
Service Engineering

Class 11

Non-Parametric Models of a Service System;

GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

• G/G/1 Queue: Virtual Waiting Time (Unfinished Work).

• GI/GI/1: Lindley’s Equations and Stability.

• M/GI/1 (=M/G/1): The Khintchine-Pollaczek Formula.

• G/G/1 and G/G/n: Allen-Cunneen Approximation;

Kingman’s Exponential Law.

• Call Centers: The M/G/n+G queue.

• Queueing Systems with Priorities (Recitation).
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The G/G/1 Queue

Non-Parametric model of a service station.

“Exact” model but Approximate analysis (vs. Markovian queues).

We start with Single-Server models.

(Will be generalized to Multi-Servers.)

Building Blocks:

• Arrivals: Counting Process A = {A(t), t ≥ 0}, with

arrivals (jumps) at {A1, A2, . . . , Ai, . . .}.

• Services: {S1, S2, . . . , Si, . . .} denote service durations.

• First Come First Served (FCFS = FIFO here).

Work arriving up to time t:
∑A(t)

i=1 Si, t ≥ 0.

Virtual Waiting Time V = {V (t), t ≥ 0}: V(t) is the amount

of time that a (possibly virtual) arrival at time t would have to

wait.

(Sometimes referred to as Unfinished Work, but Virtual Waiting

Time is more appropriate for multi-server queues.)

It is possible to create the sample paths of V from those of Work.

We prefer a direct visual (seesaw) construction:

Assume V (0) = 0,...
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GI/GI/1

Number in system is NOT a Markov process (in contrast to Marko-

vian queues).

For some analysis need some minimal Assumptions:

• Arrival times A1, A2, . . . , An, . . . are jumps of a

renewal process:

– Inter-arrival times Ti = Ai − Ai−1, i ≥ 1, are iid

(A0 = 0).

– E[T1] = 1/λ; C2(T1) = C2
a .

– Note: λ = Arrival rate.

• Service durations S1, S2, . . . , Sn, . . . are iid.

– E[S1] = 1/µ; C2(S1) = C2
s .

– Note: µ = Service rate.

• Independence between arrivals and services.

• Service discipline is First Come First Served .
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G/G/1: Lindley’s Equations (1952)

Let Wq(n) = Waiting Time of customer number n, n=1,2,...

Recursion:

Wq(n) =


0, An ≥

departure time of customer (n−1)︷ ︸︸ ︷
An−1 + Wq(n− 1) + Sn−1

An−1 + Wq(n− 1) + Sn−1 − An, otherwise.

In short,

Wq(n) = [An−1 − An + Wq(n− 1) + Sn−1]
+ ( x+ = x ∨ 0)

= [Wq(n− 1) + Xn−1]
+ ,

where Xn−1 = Sn−1 − Tn, n ≥ 2 (iid in GI/GI/1).

Note: X1, X2, . . . are data, enabling calculation of successive

waiting times via

Lindley’s Equations:

Wq(n) = [Wq(n− 1) + Xn−1]
+, n ≥ 2,

Wq(1) = 0.

Useful: Recursion amenable for spreadsheet calculations.
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GI/GI/1 Queue: Stability

Explicit representation of Wq(n):

Wq(n) = max(0, Xn−1, Xn−1+Xn−2, . . . , Xn−1+Xn−2+. . .+X1) .

(Try unfolding the recursion with, say, n = 3.)

We have GI/GI/1, in which Xi’s are iid. Hence,

Wq(n) d= max(0, X1, X1 + X2, . . . , X1 + X2 + . . . + Xn−1) .

Define the Random Walk Yk =
k∑

i=1
Xi, Y0 = 0.

Fact: P{supk≥0 Yk < ∞} = 1 ⇔ E[X1] < 0.

Proof: By the Strong Law of Large Numbers,

lim
k→∞

1

k
(X1 + . . . Xk) = E[X1] < 0.

Hence, limk→∞ Yk = −∞, and their sup = max is finite.

Consequence:

Wq(n) d→ supk≥0 Yk < ∞ as n →∞
if and only if λ < µ (ρ = λ/µ < 1).

Conclude: GI/GI/1 stable if and only if ρ < 1.

From now on, all models are in steady-state.
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M/GI/1 (=M/G/1) in Steady-State
The Khintchine-Pollaczek Formula

M/G/1 Queue: Poisson arrivals,

generally distributed (iid) service durations.

Theorem. (Khintchine-Pollaczek)

E(Wq) = E(S) · ρ

1− ρ
· 1 + C2(S)

2
.

Remarks:

• A remarkable second-moment formula quantifying congestion.

• “Congestion Index” = E(Wq)/E(S) (unitless).

• Decomposes “Congestion” into two multiplicative components

(the two congestion-drivers, in our simple M/G/1 context):

– Server-Utilization: ρ ;

– Stochastic-Variability, arising from Services: C(S) ;

(“Where are the Arrivals”? - to be discussed momentarily).

• Quantifies the effect of the service-time distribution (via its

CV); for example, changing from a human-service to a robot.

• The Number-in-System is not Markov; however at instants of

service completions it is an (embedded) Markov-chain.

Illuminating derivation, with the ingredients:

Little, PASTA, Biased sampling; Wald.
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Derivation of Khintchine-Pollaczek

For customer n = 1, 2, . . . , denote

Wq(n) = waiting-time of n-th customer.

R(n) = residual service time, at time of the n-th arrival;

( = 0, for arrivals without waiting).

Lq(n) = # of customers in queue, at time of n-th arrival.

{Sn} = sequence of service-times.

Wq(n) = R(n) +
n−1∑

k=n−Lq(n)
Sk , n ≥ 1 .

EWq(n) = ER(n) + E(S1) · ELq(n) , by Wald,

E(Wq) = E(R) + E(S1)E(Lq) , n ↑ ∞ , assuming

∃ limit + PASTA,

= E(R) + λE(S1)E(Wq) , by Little,

E(Wq) = E(R) + ρE(Wq) , ρ < 1 ⇔ ∃ steady-state,

E(Wq) = E(R)/(1− ρ) .

Left to calculate E[R]?

Via Biased Sampling (see next page):

- ρ = Prob. of arriving to a busy server. (PASTA+Little)

- E(R) = (1− ρ) · 0 + ρ · E(S) · 1 + C2(S)

2
. q.e.d.
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Biased Sampling (via PASTA)
A renewal process is a counting process with iid interarrivals.
Descriptions: R = {R(t), t ≥ 0} or {T1, T2, . . .} iid, or {S1, S2, . . .}
Example: Poisson exponential Erlang

Story: Buses arrive to a bus stop according to a renewal process Rb = {Rb(t), t ≥ 0}.
T b

i — times between arrivals of the buses.
Passengers arrive to the bus stop in a completely random fashion (Poisson).
Sp

i — arrival times of the passengers.

Question: How long, on average, do they wait? Plan service-level.

X(t)

T T T T iidt1 2 3 4
b b bb

A = {A(t), t ≥ 0} = Poisson arrivals of passengers.
X = {X(t), t ≥ 0} = state = Virtual waiting time.

PASTA: lim
T↑∞

1

T

∫ T

0
X(t)dt = lim

N↑∞

1

N

N∑
n=1

X(Sp
n−) = τ̄

⇒ τ̄ =
1

T
· (area under X, over [0, T ])

≈ 1

T
·
(

1

2
(T b

1 )2 +
1

2
(T b

2 )2 + · · ·+ 1

2
(T b

Rb(T ))
2
)

=
Rb(T )

T
· 1

2
·
T 2

1 + · · ·+ T 2
Rb(T )

Rb(T )
−→
T↑∞

1

E(T b
1 )
· 1

2
· E(T b

1 )2 , by SLLN

=
1

2
E(T b

1 )︸ ︷︷ ︸
“Deterministic” answer

[1 + c2(T b
1 )],︸ ︷︷ ︸

Bias, due to variability

c =
σ

E
coefficient of variation.

Check Poisson bus arrivals to derive Paradox:

1(“stochastic” answer) = 1
2

(“deterministic” answer).
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GI/GI/1
The Allen-Cunneen Approximation

Assume General Arrivals (renewal) and General Services (iid):

E(Wq) ≈ E(S) · ρ

1− ρ
· C2(A) + C2(S)

2
.

↑ ↑ ↑
Mean Service Time Utilization

Availability Stochastic Variability

Facts:

• Exact for M/G/1.

• Upper bound in general.

• Asymptotically exact as ρ ↑ 1 - in Heavy Traffic.

(But then can actually say much more - momentarily).

Internalize: Assume C2(A) = C2(S) = 1, as in M/M/1:

E(Wq)

E(S)
=

ρ

1− ρ
.

Now substitute ρ = 0.5 (1), 0.8 (4), 0.9 (10), 0.95 (19).

Finally think in terms of “5 minute telephone service-time”

(or “1 week job-shop processing-time”).

Other Measures of (Average) Performance:

E(W ) = E(S) + E(Wq) , E(Lq) = λE(Wq) ,

E(L) = λE(W ) = E(Lq) + ρ .
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GI/GI/1
Kingman’s Exponential Law

Fact (Kingman, 1961):

In heavy-traffic, “Waiting-Time is Exponential”.

Get its mean from the Allen-Cunneen approximation.

Formally: Kingman’s Exponential Law of Congestion:

Wq

E(S)
≈


exp

mean =
1

1− ρ
· C2(A) + C2(S)

2

 , wp ρ,

0 , wp 1− ρ,

Remarks:

• “Congestion Index” = E(Wq)/E(S) (unitless):

The Allen-Cunneen Approximation.

• Decomposes “Congestion” into two multiplicative components

(the two congestion-drivers, in our simple G/G/1 context):

– Server-Utilization: ρ ;

– Stochastic-Variability, which arises from

Arrivals - C(A) and Services - C(S).

• Both ρ and C(S) effect congestion non-linearly – draw con-

gestion curves.

• M/M/1 – Special case in which C2(A) = C2(S) = 1 : Exact.

M/G/1 – Only E(Wq) is Exact.
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Justifying the Law of Congestion: Why Wq ≈ exp
(
mean = 1

�
�

1��
C2
a+C2

s
2

)
?

via Strong Approximations. (Heavy Traffic Theory)

S(t) =
btc∑

n=1

Sn ≈ 1

µ
t + σsBs(t) (Donsker for partial sums)

A(t) ≈ λt + λ3/2σaBa(t) = λt + λ1/2CaBa(t) (for renewals)

L(t) = S[A(t)] ≈ 1

µ

[
λt + λ3/2σaBa(t)

]
+ σsBs(λt) (B − fluctuations)

=
λ

µ
t +

λ1/2

µ
CaBa(t) +

λ1/2

µ
Csλ

−1/2Bs(λt)

X(t) = L(t)− t ≈ −(1− ρ)t +
λ1/2

µ

[
CaBa(t) + Cs

1√
λ

Bs(λt)

]

d
= −(1− ρ)t +

λ1/2

µ
(C2

a + C2
s )1/2B(t)

↑
sum of independent BM

d
= BM ; selfsimilarity (both by characterization)

= −(1− ρ)t + σB(t), where σ2 =
1

µ
ρ(C2

a + C2
s )

Recall: V obtained from X through reflection, and reflection is Lipshitz continuous.

V ≈ RBM(−(1− ρ), σ) with stationary distribution exp
(
mean = σ2

2(1−ρ)

)
.

Hence, V (∞)
d≈ exp

(
mean = 1

µ
ρ

1−ρ
C2

a+C2
s

2

)

↑ ↑
v. significant Generalized P −K, for EWq

• Approximation improves as ρ ↑ 1 (heavy traffic)

• EW ≈ 1
µ



1 +

ρ

1− ρ︸ ︷︷ ︸
utilization

· C2
a + C2

s

2︸ ︷︷ ︸
stoch. variability




cost of congestion ≥ 0

strictly convex, increasing in ρ, Ca, Cs.
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Approximating G/G/n

Stability condition: ρ = λ
nµ < 1 .

Kingman’s Exponential Law:

Wq

E(S) ≈


exp

(
mean = 1

n ·
1

1−ρ · C2(A)+C2(S)
2

)
, wp E2,n,

0 , otherwise.

In particular, a popular measure for service-level, used to determine

the number-of-servers n, is:

P{Wq > x · E(S)} ≈ E2,n · exp

−x · 2n(1− ρ)

C2(A) + C2(S)

 , x > 0.

Allen-Cunneen Approximation:

E(Wq) ≈ E(S) · 1

n
· E2,n

1− ρ
· C2(A) + C2(S)

2
.

or equivalently,

E(Wq) ≈ E(Wq,M/M/n) · C2(A) + C2(S)

2
.

- Above accurate in Efficiency-Driven (ED) systems.

Rules-of-thumb ED-Characterization: In small systems

(few servers), over 75% of the customers are delayed in queue prior

to service; in large systems (many 10’s or several 100’s of servers),

essentially all customers delayed - more on that in future classes.
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Performance vs. Availability \ Accessibility
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M/G/n+G: The Basic Call Center Model

Why fundamental? since, in call centers, and elsewhere,

• Arrivals reasonably-approximated by Poisson,

• Services typically not Exponential,

• (Im)Patience typically not Exponential.

From M/G/n+G to M/M/n+M (Erlang-A):

1. M/M/n+G: “Assume” Exponential service times with the

same mean (Whitt, 2005, via simulations);

2. M/M/n+M: “Assume” Exponential (im)patience times;

3. Estimate the patience-parameter θ via P{Ab}/E[Wq] (with

Zeltyn, 2005).

Possible inaccuracies in the exponential approximation for service

times, when

• Very large or very small C(S);

• Very patient customers (very small θ).
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Theoretical Congestion Curves: Staffing Tools (4CallCenters)

Economies of Scale 
Average Waiting Time ­ But Only of Those Who Wait 

E[Wq Wq > 0] (Load: 10 per server) |
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