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requires that one understand the general distinction between a stochas-
tic process and its distribution, and the specific distinction between
standard Brownian motion and the Wiener measure.

Prove Proposition (3.2), which says that a continuous VF function has
zero quadratic variation.

Calculate the variance of the sum on the left side of (3.4) and show that
this vanishes as n — oo.

Let X be the coordinate process on C as in §A.3 and let v(f,A,w) be the
occupancy measure for X, defined by (3.4). Consider the particular
point w € C defined by w(f) = (1 — 1)?, t = 0. Fix a time ¢ > 1 and
describe v(z,*,0) in precise mathematical terms. Observe that this mea-
sure on (R, %) is absolutely continuous (with respect to Lebesgue mea-
sure) but its density is not continuous. This substantiates a claim made
in §3.

Prove (7.3) and (7.4). This is just a matter of verification, using the

‘definitions of conditional expectation and martingale.

Let X be a continuous adapted process on some filtered probability
space (Q,F,P). Define Vg(f) in terms of X via (5.8) and (5.10). The
converse of (5.11) that was invoked in proving the change of measure
theorem (7.9) is the following: If Vg is a martingale for each B € R,
then X is a (p,0) Brownian motion on (Q,F,P). The problem is to
prove this, specializing to thecase p =0and o = 1. As a first step,
observe that X is a (0,1) Brownian motion on (Q,F,P) if and only if

(*) P{X,s — X, < x|F} = O(s~ " x)
for x € R and s,¢ = 0. Then show that (») is equivalent to

Elexp B(Xpes — X)|F} = /2
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CHAPTER 2

Stochastic Models
of Buffered Flow

Consider a firm that produces a single durable commodity on a make-to-
stock basis. Production flows into a finished goods inventory, and demand
that cannot be met from stock on hand is simply lost, with no adverse effect
on future demand. The price of the output good is fixed, and demand is
viewed as an exogenous source of uncertainty. Similarly, we consider plant,
equipment, and work force size to be fixed for now, but there may be
uncertainty about actual production quantities because of mechanical fail-
ures, worker absenteeism, and so forth. This firin and its market, portrayed
schematically in Figure 1, constitute what we call a two-stage flow system. It
consists of an input process (production), an output process (demand), and
an intermediate buffer storage (the finished goods inventory) that serves to
decouple input and output. Many mathematical models of such flow systems
have been developed, with some aimed at particular areas of application and
some quite abstract in character. For a sampling of these models see
Arrow—Scarf—Karlin (1958), Moran (1959), Cox—Smith (1961), and Klein-
rock (1976).

The abstract language of input processes, output processes, and storage
buffers will be used hereafter, but the content of the buffer will be called
inventory, and readers will find that all our examples involve production
systems. In this chapter we develop a crude model of buffered flow, making
no attempt to portray physical structure beyond that apparent in Figure 1.
Actually, two models will be advanced, one with infinite buffer capacity and
one with finite capacity. In each case, system flows are represented by
continuous stochastic processes. Thus our models have little relevance to
systems where individual inventory items are physically or economically
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ouTPUT

ROCES PROCESS

J—— BUFFER
PROCESS

Figure 1. A two-stage flow system.

significant, but for discrete item systems with high-volume flow ,-the gont}nu-
ity assumption may be viewed as a conveénient and harniless idealization.

§1. A SIMPLE FLOW SYSTEM MODEL

Assume that the buffer in Figure 1 has infinite capagity. Tg) model‘the‘
system, we take as primitive a constant Xy = Oand two mcreasmg,'contmu-
ous stochastic processes A = {4, t = 0} and B = {B,, t = 0} with ,jﬂn' =
By = 0. Interpret X, as the initial inventory level, A, as the cumulative

input up to time ¢, and B, as the cumulative potential output up to time ¢. In .

other words, B, is the total output that can be realized over the time interval .

10,1} if the buffer is never empty; more general}y, B, — B, is the maximum
possible output over the interval (s,f]. If emptiness does occur, then somc;
of this potential output will be lost. We denote by L, .the amount 01
potential output lost up to time ¢ because of such emptiness, so actua

output over [0,f} is B, — L,. Setting

n | ' X, =Xy + A — B,

the inventory at time ¢ is then given by

@ Z,=Xo+ A~ (B/— L) = X, +L,.

Most of our attention will focus on this inventory process Z ={Z,t > Q}: It
remains to define the lost potential output process L in te:rms of primitive
model elements, and for that we simply assume (or require) that

(3) L is increasing and continuous with Lg = 0 and
(4) L increases only when Z = 0.

Conditions (3) and (4) together say that output is (by assump.tio.n) sacrificed
in the minimum amounts consistent with the physical restriction

5) Z,=0 forallt=0.
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In the next section it will be shown that conditions (2) to (5) uniquely
determine L and further imply the concise representation

© L=swp X, {sup BOlM

O=<s=y Sem

Because X is defined in terms of primitive elements by (1), this completes
the precise mathematical specification of our two-stage flow system model
with infinite buffer capacity.

A critical feature of this construction is that L and Z depend on A and B
only through their difference, so one may view X as the sole primitive

element of our system model. Borrowing a term from the economic theory -

of production, we shall hereafter refer to X as a netput process. This same
term will be used later in other contexts, always to describe a net of potential
input less potential output. The development above requires that X have
continuous sample paths, but thus far no probabilistic assumptions have
been imposed. The emphasis in this chapter is on construction of sample
paths rather than on probabilistic analysis.

§2. THE ONE-SIDED REGULATOR

Let C = C[0,») as in §A.2 Elements of C will often be called paths or
trajectories rather than functions, and the generic element of C will be
denotedbyx = (x,,t = 0). We now define mappings §s, ¢ : C— Cby setting

€] P(x) = sup x, fort=0
O=s=t

and

2 dlx) =x, + Y(x) fort=0.

For purposes of discussion, fix x € C and let [ = {(x) and z = ¢(x) =
x + [. We shall say that z is obtained from x by imposition of a lower control
barrier at zero. The mapping ({,$) will be called the one-sided regulator with
lower barrier at zero. The effect of this path-to-path transformation is shown
graphically in Figure 2, where the dotted line is —/,. Note that / = 0 and
hence z = x up until the first time £ at which x, = 0. Thereafter z, equals the
amount by which x, exceeds the minimum value of x over [0,/].

(3) Proposition. Suppose x € C and x, = 0. Then (x) is the unique
function [/ such that

2(0)?0
=)+
(e B2

Aropprd
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Figure 2. The one-sided regulator.

(4) is continuous and increasing with Iy = 0,
(5) zy=x,+ 1, =0forallt=0, and
(6) !increases only when z = 0.

(7) Remark. Let/be any functionon [0,) satisfying (4) and (5) alo.ne. It
is easy to show that [, = y(x) forallt = 0. In this sense, the least solution of

(4) and (5) alone is obtained by taking 1 = P(x).

Proof. Fixx'e Candset! = (x) and z = x+ [ Itis l‘eft as an exeri:ise
to show that this / does in fact satisfy (4) to (6). To prove uqxqueness,*let { bf
any other solution of (4) to (6) and set *=x + I*. S.ettmg { =% —z=
[* — I, we note that y is a continuous VF function with y, = 0. Thus the
Riemann—Stieltjes chain rule (B.4.1) gives

®) f) = 0 + L f ) dy

; ) -
for any continuously differentiable f: R— R. Taking f(y) =y /2, we see
that (8) reduces to

-

t

(z* — z) dI* + J (z — z*) dl.
JO

t

) 3 (z7 - 21)2 = J

0

We know that /* increases only when z* = 0, and z = 0, so the first term on

the right side of (9) is < 0, and identical reasoning shov\{s that the second
term is < 0 as well. But because the left side is = 0, both sngies must be zero.
This shows that z* = z and hence [* = I, and the proof is complete.

Note that the property Iy = 0in (4) depends critically on t}'le assumption
that x, = 0. The following proposition shows that our one-sided regulator

RN
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has a sort of memoryless property. It will be used later to prove the strong
Markov property of regulated Brownian motion.

(10) Proposition. Fix x e C and set [ = §(x) and z = &(x) = x + L. Fix
T > 0 and define x§ = z7 + (xpy, — x9), i =1p, — Iy, and z% = zp,,
for t = 0. Then I* = (x*) and z* = $(x*).

Because the proof of (10) is just a matter of verification, it is left as an
exercise. Pursuant to the observation (7), it is often helpful to think of /, as
the cumulative amount of control exerted by an observer of the sample path
x up to time ¢. This observer must increase / fast enough to keep z = x + /
positive but wishes to exert as little control as possible subject to this
constraint. ’

§3. FINITE BUFFER CAPACITY

Consider again the two-stage flow system of §1, assuming now that the
buffer has finite capacity b. Except as noted below, the assumptions and
notation of §1 remain in force. In particular, the system netput process is
defined by X, = X, + A, — B,, and L, denotes the amount of potential
output lost up to time  due to emptiness of the buffer. In the current context
one must interpret A as a potential input process; some of this potential input
may be lost when the buffer is full. For reasons that will become clear in the
pext section, we denote by U, the total amount of potential input lost up to
time ¢. Thus actual input up to time tis A, — U,, and the inventory process Z
is given by

6)) Z,=Xg+ (A, —U)— (B,~ L)
:XI+L1~'UT.

Now how are L and U to be defined in terms of the primitive model
elements? Assuming that X, € [0,b], it is more or less obvious from the
development in §1 and §2 that L and U should be uniquely determined
by the following properties:

(2) L and U are continuous and increasing with Ly = Uy = 0,
3 Zi=X + L, —~U)el0b]forall =0, and
(4) L and U increase only when Z = 0 and Z = b, respectively.

In the next section it will be shown that (2) to (4) doin fact determine L and
U uniquely, although they cannot be expressed in neat formulas like (1.6).
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Again a crucial point is that the processes of interest depend on primitive '
mddel elements only through the netput process X. , '

It is important to realize that a finite buffer may represent either a
physical restriction on storage space or a policy restriction that shuts off
input when buffer stock reaches a certain level. In the context of production
systems, input is almost always controllable, and it is simply irrational to let
inventory levels fluctuate without restriction. Thus the model described
here is fundamentally more interesting than that developed in §1 and will be
the focus of attention later.

§4. THE TWO-SIDED REGULATOR

Fix b > 0 and let C* be the set of all functions x € C such that x, € [0,b].
“Given x € C*, we would like to find a pair of functions (/,u) such that

(1) ! and u are increasing and continuous with Iy = uy = 0,
(2) z=(x+1 —u)e[0b]foralt=0, and
(3) [ and u increase only when z = 0 and z = b, respectively.

Note that (3) associates / and u with the lower barrier at zero and upper
barrier at b, respectively. If we consider u to be given, then the requirements
imposed on [ by (1) to (3) are those that define a lower control barrier at
zero. That is, (1) to (3) and Proposition (2.3) together imply that

4) L= ¥(x —u)= sup (x5 — us)ﬁ

O=s=t
In exactly the same way, u may be expressed in terms of [ via

&) u,=¢,(b—x—l)§ sup (b*xs'_ls)—

O=<s<t

It will now be proved that (4) and (5) together uniquely determine [ and u.
The function z defined by (2) may be pictured as in Figure 3, where the lower
dotted line is u, — 1, and the upper dotted line is b + u, — l,. We shall
henceforth say that z is obtained from x through imposition of a lower
control barrier at zero and an upper control barrier at b.

(6) Proposition. For each x e C*, there is a unique pair of continuoﬁs
functions (I,u) satisfying (4) and (5), and this same pair uniquely satisfies (1)
to (3).

b o
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Xy

P Figure 3. The two-sided regulator.

(7) Definition. We define mappings f,g,h: C* — C by setting f(x) = [
g'(x) = u, and h().c) = x + | — u. Hereafter (f,g,h) will be called the two-
sided regulator with lower barrier at zero and upper barrier at b.

. E(oof. W§ fir‘st construct a solution of (4) and (5) by successive approx-
imations. Beginning with the trial solution /¥ = ¢ = 0 (+ = 0), we set

(8) Y= x —u"y = sup (x, — u?)
O=ss<t ‘

and -

)] =G b~x —I")= sup (b~ x,—1I7)
O=s=<r

for n = 0, 1,... and ¢t = 0. Observe that l} = (% and u! = ? for all ¢, and

hen;:le (by induction) that /' and u] are increasing in n for each fixed ¢. Thus
we have

(10) 11l and uf } uasn } oo,
Furthermore, it is easy to show that the convergence is achieved in a finite

pumbpr of it‘eratio‘ns for each fixed ¢; and the requisite number of iterations
1s an increasing function of ¢. For example, in Figure 3 we have /, = [V and
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w =W if0<t<T,l=Iadu= u! if T, < t < T, and so forth. (It
is left as an exercise to show that T, — *, using the‘ assume;d continuity of
x.) From this and (8) and (9) it follows that the limit functions | and u are
finite valued, are continuous, and jointly satisfy (4) and ‘(5). ‘

To prove uniqueness, let (l,u) and (I*,u*) be two pairs of cogtlzuous
functions satisfying (4) and (5), and let z=x+1— z: a:xd =X +
I* — u*. From Proposition (2.3) it follows that (/,u) and (l ut) both.satlsl‘fy
(1) to (3) as well. Now let y = Z*—z=(*-10- (Lf - u). Using t f]
Riemann—Stieltjes chain rule as in the proof of Proposition (2.3), we fin
that

(11) 4(z% — z) = J: (z* — z) dl + J (z — z*) dl*

{ 0

+J’ (z—z*)du+J (z* — z) du™ .

) ¢
Also as in the proof of Proposition (2.3), we use (1) to 3 tq copclude that
each term on the right side of (11) is = 0, whereas the left 51d.e is = 0; and
hence each side is zero. Thus z* = z, from which it foll(?ws easily t.hat' =
and i* = u so that there is exactly one continuous pair (L,u) sat%sfymg (4
and (5). As we observed earlier, (1) to (3) and (4) and (5) are equwalenft for
continuous pairs (/,u) by (2.3), and this proves the last statement 0 the

proposition.

(12) Corollary. For each fixed t, both [, = f(x) and u, = g(x) depend on
x only through (x,, 0 =s < 1).

Proof. Immediate from the construction (8) to (10). -

(13) Proposition. Fix x € Candletl = f(x),u= g(xz, and z = h(x? a_s
above. Fix T > 0 and define x7 = z7 + x5+ — Xx7)s 17 Ef”' - i,, ut =
Ury, — Up, and 27 = Z7a, for t = 0. Then I* = f(x*), u* = g(x }, and
z* = h(x*).

Proof. Starting with the fact that x, I, i,z all satisfy (1) to (3), it is €asy
to verify that x*, I*, u*, z* satisfy these same relations. Thf: _second unique-
ness statement of (6) then establishes the desired proposition.

§5. MEASURING SYSTEM PERFORMANCE

In the design and operation of buffered flow systems, one is.ty‘pically
concerned with a tradeoff between system throughput characteristics and

5
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the costs associated with inventory. Generally speaking, one can decrease
the amount of fost potential input and output (which amounts to improving
capacity utilization) by tolerating larger buffer stocks, but such stocks are
costly in their own right. ‘

To put the discussion on a concrete footing, consider-again the single-
product firm described at the beginning, of this chapter. Recall that produc-
tion flows into a finished goods inventory, and demand that cannot be met
from stock on hand is simply lost with no adverse effect on future demand.
Let 7 denote the selling price (in dollars. per unit of production) and let B,
denote total demand over the time interval {0,¢]. The Jatter notation is
chosen for consistency with previous usage in §1 and §3.

Assuming plant and equipment are fixed, suppose that the firm must
select at time zero a work force size, or equivalently a regular-time produc-
tion capacity. For simplicity, assume that the work force size cannot be
varied thereafter, the firm being obliged to pay workers their regular wages
regardless of whether they are productively employed. Let k be the capacity
level selected, in units of production per unit time. The firm then incurs a
labor cost of wk dollars per unit time ever afterward, where w > 0 is a
specified wage rate, even if it occasionally chooses to operate below capacity.
For current purposes, overtime production is assumed to be impossible (see
Problem 8). In addition to its labor costs, the firm incurs a materials cost of m
dolars per unit of actual production. Given the initial capacity decision
(work force level), labor costs are fixed, and thus the marginal cost of
production is m dollars per unit. A physical holding cost of p dollars is
incurred per unit time for each unit of production held in inventory. This
includes such costs as insurance and security; it does not include the financial
cost of holding inventory. (By financial cost we mean the opportunity loss on
money tied up in inventory. More will be said on this subject shortly.)

It is assumed that the firm earns interest at rate A > 0, compounded
continuously, on funds that are not required for production operations.
Continuous compounding means that one dollar invested at time zero
returns exp(\f) dollars of principal plus interest at time-£. Thus a cost or
revenue of one dollar at time ¢ is equivalent in value to a cost or revenue of
exp(—Af) dollars at time zero. Finally, we assume that the cumulative
demand process B satisfies '

(1) E(B,) = atforallt = 0 (a > 0) and
(2) e ™ B,— 0 almost surely as t — .

For one specific demand model that satisfies (1) and (2), we may suppose
that the time axis can be divided into periods of unit length, that demand
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increments during successive periods form a sequence of independent and
identically distributed random variables with mean a and finite variance,
and that demand arrives at a constant rate during each period. For this
linearized random walk model of demand, property (1) is obvious and (2)
follows from the strong law of large numbers. (The proof of this statement is
left as an exercise.)

The firm must choose a capacity level k at time zero and then at each time
t = 0 select a production rate from the interval [0,k]. When a production
rate below k is selected, we shall say that undertime is being employed. For
purposes of initial discussion, let us assume that management follows a
single-barrier policy for production control after time zero. This means that
production continues at the capacity rate k until inventory hits some chosen
level b > 0, and then undertime is employed in the minimum amounts

_ necessary to keep inventory at or below level b. With this policy, our
make-to-stock production system is a two-stage flow system with finite
buffer capacity (see §3); the potential input process is A, = kt, and potential
output is given by the demand process B. In the current context, Z,
represents the finished goods inventory level at time ¢, L, is the cumulative
demand lost up to time f, and U, is the cumulative undertime worked
(potential production foregone) up to time .

The firm’s objective is to maximize the expected present value of sales
revenues received minus operating expenses incurred over an infinite plan-
ning horizon, where discounting is continuous at interest rate A. The actual
production and sales volumes up to time tare given by kt — U,and B, — L,,
respectively; thus this amounts to maximization of

20

@ V= E[w J e M(dB — dL) — wk f e dt
. 0 Jo

2%

\—mJ e““(kdt“dU)"PJ e““Z:dt}

0 0

3

where the integrals involving dB, dL, and dU are defined path by pathiin the
Riemann—Stieltjes sense (see Appendix B). The first terminside the expec-
tation in (3) represents the present value of sales revenues, the second is the
present value of labor costs, the third term is the present value of material
costs (incremental production costs), and the last is the present value of
inventory holding costs. It should be emphasized that the opportunity loss

on capital tied up in inventory is fully accounted for by the discounting in (3);

therefore p should include only out-of-pocket expenses associated with
holding inventory. To put it another way, no explicit financial cost of holding
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inventory appears in (3) and including such a cost would be double counting.
In a moment, however, we shall derive an equivalent measure of system
performance in which a financial cost of inventory does appear. Readers
who are not familiar with present value manipulations, and skeptical as to
the appropriateness of (3) as a performance measure, may wish to consult
§6.5.. There is is shown that maximization of a discounted measure like V' is
equivalent to maximizing the firm’s expected total assets at a distant time of
reckoning.

It will now be shown that maximization of V'is equivalent to minimization
of another, somewhat simpler, performance measure. As a first step, con-
sider the ideal situation where B, = at for all 1 = 0, meaning that de;nand
arrives deterministically at constant rate a. We shall assume that

(4 T™=w—m>0,

for otherwise the system optimization problem would be uninteresting. (If
W o ms 0, it is best to set k = 0 and go out of business.) With
deterministic demand, one would, of course, choose k = a, meaning that
units are produced precisely as demanded, labor and materials are paid for
only as required for such production, and no inventory is held. The corre-
sponding ideal profit level (in present value terms) would be

(5) sz}wﬂ»w—mmmzﬁilglﬁ.
0

L4

Now actua} system performance under an arbitrary operating policy will be
measured incrementally from this ideal. First, let

(6) 1

i

k—a,
(7 . d=w—m, and h=p + m\.

We call p the excess capacity; it is the amount (possibly negative) by which
c'hosen capacity exceeds the average demand rate. Interpret 8 as a contribu-
tion margin; once the capacity level is fixed, each unit of sales contributes §
dollars to profit and the coverage of fixed costs. Finally, # may be viewed as
the effective cost of holding inventory; it consists of physical holding costs
plus an opportunity loss rate of A times the marginal production cost m. It is
assumed hereafter that Z, = 0.

(8) Proposition. V = | — A, where



28 STOCHASTIC MODELS OF BUFFERED FLOW

) A= EU e M(d dL + wp dt + hZ, dt)} .

0

(10) Remark. Because demand is exogenous, [ is an unc-ontrol!able con-
stant, and thus our original objective of maximizing V is equivalent to

minimizing A. ;
Proof. From (1) and (2) it follows that

B -\t B -\t B,d
(11) E(L e dB) E(Jo \e t)

J Ae Mardt = [ e Madt.

0 0

i

il

The proof of (11), using Fubini’s theorem and the Riemann—Stieltjes inte-

gration by parts theorem, 15 left as an exercise. Using (11), we can rewrite (5)
as

(12) 1= EUw e N(w dB — wadt —m dB)} .

0

Now subtracting (3) from (12) we get

0

(13) I—-V= E{J e Mm dL + w(k — a) dt + pZ, dt

+ m(k dt — dU — dB)]} .

With Z, = 0, we have Z, = (kt — Up) — (B, — L,). Using this and integra-
tion by parts again, we find that

=]

(14) f i e Mk dt — dU — dB) = f e M(dZ — dL)

0 0
= J e N(NZ, dt — dL) .
0 "

Substituting (14) into (13) and collecting similar terms, we have I — V=
A. )
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Obviously A represents the amount by which management’s plan falls
short, in expected present value terms, of the ideal profit level I. The
definition (9) expresses this shortfall as the sum of three effects. First, the
contribution margin & is lost on each unit of potential sales foregone.
Second, we continuously incur a cost of w dollars for each unit of capacity in
excess of the average demand rate. Finally, for each unit of production held
ininventory, we continuously incur an out-of-pocket cost p plus an opportu-
nity cost A\m. We emphasize again that A measures the degradation of system
performance from a deterministic ideal. Thus the minimum achievable A
value may be viewed as the cost of stochastic variability.

Our first objective here is to develop a quantitative theory of flow system
performance. As a natural outgrowth of that descriptive objective, we also
seek to prescribe means by which management can minimize or at least
reduce performance degradation, such as investment in excess eapacity (a
design decision) and maintenance of buffer stock (a matter of operating
policy).

In concluding this section, let us briefly consider a cost structure in which
N | 0but 8, w, and & remain constant. Further suppose that

1
(15) " E(L)—> aand E(Z)—> yast— o,

Obviously a represents a long-run average lost sales rate, whereas vy is the
_leng-run average inventory level. Under mild additional assumptions, it is
well known that AA approaches the long-run average cost rate

(16) p=da + wp + hy

ash | 0.Thusminimizationof A isapproximately equivalent to minimization
of p for small values of A, and it is usually easier to calculate p than the
discounted performance measute A.

§6. BROWNIAN FLOW SYSTEMS

Suppose that, in the setting of §3, we directly model the netput process X as a
(1,0) Brownian motion. The inventory process Z, lost potential output L,
and lost potential input U are then defined by applying the two-sided
regulator to X exactly as before. In the obvious way, we call Z a regulated
Brownian motion, and the triple (L,U,Z) will be referred to hereafter as a
Brownian flow system. It will be seen later that all the performance measures
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discussed in §5, and a number of other interesting quaritities, can be calcu-
lated explicitly for Brownian flow systems.
Although the Brownian system model is tractable, and therefore appeal-
ing, it is actually inconsistent with the model description given in §3; we have
seen earlier that the sample paths of Brownian motion have infinite varia-
tion and thus it cannot represent the difference between a potential input
process and a potential output process. Nonetheless, a netput process may
be well approximated by Brownian motion under certain conditions. To
understand these conditions, recall that Brownian motion is the unique
stochastic process having stationary, independent increments and continu-
ous sample paths; unbounded variation follows as a consequence of these
primitive properties. Also note that the total variation of a netput process
over any given interval equals the sum of potential input and potential
output over that interval. If such a netput process is to be well approximated
by Brownian motion, both potential input and potential output must be
large for intervals of moderate Jength, but their difference (netput itself)
must be moderate in value. We may express this state of affairs by saying
_ that we have a system of balanced high-volume flows.
Pulling together several times, we conclude that Brownian motion may
_reasonably approximate the netput process for a system of stationary, con-

tinuous, balanced high-volume flow, where netput increments during non-

overlapping intervals are approximately independent. Formal limit theorems
that give this statement precise mathematical form, and thus serve to justify
. Brownian approximations, have been proved for various types of flow
system models. The Brownian flow system will be studied extensively in
‘future chapters, and readers should keep in mind its domain of applicability.

-

PROBLEMS AND COMPLEMENTS

1. Prove Proposition (2.10), thus verifying the one-sided regulator’s lack
of memory.
3. Prove that [ = {(x) satisfies (2.4) to (2.6).

3. Consider the three-stage flow system, or tandem buffer system, pic-
" tured in Figure 4. Each buffer has infinite capacity, and we denote by
X,(0) the initial inventory in buffer k. Extending in an obvious way the

model of §1, we take as primitive three increasing, continuous processes

A, = {Ai(D), t = 0} such that Ai(0) = 0 (k = 1,2,3). Interpret A, as

input to the first buffer, A, as potential transfer between the two .

buffers, and A; as potential output from the second buffer. Define a
(continuous) vector netput process X(0) = [Xi1(1), X2(1)] by setting

e
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Figure 4. A three-stage flow system.

Xi() = X1(0) + A(t) — VAz(t) fort=10
and

Xo(f) = X(0) + Ay(H) — As(f)  fore=0.

Let L,(¢) denote the amount of the potential transfer A,(¢) that is lost
over {0,t] because of emptiness of the first buffer, and define L;(¢) in the
qbvxous analogous fashion. Let Z,(¢) denote the content of buffer k at
time ¢. Applying the analysis of §1 and §2 first to buffer 1 and then to
buffer 2 in isolation, show that L, = (X)), Z, = &(Xy), Lz =
(X, — L,), and Z, = &(X; — L,). Conclude that L = (L,, L,) and
Z = (Z,, Z,) uniquely satisfy )

(a) L, and L; are increasing and continuous with L,(0) = L3(0) = 0. .
(b) Zi(6) = X1(t) + Lp(®) = 0 for all t = 0, ’

Zx(t) = Xo(f) — Ly() + Ls(t) = Oforall t = 0.
(¢) L, and L; increase only when Z; = 0 and Z, = 0, respectively.

All of.thi's describes the mapping by which (L,Z) is obtained from X. (It
is again important that L and Z depend on primitive model elements
only through the netput process X.) Conditions (a) to (c) suggest the
fpllowing interpretation or animation of that path-to-path transforma-
tion. An observer watches X = (X;, X,) and may increase at will either
cpmponent of a cumulative control process L = (L,, Ls). These ac-
tions determine Z = (Z;, Z,) according to (b). The observer increases
L, only as necessary to ensure that Z, = 0, so L, increases only when

- Z; = 0. Each such increase causes a positive displacement of Z; (or
rather prevents a negative one) and an equal negative displacement of
Z,. Thus the effect of the observer’s action at Z,; = 0is to drive Z in the
fiiagonal direction pictured in Figure 5. On the other hand, L; is
increased at the boundary Z, = 0 so as to ensure Z, = 0, producing
only the vertical displacement picture in Figure 5. Hereafter we shall say
that (L,Z) is obtained by applying a multidimensional regulator to X
the control region and directions of control being as illustrated in Figuré
5. This problem is adapted from Harrison (1978).

A similar sort of multidimensional flow system is pictured in Figure 6.
Here there are two input processes, each feeding its own infinite storage
bu_ffer. These inputs are then combined, exactly one unit of each input
being required to produce one unit of system output. (The important
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Figure 5. - Directions of control for a three-stage flow system.
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Figure 6. An assembly or blending operation.
point here is that inputs are combined in fixed p‘roportions;vthe rest is
just a matter of how units are defined.) This is the structure of an
assembly operation, but again we treat the system flows as 1f they were
continuous so that attention is effectively restricted to hlgh-vqlumc
assembly systems. For another applicatioq, Figure 6 mlgh-t be 1pter—
preted as a blending operation in'which liquid or gra.nu_lated mgre.dlentS
are combined in fixed proportions to produce a .s.lmxl.ar'ly C(_)ntmuous
output. To build a model, we again take as primlgve mma} inventory
levels X;(0) = 0 and X5(0) = 0 plus three increasing, continuous pro-
cesses Ap = {Ag(f), t = 0} with Ag(0) =0 (k. = 1,2,3). Interpret 1.4‘
and A, asinput to buffer 1 and buffer2, respect{vely, and A5 aspotential
output. Potential output is lost if either buffer is empty, and we denote
by L(f) the cumulative potential output lost up to time £ because pf such
emptiness. For purposes of determining,L_,.th‘e b.lendmg operation may
be viewed as a two-stage flow system with initial inventory plus cumula-
tive input given by ;

A*(@) = [X:(0) + AO] A [X(0) + Ax(0)] -

Let Z,(t) denote the inventory level in buffer k at time ¢, and .define a
(continuous) vector netput process X= [X1(£), X,(1)] by setting

X,(1) = X1(0) + Ay()) — As(r) - fort=0

and ’
Xz(t) = Xz(O) + Az(t) - A3(t) fort= 0.

e £

PROBLEMS ANi» COMPLEMENTS 33

Applying the results of §1 and §2, write out explicit formulas for L and
Z = (Z,, Z,) interms of X. (Again it is important that L and Z depend
on primitive model elements only through the netput process X.) Con-
clude that L and Z together uniquely satisfy

(a) L is continuous and increasing with L(0) = 0.
(b) Zi(6) = X\(t) + L(H) =0 forall t = 0,
Z(t) = Xo(t) + Lty = 0forall 1 = 0.

(¢) L increases only when Z; = 0 or Z, = 0.

The mapping that carries X into (L,Z) may be pictured as in Figure 7.
The inventory process Z coincides with X up until X hits the boundary of
the positive quadrant, At that point, L increases, causing equal positive
displacements in both Z, and Z, as necessary to keep Z; = 0 and
Z, = 0. Thus the effect of increases in L at the boundary is to drive Z in
the diagonal direction shown in Figure 7, regardless of which boundary
surface is struck. This problem is adapted from Harrison (1973).
Assuming for convenience that xo = 0, write out an explicit recursive
expression for the times T, < T, < --- identified in the proof of Propo-
sition (4.6). Show thatif7,, T T < =, thenx canno%ntinuous atT;
thus 7, —> © as n — . T+

Consider again the three-stage flow system of Problem 3, assuming that
buffers 1 and 2 now have finite capacities by and b,, respectively. In this
case, potential input is lost when the first buffer is full, and potential
transfer is lost when either the first buffer is empty or the second one is
full. (We say that the transfer process is starved in the former case and
blocked in the latter.) In addition to the notation established in Problem
3, let L(¢) denote total.potential input lost up to time f. Argue that
L = (L4, L,, Ls) and Z = (Z,, Z,, Z5) should jointly satisfy

(a) L, is continuous and increasing with L,(0) = 0 (k = 1,2,3).
(b) Zl(t) = Xl(t) + Lz(t) - L](t) € [Oybl] forallt = O,
Z5(1) = Xo(f) + La(t) — Lo(d) € [0,b,] for all ¢t = 0.

A

Figure 7. Directions of control for a blending operation.

1
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Figure 8. Directions of control for a three-stage flow system with finite buffers.

(c) L, increases only when Zy = by,
L, increases only when Z; = 0 or Z, = by, and
L, increases only when Z, = 0.

Explain the connection between (a) to (c) and Figure 8. Describe
informally how one can use the results of Problem 3 and 4 to prove
existence and uniqueness of a pair (L,Z) satisfying (a) to (c). This
problem is adapted from Wenocur (1982).

7. Show that the linearized random walk model of demand, described in

§5, satisfies (5.1) and (5.2).

8. It was assumed in §5 that overtime production was impossible. Suppose

instead that unlimited amounts of overtime production are availableata
premium wage rate w* > w, regardless of what work force level may be
chosen at the beginning. To keep things simple, assume that overtime
production is instantaneous. (One may also think in terms of buying
finished goods at a premium price from some alternate supplier and
then using these goods to satisfy demand.) Finally, assume that 7 —
w* ~ m >0, so it is always better to use overtime production than to
forego potential sales. The basic structure of this system is identical to
that discussed in §5, but now L, is interpreted as cumulative overtime
production up to time . Show that maximizing the expected present
value of total profit is equivalent to minimizing A, where A is given by
formula (5.9) with w* in place of 3. :

9. Prove the three equalities of (5.11), using Fubini’s theorem (§A.5) and
the Riemann—Stieltjes integration by parts theorem (§B.3). .
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