
Service Engineering

Class 10

Stochastic Markovian Service Station in Steady State

- Part II: The Palm/Erlang-A Queue

• Reviewing Abandonment and (Im)Patience.

• Definition of the Erlang-A Queue.

• Comparison with the Erlang-C Queue.

• Steady-State Distribution and Performance Measures.

• Probability to Abandon vs. Average Wait: P{Ab} = θ·E[Wq].

• Estimating the (Im)Patience Parameter.

• General (Im)Patience Distribution: M/M/n+G Queue.

• Erlang-A: Fitting a Simple Model to a Complex Reality.
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Example: How Bad Can It Get?

Call Center of a Long-Distance Service Provider.

Daily Reports.

Average wait 72 sec, 81% calls answered (Saturday)

5

Average wait 217 sec, 53% calls answered (Thursday)

6

Average wait 376 sec, 24% calls answered (Sunday)

7

2

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



Example: How Good Can It Get?

Call Center of a Health Insurance Provider.

ACD Report.

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

Total 20,577 19,860 3.5% 30 307 95.1%

8:00 332 308 7.2% 27 302 87.1% 59.3

8:30 653 615 5.8% 58 293 96.1% 104.1

9:00 866 796 8.1% 63 308 97.1% 140.4

9:30 1,152 1,138 1.2% 28 303 90.8% 211.1

10:00 1,330 1,286 3.3% 22 307 98.4% 223.1

10:30 1,364 1,338 1.9% 33 296 99.0% 222.5

11:00 1,380 1,280 7.2% 34 306 98.2% 222.0

11:30 1,272 1,247 2.0% 44 298 94.6% 218.0

12:00 1,179 1,177 0.2% 1 306 91.6% 218.3

12:30 1,174 1,160 1.2% 10 302 95.5% 203.8

13:00 1,018 999 1.9% 9 314 95.4% 182.9

13:30 1,061 961 9.4% 67 306 100.0% 163.4

14:00 1,173 1,082 7.8% 78 313 99.5% 188.9

14:30 1,212 1,179 2.7% 23 304 96.6% 206.1

15:00 1,137 1,122 1.3% 15 320 96.9% 205.8

15:30 1,169 1,137 2.7% 17 311 97.1% 202.2

16:00 1,107 1,059 4.3% 46 315 99.2% 187.1

16:30 914 892 2.4% 22 307 95.2% 160.0

17:00 615 615 0.0% 2 328 83.0% 135.0

17:30 420 420 0.0% 0 328 73.8% 103.5

18:00 49 49 0.0% 14 180 84.2% 5.8
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Customers’ (Im)Patience

Marketing Campaign at a Call Center

Average wait 376 sec, 24% calls answered

7

Abandonment Important and Interesting

• One of two customer-subjective operational performance mea-

sures (Second one is Redials)

• Poor service level (future losses)

• Lost business (present losses)

• 1-800 costs (present gains; out-of-pocket vs. alternative)

• Self-selection: the “fittest survive” and wait less (much less)

• Accurate Robust models (vs. distorted, unstable, sensitive)

• Beyond Operations/OR: Psychology, Marketing, Statistics

• Beyond Telephony: VRU/IVR (Opt-Out-Rates), Internet (over

60%), Hospitals ED (LWBS).
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Understanding (Im)Patience

• Observing (Im)Patiecne – Heterogeneity:

Under a single roof, the fraction abandoning varies

from 6% to 40%, depending on the type of service/customer.

• Describing (Im)Patience Dynamically:

Irritation proportional to Hazard Rate (Palm’s Law).

• Managing (Im)Patience:

– VIP vs. Regulars: who is more “Patient”?

– What are we actually measuring?

– (Im)Patience Index:

“How long Expect to wait” relative to

“How long Willing to wait”.

• Estimating (Im)Patience: Censored Sampling.

• Modeling (Im)Patience:

– The “Wait” Cycle:

Expecting, Willing, Required, Actual, Perceived, etc.

The case of the Experienced & Rational customer.

– (Nash) Equilibrium Models.
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Basic (Markovian) Queueing Models of a
Basic Service Station

Poisson arrivals, Exponential service times, Exponential (im)patience.

Mathematical Framework: Markov Jump-Processes (Birth&Death).

M/M/n (Erlang-C) Queue

agents

arrivals

λ

1

2

…

queue

n
µ

M/M/n+M (Palm/Erlang-A) Queue
agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

θ

Additional Markovian Models: Balking, Trunks; Retrials.

Applications: Performance Analysis, Design (EOS), Staffing.
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Erlang-A vs. Erlang-C

48 calls per min, 1 min average service time,

2 min average patience

probability of wait average wait

vs. number of agents vs. number of agents
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If 50 agents:

M/M/n M/M/n+M M/M/n, λ ↓ 3.1%

Fraction abandoning – 3.1% -

Average waiting time 20.8 sec 3.7 sec 8.8 sec

Waiting time’s 90-th percentile 58.1 sec 12.5 sec 28.2 sec

Average queue length 17 3 7

Agents’ utilization 96% 93% 93%

“The fittest survive” and wait less - much less.

Abandonment reduces workload when needed – at high-congestion

periods.
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Modelling (Im)Patience:
Time-to-Abandon and Offered-Wait, or

Time-Willing vs. Time-Required to Wait

• (Im)Patience time τ d= exp(θ):

time a customer is willing to wait for service.

• Offered wait V :

time a customer is required to wait for service; in other

words, waiting time of a (virtual) customer with infinite pa-

tience.

• If τ ≤ V , customer abandons;

otherwise, gets service;

• Actual wait W = min{τ, V } (sometimes Wq).
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Predicting (Operational) Performance

Model Primitives (Building Blocks):

• Arrivals to service (eg. Poisson);

• (Im)Patience while waiting (eg. Exponential);

• Service times (eg. Exponential);

• Servers (eg. i.i.d.).

Model Output: Offered-Wait V

Operational Performance Measure calculable in terms of (τ, V ).

• eg. % Abandonment = P{τ < V } (or P{5 sec < τ < V })

• eg. Average Wait = E[min{τ, V }] (or E[τ |τ < V ])

Applications:

• Performance Analysis

• Design, Phenomena (Pooling, Economies of Scale)

• Staffing – How Many Agents (FTE’s = Full-Time-Equivalent’s)

Note: Within the Basic Model of heterogeneous customers and

servers (vs. priorities, SBR - later).
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Erlang-A (Palm, M/M/n+M; M-M/M/n)

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

θ

Simplest model with abandonment, used by well-run call centers.

Parameters:

• λ – Poisson arrival rate.

• µ – Exponential service rate.

• n – number of service agents.

• θ – Exponential individual abandonment rate.
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Erlang-A = Birth-and-Death Process

L(t) – number-in-system at time t (served plus queued);

L = {L(t), t ≥ 0} – Markov Birth-and-Death process.

Transition-rate diagram

Steady-state equations: λπj = (j + 1) · µπj+1, 0 ≤ j ≤ n− 1

λπj = (nµ + (j + 1− n)θ) · πj+1, j ≥ n.

Steady-state distribution:

πj =



(λ/µ)j

j!
π0 , 0 ≤ j ≤ n

j∏
k=n+1

 λ

nµ + (k − n)θ

 (λ/µ)n

n!
π0 , j ≥ n + 1,

where

π0 =

 n∑
j=0

(λ/µ)j

j!
+

∞∑
j=n+1

j∏
k=n+1

 λ

nµ + (k − n)θ

 (λ/µ)n

n!


−1

.

Numerical drawback: infinite sums.
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Erlang-A: Stability

Claim: Erlang-A is always stable.

Proof:

π−1
0 =

n∑
j=0

(λ/µ)j

j!
+

∞∑
j=n+1

j∏
k=n+1

 λ

nµ + (k − n)θ

 (λ/µ)n

n!

≤
∞∑

j=0

(λ/ min(µ, θ))j

j!
= e−λ/ min(µ,θ) .

(Used the inequality nµ + (k − n)θ ≥ k min(µ, θ), for all k ≥ n.)

Remark: Let dj = death-rate in state j, 0 < j < ∞.

Then, in fact,

j ·min(µ, θ) ≤ dj ≤ j ·max(µ, θ) .

Now observe that the bounds are death-rates of M/M/∞ queues,

with service rates min(µ, θ) and max(µ, θ).

This implies that Erlang-A is sandwiched (stochastically) between

two M/M/∞ queues.

⇒ The stationary (limiting) distribution is sandwiched (stochas-

tically) between Poisson distributions.

Special case: µ = θ ⇒ Erlang-A d= M/M/∞.

⇒ Square-Root Staffing

(via Poisson ≈ Normal; more on that later).
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Steady-State Distribution via
Special Functions (Palm)

Gamma function:

Γ(x) ∆=
∫ ∞
0

tx−1e−tdt , x > 0.

Incomplete Gamma function:

γ(x, y) ∆=
∫ y

0
tx−1e−tdt , x > 0, y ≥ 0.

A(x, y) ∆=
xey

yx
·γ(x, y) = 1+

∞∑
j=1

yj

∏j
k=1(x + k)

, x > 0, y ≥ 0.

Recall E1,n = blocking probability in Erlang-B (M/M/n/n):

E1,n =
(λ/µ)n

n!∑n
j=0

(λ/µ)j

j!

=
(λ/µ)n

eλ/µ
· 1

Γ(n + 1)− γ(n + 1, λ/µ)
.

(Can be efficiently calculated via recursion.)

Then

πj =



πn ·
n!

j! ·
(

λ
µ

)n−j , 0 ≤ j ≤ n ,

πn ·
(

λ
θ

)j−n

∏j−n
k=1

(
nµ
θ + k

) , j ≥ n + 1 ,

where

πn =
E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

.
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Operational Performance Measures

The most prevalent performance measure is

P{Wq ≤ T ; Sr} (or “worse” P{Wq ≤ T | Sr}).

We recommend:

• P{Wq ≤ T ; Sr} - fraction of well-served;

• P{Ab} - fraction of poorly-served.

with T determined via “Waiting less than T is Well-Served”.

Or even a four-dimensional refinement:

• P{Wq ≤ T ; Sr} - fraction of well-served;

• P{Wq > T ; Sr} - fraction of served, with

potential for improvement (say, a higher priority on next visit);

• P{Wq > ε; Ab} - fraction of poorly-served;

• P{Wq ≤ ε; Ab} - fraction of those whose service-level is

undetermined.

with ε: “Abandoning before ε is Harmless”.
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Properties of P{Ab}

• P{Ab} increases monotonically in θ, λ;

P{Ab} decreases monotonically in n, µ

(Bhattacharya and Ephremides, 1991);

• P{Ab} ≤ P{Block} in Erlang-B (Boxma and de Waal, 1994)

(think zero-patience).

• Note: In M/M/n+G, with E[τ ] fixed, deterministic patience

minimizes P{Ab} but maximizes E[Wq] (Zeltyn’s PhD, 2004).
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Additional Useful Performance Measures

• ASA (Average Speed of Answer) – used extensively in call

centers; usually taken to be E[Wq|Sr] (could be misleading);

• Average Wait E[Wq];

• Delay Probability P{Wq > 0} - important (later), yet unused;

• Agents’ Occupancy ρ =
λ · (1− P{Ab})

nµ
;

• Average Queue-Length E[Lq].

Operational Performance Measures:

Calculation via 4CallCenters

- Performance measures of the form E[f(V, τ )].

- Calculable, by numerically stable algorithms.

For example,

f(v, τ ) E[f(V, τ )]

1{v>τ} P{V > τ} = P{Ab}
1(t,∞)(v ∧ τ ) P{Wq > t}

1(t,∞)(v ∧ τ )1{v>τ} P{Wq > t; Ab}
(v ∧ τ )1{v>τ} E{Wq; Ab}

g(v ∧ τ ) E[g(Wq)]

From these, one derives additional measures, eg. E[Wq|Ab].
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Operational Performance Measures:
Calculation via 4CallCenters

 

Erlang-A parameters:

λ = 300 calls/hour, 1/µ = 2 min, n = 10, 1/θ = 2 min.

Target times T = 30 sec, ε = 10 sec.

• P{Wq ≤ T ; Sr} = 71.1%;

• P{Wq > T ; Sr} = 87.5% − 71.1% = 16.4%;

• P{Wq > ε; Ab} = 12.5% − 3.9% = 8.6%;

• P{Wq ≤ ε; Ab} = 3.9%.

• Delay probability P{Wq > 0} = 100% − 45.8% =

54.2%.
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Additional Performance Measures:
Calculation via 4CallCenters

 

• Average Time in Queue = E[Wq] = 15 sec;

• ASA = E[Wq|Sr] = 13.8 sec;

• Agents’ Occupancy ρ = 87.5%;

• Average Queue Length E[Lq] = 1.3.
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Operational Performance Measures:
Calculation via Special Functions

For example,

P{Wq > 0} =
∞∑

j=n
πj =

A
(

nµ
θ

, λ
θ

)
· E1,n

1 +
(
A

(
nµ
θ

, λ
θ

)
− 1

)
· E1,n

,

P[Ab|Wq > 0] =
1

ρA
(

nµ
θ

, λ
θ

) + 1 −
1

ρ
,

E[Wq|Wq > 0] =
1

θ
·

 1

ρA
(

nµ
θ

, λ
θ

) + 1 −
1

ρ

 .
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P{Ab} ∝ E[Wq]

Recall. In a queueing model with patience that is exp(θ):

P{Ab} = θ · E[Wq] .

Israeli Bank: Yearly Data

hourly data aggregated
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The graphs are based on 4158 hour-intervals.

Regression ⇒ Average Patience (1/θ) ≈
250

0.56
≈ 446 sec.
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U.S. Bank

Retail Telesales
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Retail – significant abandonment during first seconds of wait.

Linear patterns with non-zero intercepts

Israeli data: new customers VRU-time included in wait
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Left-hand plot ≈ exp patience with balking:

0 with probability p, exp(θ) with probability (1 − p).

Right-hand plot ≈ delayed patience: c + exp(θ), c > 0.
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Parameter Estimation and Prediction I;
4CallCenters, Erlang-A, and beyond

Estimation: Inference from historical data (e.g. Exp, LogNor-

mal), with parameters assumed fixed over time-periods (overall).

Prediction: Forecast behavior beyond the available data.

Arrivals (λ)

• Poisson arrivals, time-varying but assumed with constant rate

at 15/30/60 min. scale;

• Significant uncertainty concerning future rates ⇒ prediction;

• Helpful: Predict separately daily volumes and fraction of ar-

rivals per time interval.

Services (µ, or E(S))

• Typically stable from day to day ⇒ estimation;

• Can vary, depending on time-of-day;

• Typically, service time 6= talk time, and the former is needed.

First approach:

Service Time = talk time + wrap-up time (after-call work) + . . . ;

Second Estimation Approach:

̂
E(S) =

Total Working Time − Total Accessible (Idle) Time

# Served Customers
.
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Parameter Estimation and Prediction II

Number of Agents (n)

• Obtaining accurate historical data on n can be hard.

• Output of WFM software (given λ, µ, θ, and performance

goals). One gets, in fact, the number of FTE’s (Full Time

Equivalent positions).

• Agents on Schedule = FTE’s × RSF (Rostered Staff Factor)

(RSF > 1). Reasons: absenteeism, unscheduled breaks, . . .

(Im)Patience (θ)

• Observations are censored! (typically heavy censoring):

– Customer abandons ⇒ patience τ known;

– Customer served ⇒ offered-wait V known (⇒ τ > V ).

• Estimate via

θ̂ =
# Abandoning

Total Waiting Time (Abandoning + Served)
;

or via slope of the Regression of P{Ab} over E[Wq], as before;

or both.
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Estimating (Im)Patience Distribution I

Are patience times really exponential?

To “uncensor data”, use the Kaplan-Meier estimator (standard).

Output: Estimates of survival function and hazard-rate function.

Empirical Hazard Rates of (Im)Patience

U.S. Bank Israeli Bank
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Estimating (Im)Patience Distribution II

Israeli Bank: Service Types

Figure 15: Survival curves (Nov.–Dec.)
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Figure 16: Survival curves for time willing to wait (Nov.–Dec.)
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anomalies. In spite of the fact that one expects the true distributions to be skewed to the right, the
estimated distributions are severely truncated. This is especially true for types PS and NE because
they are more heavily censored. See Figure 16. A result of this is that the estimated means for PS
and NE calls are much smaller than the estimated medians, while the opposite relation holds for

26

IN – Internet; NE – Stocks; NW – New; PS – Regulars

Conclusions:

• Patience time are, in general, non-exponential;

• Tele-customers are (perhaps surprisingly) very patient;

• Hazard-Rates very informative concerning dynamic qualita-

tive evolution of (im)patience (peaks, IFR, DFR). (Palm: pro-

portional to irritation);

• Survival functions useful for (stochastic) comparisons;

• Kaplan-Meier often problematic for estimating quantitative

characteristics (mean, variance, median). (Eg.
̂

E[τ ] =
∫ ∞
0

̂
S(x)dx.)

Question: Can Erlang-A be applied with non-exponential (im)patience?
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Erlang-A: Simple Model at the
Service of Complex Realities

• Small Israeli bank (10 agents);

• Data-Based Estimation of θ̂ = # Abandoning
Total Waiting Time;

• Graph: Actual Performance vs. Erlang-A Predictions (aggre-

gation of 40 similar hours): Model provides tight upper bounds.
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• Question: Why does Erlang-A works? indeed, all its under-

lying assumptions fail (Arrivals, Services, Impatience).

• Towards a Theoretical Answer: Robustness and Limi-

tations, via Asymptotic (QED/QD) Analysis - later.

• Practical Significance: Asymptotic results applicable in

small systems (eg. healthcare).
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Queueing Science: In Support of Erlang-A

Israeli Bank: Yearly Data
Hourly Data Aggregated
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Data: P{Ab} ∝ E[Wq] .

Theory: P{Ab} = θ · E[Wq], if (Im)Patience = Exp(θ).

Proof: Let λ = Arrival Rate. Then, by Conservation & Little:

λ · P{Ab} = θ · E[Lq] = θ · λ · E[Wq], q.e.d.

Recipe: Use Erlang-A, with θ̂ =
̂

P{Ab}/ ̂
E[Wq] (slope above).

But (Im)Patience is not Exponentially distributed !?

Queueing Science: via Data & Theory, Linearity Robust.

Service Engineering: via Theory & Simulations, often-enough,

• Reality ≈ M/G/n + G ≈ Erlang-A, in which θ = g(0);

• P{Ab} ≈ g(0)·E[Wq] , hence recipe prevails, often enough.
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4CallCenters: Congestion Curves

Vary input parameters of Erlang-A and display output

(performance measures) in a table or graphically.

Example: 1/µ = 2 minutes, 1/θ = 3 minutes;

λ varies from 40 to 230 calls per hour, in steps of 10;

n varies from 2 to 12.

Probability to abandon Average wait
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Red curve: offered load per server fixed.

EOS (Economies-Of-Scale) observed.

Why are the two graphs similar?
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4CallCenters:
Advanced Staffing Queries I

Set multiple performance goals.

Example: 1/µ = 4 minutes, 1/θ = 5 minutes;

λ varies from 100 to 1200, in steps of 50.

Performance targets:

P{Ab} ≤ 3%; P{Wq < 20 sec; Sr} ≥ 0.8.

4CallCenters output
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4CallCenters:
Advanced Staffing Queries II

Recommended staffing level Target performance measures
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EOS: 10 agents needed for 100 calls per hour but only 83 for 1200

calls per hour.
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Back to General (Im)Patience:
Empirical Patience Distributions

Are patience times Exponential?

In the call centers that we studied, they are not!

Empirical hazard rates of patience times

U.S. bank Israeli bank
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To “uncensor data” use Kaplan-Meier (product-limit) estimator.

Output: estimates of survival function and hazard rate.
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The M/M/n+G Queue

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

G

Patience times
d
= G(eneral), i.i.d., independent of all else.

Performance measures can be computed, but calculations are

cumbersome.
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M/M/n+G: Building Blocks,
for calculating Performance Measures

Reference (Support Material in website): with Zeltyn, prepared

for Bank of America.

H(x)
∆
=

∫ x

0
Ḡ(u)du ,

where Ḡ(·) = 1 − G(·) is the survival function of (im)patience.

J
∆
=

∫ ∞
0

exp {λH(x) − nµx} dx ,

J1
∆
=

∫ ∞
0

x · exp {λH(x) − nµx} dx ,

JH
∆
=

∫ ∞
0

H(x) · exp {λH(x) − nµx} dx ,

J(t)
∆
=

∫ ∞
t

exp {λH(x) − nµx} dx .

J1(t)
∆
=

∫ ∞
t

x · exp {λH(x) − nµx} dx ,

JH(t)
∆
=

∫ ∞
t

H(x) · exp {λH(x) − nµx} dx .

Finally,

E ∆
=

n−1∑
j=0

1

j!

λ

µ


j

1

(n − 1)!

λ

µ


n−1 .
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M/M/n+G: Performance Measures

{Ab} = {Abandonment}, {Sr} = {Served},
W – waiting time, V – offered wait,
Q – queue length.

P{V > 0} =
λJ

E + λJ
,

P{W > 0} =
λJ

E + λJ
· Ḡ(0) ,

P{Ab} =
1 + (λ − nµ)J

E + λJ
,

P{Sr} =
E + nµJ − 1

E + λJ
,

E[V ] =
λJ1

E + λJ
,

E[W ] =
λJH

E + λJ
,

E[Q] =
λ2JH

E + λJ
,

E[W | Ab] =
J + λJH − nµJ1

(λ − nµ)J + 1
,

E[W | Sr] =
nµJ1 − J

E + nµJ − 1
,

P{W > t} =
λḠ(t)J(t)

E + λJ
,

E[W | W > t] =
JH(t) − (H(t) − tḠ(t)) · J(t)

Ḡ(t)J(t)
,

P{Ab | W > t} =
λ − nµ − G(t)

λḠ(t)
+

exp{λH(t) − nµt}
λḠ(t)J(t)

.
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M/M/n+G: Impact on Performance
of Patience-Distribution

Parameters: 1 min average service time, 2 min average patience,

10 agents, arrival rate varies from 3 to 50 per minute.

G = Exponential, Deterministic, Uniform (mean = 2 min)

Average Wait Probability to Abandon
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Applications of M/M/n+G Model:
Linear Patterns of P{Ab}/E[Wq]

with Non-Zero Intercepts

Israeli data: new customers VRU-time included in wait
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Left-hand plot ≈ exp patience with balking:

0 with probability p,

exp(θ) with probability (1 − p).

Right-hand plot ≈ delayed patience:

c + exp(θ), c > 0.
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Simple Models at the Service of Complex
Realities: A Patience Index

How to quantify (im)patience? Assuming experienced customer,

Theoretical Patience Index
∆
=

time willing to wait

time required to wait

=
average patience

average offered wait
. (1)

Demanding calculations. Hence, “assume” τ and V Exponential:

Empirical Patience Index
∆
=

% served

% abandoned
.

Easily calculable from ACD reports.

Patience Index – Empirical vs. Theoretical
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 64

                PATIENCE INDEX 

•  How to Define?  Measure?  Manage? 

 
Statistics    Time Till  Interpretation 

360K served (80%)        2 min.   ? must = expect 
90K abandon (20%)      1 min.   ? willing to wait 

 
“Time willing to wait”  of served is censored by their “wait”. 

“Uncensoring”  (simplified) 
 

Willing to wait 1 + 2 421
K90
K360

×+=×  = 9 min. 

Expect to wait 2 + 1 
4
112

K360
K90

×+=×  = 2.25 min. 

 

Patience Index = 
 0 it abandon/wa #

0 t served/wai #4
expect time

 willingtime
>
>

==  

     ↑      ↑  
     definition    measure 

•  Supported by ongoing research (Wharton). 
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Customer-Focused Queueing Theory

Waiting experience of experienced customer often cycles through:

1. Time that a customer expects to wait;

2. Time that a customer is willing to wait (τ , patience or need);

3. Time that a customer required wait (V , offered wait);

4. Time that a customer actually waits (Wq = min(τ, V ));

5. Time that a customer perceives waiting.

Experienced customers ⇒ 1=3.

Rational customers ⇒ 4=5.

Thus left with (τ, V ), as in Erlang-A.

Eg. 200 abandonment in Direct-Banking: Perceived vs. Actual.

Customer-Focused Queueing Theory

– 200 abandonment in Direct-Banking

– Not scientific

Reason to Abandon Actual Abandon Perceived Abandon Perception
Time (sec) Time (sec) Ratio

Fed up waiting 70 164 2.34
(77%)

Not urgent 81 128 1.6
(10%)

Forced to 31 35 1.1
(4%)

Something came up 56 53 0.95
(6%)

Expected call-back 13 25 1.9
(3%)

⇒ Rational Abandonment from Invisible Queues (with

Shimkin).

21
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Adaptive Behavior of (Im)patient
Customers

Question: Do customers adapt their patience to system perfor-

mance (offered wait)?

Israeli Bank: Internet-Support Customers

Supporting theory in “Rational abandonment from invisible queues”,

with Shimkin & Zohar.
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A simple way for calculating E1,n is the recursion

E1,0 = 0; E1,n =
ρE1,n−1

1 + ρE1,n−1
, n ≥ 1,

in which ρ is the offered load per agent, namely

ρ
∆=

λ

nµ
.

In the Appendix, we deduce from (3.5) the following solution for the steady-state distribution:

πj =



πn ·
n!

j! ·
(

λ
µ

)n−j , 0 ≤ j ≤ n ,

πn ·

(
λ
θ

)j−n

∏j−n
k=1

(nµ
θ + k

) , j ≥ n + 1 ,

(3.7)

where

πn =
E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

. (3.8)

4 Operational measures of performance

In order to understand and apply the Erlang-A model, one must first define its measures of

performance, and then be able to calculate them. Moreover, since call centers can get very

large (thousands of agents), the implementation of these calculations must be both fast and

numerically stable.

4.1 Practical measures: Waiting Time

The most popular measure of operational (positive) performance is the fraction of served cus-

tomers that have been waiting less than some given time, or formally P{W ≤ T, Sr}, where W

is the (random) waiting time in steady-state, {Sr} is the event “customer gets service” and T is

a target time that is determined by Management/Marketing. For example, in a call center that

caters to emergency calls, T = 0 (or T very small) would be appropriate. A common rule of

thumb (without any theoretical backing, as far as we know) is the goal that at least 80% of the

customers be served within 20 seconds; formally, P{W ≤ 20, Sr} ≥ 0.8. To this, one sometimes

adds E[W], or E[W |W > 0], as some measure of an average (negative) experience for those who

waited.

9

user
Highlight

user
Text Box

user
Highlight



An important measure that is rarely used in practice is P{W > 0}, the fraction of customers

who encounter a delay. This is a useful stable measure of congestion. Its importance stems from

the fact that it identifies an organization’s operational focus, in the following sense:

• P{W > 0} close to 0 indicates a Quality-Driven operation, where the focus is on service

quality;

• P{W > 0} close to 1 indicates an Efficiency-Driven operation, where the focus is on

servers’ efficiency (in the sense of high servers’ utilization);

• P{W > 0} strictly between 0 and 1 (for example 0.5) indicates a careful balance between

Quality and Efficiency, which we abbreviate to QED = Quality & Efficiency Driven

operational regime.

The above three-regime dichotomy is rather delicate. For example, consider a system in

which customers’ average patience is close to the average service duration (for example, let both

be equal to one minute), and assume that its offered load λ/µ is 100 Erlangs. Then, staffing

of 100 servers would lead to the QED regime, with high levels of both service and efficiency

that are balanced as follows: about 50% of the customers are served immediately upon arrival,

the average wait is 2.3 seconds, 4% of the customers abandon due to their impatience, and

servers’ utilization levels are 96%. The QED regime still prevails at staffing levels between 95

and 105. With 90 servers, the system is efficiency-driven: 11% of the customers abandon, only

15% are served immediately, and utilization is over 99%. With 110 agents, it is quality-driven:

abandonment is less than 1%, and 83% are served immediately.

In Section 6, we shall add details about the three operational regimes. This will be done in

the context of describing regime-specific approximations for performance measures. However,

there is much more to say about this important subject, and readers are referred to [19, 9] and

Section 4 in the review [17] for details.

4.2 Practical measures: accounting for Abandonment

In a quality-driven service, P{W > 0} seems the “right” measure of operational performance.

We thus turn to alternative modes of operations and consider hereafter services in which P{W >

0} is not close to vanishing.
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As explained before, performance measures must take into account those customers who

abandon. Indeed, if forced into choosing a single number as a proxy for operational performance,

we recommend the probability to abandon P{Ab}, the fraction of customers who explicitly

declare that the service offered is not worth its wait. Some managers actually opt for a refinement

that excludes those who abandon within a very short time, formally P{W > ε;Ab}, for some

small ε > 0, for example ε = 3 seconds. The justification is that those who abandon within 3

seconds can not be characterized as poorly served. There is also a practical rational that arises

from physical limitations, specifically that such “immediate” abandonment could in fact be a

malfunction or an inaccuracy of the measurement devices.

The single abandonment measure P{Ab} can be in fact refined to account explicitly for those

customers who were or were not well-served. Thus, we propose:

• P{W ≤ T ; Sr} - fraction of well-served;

• P{Ab} - fraction of poorly-served.

A further refinement, that yields a four-dimensional service measure, could be:

• P{W ≤ T ; Sr} - fraction of well-served;

• P{W > T ; Sr} - fraction of served, with a potential for improvement (say, a higher priority

on their next visit);

• P{W > ε; Ab} - fraction of poorly-served;

• P{W ≤ ε; Ab} - fraction of those whose service-level is undetermined - see the above for

an elaboration.

Remark 4.1 4CallCenters [16] calculates, for a given target time, both P{W ≤ T ; Sr}, the

fraction of customers who are served within target, and P{W ≤ ε; Ab}, those who abandon

within target. To calculate the other two measures, it suffices to have P{Ab}, also calculated

by 4CallCenters. Indeed,

P{W > T ; Sr} = 1− P{Ab} − P{W ≤ T ; Sr} ,

P{W > ε; Ab} = P{Ab} − P{W ≤ ε; Ab} .

Since a single target must be used (T = ε above), one must apply the program twice if different

targets are required.
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4.3 Calculations: the 4CallCenters software

Black-box Erlang-A calculations, as well as many other useful features, are provided by the free-

to-use software 4CallCenters [16]. (This software is being regularly debugged and upgraded.)

The calculation methods are described in Appendix B of [19]; they were developed in the Tech-

nion’s M.Sc. thesis of the first author, Ofer Garnett.

Figure 5: 4Callcenters. Example of output.

 

These calculations are in fact for measures of the form E[f(V, τ)], for various functions f

(Table 3 in [19]). For example,

E[W ] = E [min{V, τ}] , P{Abandon} = E
[
1{τ<V }

]
.

Figure 5 displays a 4CallCenters output and demonstrates how to calculate the four-dimensional

service measure, introduced in Subsection 4.2.

The values of the four Erlang-A parameters are displayed in the middle of the upper half of

the screen: n = 10, 1/µ = 2 minutes, λ = 300 calls per hour, 1/θ = 2 minutes. Let T = 30

12



seconds and ε = 10 seconds. Then one should perform computations twice: with Target Time

30 and 10 seconds. (Both computations appear in Figure 5.) We get:

• P{W ≤ T ; Sr} - fraction of well-served is equal to 71.1%;

• P{W > T ; Sr} - fraction of served, with a potential for improvement, is 16.4% (87.5% −

71.1%);

• P{W > ε; Ab} - fraction of poorly-served is 8.6% (12.5%− 3.9%);

• P{W ≤ ε; Ab} - fraction of those whose service-level is undetermined is 3.9%.

Note that the 4CallCenters output includes many more performance measures than those dis-

played in Figure 5: one could scroll the screen to values of agents’ occupancy, average waiting

time, average queue length, etc.

In Section 9 we describe several examples of the more advanced capabilities of 4CallCenters.

4.4 Delay probability P{W>0}

In this note, we content ourselves with few representative insightful calculations, based on con-

ditioning and the incomplete gamma function introduced above. We start with the delay proba-

bility P{W > 0}, which represents the fraction of customers who are forced to actually wait for

service. (The others are served immediately upon calling.) Recall that this measure identifies

operational regimes of performance.

Following Palm [31], we show in the Appendix that the representations (3.5) and (3.7)

immediately imply

P{W > 0} =
∞∑

j=n

πj =
A

(
nµ
θ , λ

θ

)
· E1,n

1 +
(
A

(
nµ
θ , λ

θ

)
− 1

)
· E1,n

; (4.1)

here, the first equality in (4.1) follows from PASTA.

4.5 Fraction abandoning P{Ab}

We proceed with calculating the probability to abandon, which represents the fraction aban-

doning. Define Pj{Sr} to be the probability of ultimately getting served, for a customer that

encounters all servers busy and j customers in queue, upon arrival (equivalently, n + j in the

system). ”Competition among exponentials” now implies that

P0{Sr} =
nµ

nµ + θ
.
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Then,

P1{Sr} =
nµ + θ

nµ + 2θ
· P0{Sr} =

nµ

nµ + 2θ
,

where we conditioned on the first event, after an arrival that encounters all servers busy and a

single customer in queue; this event is either a service completion (with probability nµ+θ
nµ+2θ ) or

an abandonment. More generally, via induction:

Pj{Sr} =
nµ + jθ

nµ + (j + 1)θ
· Pj−1{Sr} =

nµ

nµ + (j + 1)θ
, j ≥ 1 .

The probability to abandon service, given all servers busy and j customers in the queue upon

arrival, finally equals

Pj{Ab} = 1− Pj{Sr} =
(j + 1)θ

nµ + (j + 1)θ
, j ≥ 0 . (4.2)

It follows that

P[Ab|W > 0] =
∞∑

j=n

πjPj−n{Ab}/ P{W > 0} =
1

ρA
(

nµ
θ , λ

θ

) + 1− 1
ρ

. (4.3)

The first equality in (4.3) is a consequence of PASTA, and the second is derived in the Appendix.

The fraction abandoning, P{Ab}, is simply the product P[Ab|W > 0]× P{W > 0}.

4.6 Theoretical relations among P{Ab}, E(W), E(Q)

A remarkable property of Erlang-A, which in fact generalizes to other models with patience that

is exp(θ), is the following linear relation between the fraction abandoning P{Ab} and average

wait E[W ]:

P{Ab} = θ · E[W ] . (4.4)

Proof: The proof is based on the balance equation

θ · E[Q] = λ · P{Ab} , (4.5)

and on Little’s formula

E[Q] = λ · E[W ] , (4.6)

where Q is the steady-state queue length. The balance equation (4.5) is a steady-state equality

between the rate that customers abandon the queue (left hand side) and the rate that abandoning

customers (i.e. - customers who eventually abandon) enter the system. Substituting Little’s

formula (4.6) into (4.5) yields formula (4.4).
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Observe that (4.4) is equivalent to

P[Ab|W > 0] = θ · E[W |W > 0] . (4.7)

Then, the average waiting time of delayed customers is computed via (4.3) and (4.7):

E[W |W > 0] =
1
θ
·

 1

ρA
(

nµ
θ , λ

θ

) + 1− 1
ρ

 . (4.8)

The unconditional average wait E[W ] equals the product of (4.1) with (4.8).

4.7 A general approach for computing operational performance measures

Expressions for additional performance measures of Erlang-A are derived in Riordan [32]. How-

ever, we recommend to use more general M/M/n+G formulae, as the main alternative to the

4CallCenters software. Indeed, M/M/n+G is a generalization of Erlang-A, in which patience

times are generally distributed. A comprehensive list of M/M/n+G formulae, as well as guid-

ance for their application, appears in Mandelbaum and Zeltyn [30]. The preparation of [30]

was triggered by a request from a large U.S. bank. Consequently, this bank has been routinely

applying Erlang-A in the workforce management of its 10,000 telephone agents, who handle

close to 150 millions calls yearly. (In fact, Erlang-A replaced a simulation tool that had been

used before.)

The handout [30] also explains how to adapt the M/M/n+G formulae to Erlang-A, in which

patience is exponentially distributed:

G(x) = 1− e−θx , θ > 0.

Specifically, see Sections 1,2 and 5 of [30].

Finally, we explain how to calculate the four service measures from Section 4.2. The list on

page 4 of [30] contains formulae for P{Ab}, P{W > T} and P{Ab|W > T}. The product of the

last two provides us with P{W > T ; Ab}. The other three service measures are easily derived.

For example,

P{W > T ; Sr} = P{W > T} − P{W > T ; Ab} .

4.8 Empirical relations between E(W) and P{Ab}

Figure 6 illustrates the relation (4.4). It was plotted using yearly data of an Israeli bank call

center [12]. (See also Brown et al. [11] for statistical analysis of this call center data.) First,
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Appendix

A Derivation of some Erlang-A performance measures

Steady-state distribution. Using formulae (3.4), (3.5) and definition (3.6) one gets

π−1
0 =

n∑
j=0

(λ/µ)j

j!
+

(λ/µ)n

n!
·

∞∑
j=n+1

j∏
k=n+1

(
λ

nµ + (k − n)θ

)

=
(λ/µ)n

n!
·

 1
E1,n

+
∞∑

j=1

(λ/θ)j∏j
k=1

(nµ
θ + k

)
 =

(λ/µ)n

n!
·
[

1
E1,n

+ A

(
nµ

θ
,
λ

θ

)
− 1

]
.

Hence

π0 =
E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

· n!
(λ/µ)n

.

For 1 ≤ j ≤ n

πj = π0 ·
(λ/µ)j

j!
=

E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

· n!
j! · (λ/µ)n−j

.

Specifically,

πn =
E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

. (A.1)

Finally, for j > n,

πj = πn ·
λj−n∏j−n

k=1(nµ + kθ)
=

E1,n

1 +
(
A

(
nµ
θ , λ

θ

)
− 1

)
· E1,n

·

(
λ
θ

)j−n

∏j−n
k=1

(nµ
θ + k

) . (A.2)
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Probability of wait. From PASTA, (A.1) and (A.2), the delay probability is equal to

P{W > 0} =
∞∑

j=n

πj =
E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

·

1 +
∞∑

j=n+1

(λ/θ)j−n∏j−n
k=1

(nµ
θ + k

)


=
A

(
nµ
θ , λ

θ

)
· E1,n

1 +
[
A

(
nµ
θ , λ

θ

)
− 1

]
· E1,n

. (A.3)

Probability to abandon. First, we need to perform some preliminary calculations. Differen-

tiating (3.5), we get

∂

∂y
A(x, y) =

∂

∂y

[
xey

yx
γ(x, y)

]
=

x

y
+

(
1− x

y

)
·A(x, y) .

Then, for x > 0, y > 0,

∞∑
j=0

(j + 1)yj∏j+1
k=1(x + k)

=
∂

∂y

 ∞∑
j=1

yj∏j
k=1(x + k)


=

∂

∂y
[A(x, y)− 1] =

∂

∂y
A(x, y) =

x

y
+

(
1− x

y

)
·A(x, y) . (A.4)

Using (A.3) and (4.2), the conditional probability to abandon is equal to

P{Ab|W > 0} =
∑∞

j=n πj · Pj−n{Ab}
P{W > 0}

=
1

A
(

nµ
θ , λ

θ

) ·
∞∑

j=n

(
λ
θ

)j−n

∏j−n
k=1

(nµ
θ + k

) · θ(j + 1− n)
nµ + θ(j + 1− n)

(by convention,
0∏

k=1

(
nµ

θ
+ k

)
∆= 1)

=
1

A
(

nµ
θ , λ

θ

) ·
∞∑

j=0

(
λ
θ

)j
· (j + 1)∏j+1

k=1

(nµ
θ + k

) =
1

A
(

nµ
θ , λ

θ

) · ∂

∂y

[
A

(
nµ

θ
, y

)]
y=λ/θ

=
1

A
(

nµ
θ , λ

θ

) ·
[
nµ

λ
+

(
1− nµ

λ

)
A

(
nµ

θ
,
λ

θ

)]
=

1

ρA
(

nµ
θ , λ

θ

) + 1− 1
ρ

,

where the last line follows from (A.4).
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out busy-signals) and M/M/N/N (Erlang B, disallowing waiting). All of these models lack a
central prevalent feature, namely that impatient customers might decide to leave (abandon)
before their service begins.

In this paper we analyze the simplest abandonment model, in which customers’ patience is

exponentially distributed and the system’s waiting capacity is unlimited (M/M/N +M). Such

a model is both rich and analyzable enough to provide information that is practically important

for call center managers. We first outline a method for exact analysis of theM/M/N+M model,

that while numerically tractable is not very insightful. We then proceed with an asymptotic

analysis of the M/M/N + M model, in a regime that is appropriate for large call centers

(many agents, high efficiency, high service level). Guided by the asymptotic behavior, we derive

approximations for performance measures and propose “rules of thumb” for the design of large

call centers. We thus add support to the growing acknowledgment that insights from diffusion

approximations are directly applicable to management practice.
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Appendix B:

Calculating E[f(V, X)] in an M/M/N/B + M Model

To calculate E[f(V,X)], we start with the following decomposition:

E[f(V,X)] = E[f(V,X) · 1(0,∞)(V )] + E[f(V,X) · 1{0}(V )]

= E[f(V,X) · 1(0,∞)(V )] + E[f(0, X)] · (πB +
N−1
∑

k=0

πk) . (4)

Here we use π to denote the stationary distribution of the queue-length process Q(t),

namely

lim
t→∞

P{Q(t) = n} = πn , n = 0, 1, 2, . . . B .

A general expression for these probabilities is given by

πk =























(λ/µ)k

k!
π0 , 0 ≤ k ≤ N

k
∏

j=N+1

(

λ

Nµ+ (j −N)θ

)

(λ/µ)N

N !
π0 , N < k ≤ B

where

π0 =





N
∑

k=0

(λ/µ)k

k!
+

B
∑

k=N+1

k
∏

j=N+1

(

λ

Nµ+ (j −N)θ

)

(λ/µ)N

N !





−1

.

Remark:

For a blocked customer (i.e the queue was full upon his arrival) the convention V = 0 is

introduced.

For all functions f which seem of interest in our case, E[f(0, X)] evaluates to 0 or 1.

Therefore we proceed to calculate the first expression. We present three different meth-

ods for performing this calculation, each with its own virtues and drawbacks.

Our calculations require the distribution function of V . Recall that V is the po-

tential waiting time of a typical customer. What is meant by a “typical” customer?

Consider the sequence {wn, n ∈ IN}, where wn is the potential waiting time of the n-th

customer. Let Fw be the stationary distribution of this sequence. Quoting from Baccelli

and Hebuterne [2], Fw is also the stationary distribution of the process ν(t) - the virtual

waiting time at time t (i.e. the time spent waiting in queue of a hypothetical infinitely-

patient customer arriving at time t). Therefore a typical customer’s potential waiting

time, V , has distribution function Fw.
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Similarly we are interested in Vn, which is a random variable whose distribution is

that of V given n customers in queue upon arrival, and all agents busy, n = 0, 1, . . . ; Vn

has distribution function Fn.

The distribution of V is not given beforehand, and is derived through analysis of

the model. On the other hand, Vn can be expressed as the sum of n + 1 independent

exponential random variables with parameters Nµ, Nµ + θ, . . . , Nµ + nθ, the i-th of

these representing the period of time the customer spent in the i-th place in queue, before

advancing to the (i−1)-th (due to end of service or abandonment from the queue in front

of him).

Method A: Conditioning on the number of customers in the queue upon arrival, and

substituting the explicit expression given by Riordan [35] (equation (83) on page 111) for

F̄n(t) = 1− Fn(t), we have

E[f(V,X)1(0,∞)(V )] = cπN
B−N−1
∑

k=0

(−1)k (λ/θ)k

k!
I(k)

B−N−1
∑

n=k

(λ/θ)n−k

(n− k)!
, (5)

where

I(k) = θ2c
∫ ∞

0

∫ ∞

0
f(t, x)e−(c+k)θte−θxdtdx and c = Nµ/θ

Calculating the values of I(k) is usually a simple task. The main drawback of this

method are the alternating signs in the first sum, which cause it to be numerically unsta-

ble. Therefore we present the next method, which avoids this problem.

Method B: Starting similarly to Method A, and using the relation

n
∑

k=0

(

n

k

)

(−e−θt)k =
(

1− e−θt
)n

to eliminate one sum, we arrive at

E[f(V,X)1(0,∞)(V )] = θ2cπN
B−N−1
∑

n=0

(λ/θ)n

n!
J(n) , (6)

where

J(n) =
∫ ∞

0

∫ ∞

0
f(t, x)e−(x+ct)θ

(

1− e−θt
)n
dxdt . (7)

Here calculating the values of J(n) tends to be more costly since the integrals must usually

be solved numerically.

These methods lose some of their attractiveness when dealing with infinite buffers

(B =∞). Then sums appearing in both methods become infinite, and must be truncated
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at some point for implementation (the alternating signs in Method A can be problematic

in the aspect of truncation too). Since this case forces us to consider the issue of precision

tolerance, we present the third method, which is a straightforward numerical integration.

Method C: Following through Riordan [35], and solving the more general case of any

buffer size B, we arrive at the function f+V , where
f+

V

P{V >0} is a density function, given by

f+V (t) = NµπN

[

1− γ(B −N, λ
θ
(1− e−θt))

Γ(B −N)

]

· exp
{

λ

θ
(1− e−θt)−Nµt

}

, t > 0 . (8)

Here Γ and γ denote the gamma and incomplete gamma functions respectively, defined

by

Γ(x) =
∫ ∞

0
tx−1 exp(−t)dt and γ(x, y) =

∫ y

0
tx−1 exp(−t)dt , y > 0 .

Now we are left with the evaluation of the double integral

E[f(V,X) · 1(0,∞)(V )] =
∫ ∞

0

∫ ∞

0
f(t, x)θe−xθf+V (t)dxdt . (9)

The integral with respect to x is usually solved analytically and rather easily (depending

on f), leaving us to perform one numerical integration (with respect to t).

Some additional remarks concerning the infinite buffer case:

Remarks:

1. When the system’s buffer is unlimited, solving the stationary distribution equations

involves an infinite sum. A solution is given by Palm [32], expressing the station-

ary distribution as a function of the easily calculated blocking probability in an

M/M/N/N system (denoted here P{Bl}), with the same arrival and service rates:

πn =































P{Bl}
1 + (A( λ

Nµ
, Nµ

θ
)− 1)P{Bl}

· N !

n!
(

λ
µ

)N−n , n < N

P{Bl}
1 + (A( λ

Nµ
, Nµ

θ
)− 1)P{Bl}

·
(

λ
θ

)n−N

(

Nµ
θ

+ 1
)

· · ·
(

Nµ
θ

+ (n−N)
) , n ≥ N

where

A(x, y) =
yexy

(xy)y
· γ(y, xy) .

2. For B =∞ the density function f+V given here becomes a special case of the result

by Baccelli and Hebuterne [2] for an M/M/N +G model with patience distribution

F , namely:

f+V (t) = NµπN exp
{

λ
∫ t

0
(1− F (u))du−Nµt

}

, t > 0 .
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1 M/M/n+G: primitives and building blocks

Primitives:

λ – arrival rate,

µ – service rate (= reciprocal of average service time),

n – number of servers,

G – patience distribution (Ḡ = 1−G : survival function).

agents

arrivals

abandonment

λ

G
µ

1

2

n

…

queue

Building blocks.

Define

H(x) ∆=
∫ x

0
Ḡ(u)du .

Let

J
∆=

∫ ∞

0
exp {λH(x)− nµx} dx ,

J1
∆=

∫ ∞

0
x · exp {λH(x)− nµx} dx ,

JH
∆=

∫ ∞

0
H(x) · exp {λH(x)− nµx} dx .

In addition, let

J(t) ∆=
∫ ∞

t
exp {λH(x)− nµx} dx ,

and

JH(t) ∆=
∫ ∞

t
H(x) · exp {λH(x)− nµx} dx .

Finally, introduce

E ∆=

n−1∑
j=0

1
j!

(
λ

µ

)j

1
(n− 1)!

(
λ

µ

)n−1 .

1



1.1 Special case. Deterministic patience (M/M/n+D).

Patience times equal to a constant D. Then

H(x) =

{
x, 0 ≤ x ≤ D
D, x > D

.

If λ− nµ 6= 0,

J =
1

nµ− λ
− λ

nµ(nµ− λ)
· e−(nµ−λ)D ,

J(t) =


1

nµ− λ
· e−(nµ−λ)t − λ

nµ(nµ− λ)
· e−(nµ−λ)D , t < D

1
nµ

· eλD−nµt , t ≥ D

J1 =
1

(nµ− λ)2
−

[
1

(nµ− λ)2
− 1

(nµ)2
+

λD

nµ(nµ− λ)

]
· e−(nµ−λ)D ,

JH =
1

(nµ− λ)2
· [1− e−(nµ−λ)D]− λD

nµ(nµ− λ)
· e−(nµ−λ)D ,

JH(t) =


1

(nµ− λ)2
· [e−(nµ−λ)t − e−(nµ−λ)D] +

t

nµ− λ
· e−(nµ−λ)t − λD

nµ(nµ− λ)
· e−(nµ−λ)D , t < D

D

nµ
· eλD−nµt , t ≥ D

If λ− nµ = 0,

J = D +
1

nµ
,

J(t) =


D − t +

1
nµ

, t < D

1
nµ

· eλD−nµt , t ≥ D

J1 =
D2

2
+

D

nµ
+

1
(nµ)2

,

JH =
D2

2
+

D

nµ
,

JH(t) =


D2 − t2

2
+

D

nµ
, t < D

D

nµ
· eλD−nµt , t ≥ D

2
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1.2 Special case. Exponential patience (M/M/n+M, Erlang-A).

Patience times are iid exp(θ). Then

H(x) =
1
θ
· (1− e−θx) .

Define the incomplete Gamma function

γ(x, y) ∆=
∫ y

0
tx−1e−tdt, x > 0, y ≥ 0.

(γ(x, y) can be calculated in Matlab.) Then

J =
exp

{
λ
θ

}
θ

·
(

θ

λ

)nµ
θ

· γ
(

nµ

θ
,
λ

θ

)

J(t) =
exp

{
λ
θ

}
θ

·
(

θ

λ

)nµ
θ

· γ
(

nµ

θ
,
λ

θ
e−θt

)

JH =
J

θ
−

exp
{

λ
θ

}
θ2

·
(

θ

λ

)nµ
θ

+1

· γ
(

nµ

θ
+ 1,

λ

θ

)

JH(t) =
J(t)
θ

−
exp

{
λ
θ

}
θ2

·
(

θ

λ

)nµ
θ

+1

· γ
(

nµ

θ
+ 1,

λ

θ
e−θt

)

Remark. J1 cannot be expressed via the incomplete Gamma function. Consequently, formulae

that involve J1 (see the next page), must be calculated either numerically, or by approximations,

as discussed in the sequel.
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2 Performance measures, exact formulae

Many important performance measures of the M/M/n+G queue can be conveniently expressed

via the building blocks above. Define

P{Ab} – probability to abandon,

P{Sr} – probability to be served,

Q – queue length,

W – waiting time,

V – offered wait (time that a customer with infinite patience would wait).

Then

P{V > 0} =
λJ

E + λJ
,

P{W > 0} =
λJ

E + λJ
· Ḡ(0) ,

P{Ab} =
1 + (λ− nµ)J

E + λJ
,

P{Sr} =
E + nµJ − 1
E + λJ

,

E[V ] =
λJ1

E + λJ
,

E[W ] =
λJH

E + λJ
,

E[Q] =
λ2JH

E + λJ
,

E[W | Ab] =
J + λJH − nµJ1

(λ− nµ)J + 1
,

E[W | Sr] =
nµJ1 − J

E + nµJ − 1
,

P{W > t} =
λḠ(t)J(t)
E + λJ

,

E[W | W > t] =
JH(t)− (H(t)− tḠ(t)) · J(t)

Ḡ(t)J(t)
,

P{Ab | W > t} =
λ− nµ−G(t)

λḠ(t)
+

exp{λH(t)− nµt}
λḠ(t)J(t)

.
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