — {/\t + )\3/2%3&(75)} + 0sBs(At) (B — fluctuations)
0

1/2 1/2
_ 2 t+ A CoBa(t) + A CAY2B,(At)
1
X() = L) (1-p) A1/2[019()(1 L B.ow)
) = Lt)—tm —(1—p)t+ 22— |C,B,(t) +Cy — B.(\
P VA

)\1/2
(1= )t S (G2 OB ()

— ||

sum of independent BM < BM : selfsimilarity (both by characterization)

1
= —(1—-p)t+oB(t), where o°= u p(C2 +C2)

Recall: V obtained from X through reflection, and reflection is Lipshitz continuous.

V &~ RBM(—(1 — p), o) with stationary distribution exp (mean = )

2(1-p)
Hence, V' (o0) 2 exp (mean = i 1Tpp 02-5082>
! i
v. significant Generalized P — K, for EW,

e Approximation improves as p T 1 (heavy traffic)

e e
0 e _W Ca+ 05
122 1— p 2

~—— —
utilization  stoch. variability

cost of congestion > 0

strictly convex, increasing in p, Cy, Cs.
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Approximating G/G/n

Stability condition: p = Tjﬂ <1.

Kingman’s Exponential Law:

2 2
exp (mean = % : lip . ¢ (A);C (S)> , Wp Lo,

~Y

Wq
S)

0 , otherwise.

In particular, a popular measure for service-level, used to determine
the number-of-servers n, is:

2n(1 - p)
C2(A) + C%(S)

P{W, >z -E(S)} = Ey,, - exp (—az ) , x> 0.

Allen-Cunneen Approximation:

1 By, C*A)+C*9)
n 1—p 2 '

or equivalently,

C2(A) + C¥(S)
: .

- Above accurate in Efficiency-Driven (ED) systems.
Rules-of-thumb ED-Characterization: In small systems
(few servers), over 75% of the customers are delayed in queue prior
to service; in large systems (many 10’s or several 100’s of servers),
essentially all customers delayed - more on that in future classes.
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The Ffficiency - Qualdy Thades ff

Congestion Curves
(Empirical Proof of Khinchine-Pollatcheck Formula)

Service Level vs. Availability
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Performance vs. Availability \ Accessibility

Average waiting time
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M/G/n+G: The Basic Call Center Model

Why fundamental? since, in call centers, and elsewhere,
e Arrivals reasonably-approximated by Poisson,
e Services typically not Exponential,

e (Im)Patience typically not Exponential.

From M/G/n+G to M/M/n+M (Erlang-A):

1. M/M/n+G: “Assume” Exponential service times with the
same mean (Whitt, 2005, via simulations);

2. M/M/n+M.: “Assume” Exponential (im)patience times;

3. Estimate the patience-parameter 6 via P{Ab}/E[W,] (with
Zeltyn, 2005).

Possible inaccuracies in the exponential approximation for service
times, when

e Very large or very small C(5);

e Very patient customers (very small ).
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Theoretical Congestion Curves: Staffing Tools (4CallCenters)

Economies of Scale
Average Waiting Time - But Only of Those Who Wait

EW,|W, > 0] (Load: 10 per server)
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