5 TRANSPORTATION QUEUEING
Randolph W. Hall

5.1 Introduction

Since the time that humans first gathered into societies, there have been queues.
They have existed whenever people have demanded more of a service than that
service could provide. Though queueing is by no means new, the study of queues is
relatively recent, dating only to the beginning of the twentieth century and the work
of AXXK. Erlang (Brockmeyer et al, 1948). Erlang’s investigations centered on
determining capacity requirements for telephone systems, a then very new
technology. Even to this day, much of the research in queueing has been directed at
applications in communication. The first textbook on the subject, Queues,
Inventories and Maintenance, was written in 1958 by Morse. The first textbook
focusing on queueing applications in transportation (dpplications of Queueing
Theory) was written by Newell in 1971.

Research on queueing in transportation has evolved in its own distinct direction,
in part due to the influence of Newell’s work, and in part due to the unique aspects of
transportation systems. Unlike applications of queueing in communication or
production, queues in transportation tend to be much more predictable and, as a
consequence, much of the research on queues in transportation has been directed at
non-stationary (time varying) systems. Non-stationarities arise in transportation
because:

e People prefer to travel at set times of the day and week, largely corresponding to
their work schedules. These demand surges create much of the queueing in
transportation, and

e In many transportation systems (e.g., mass transit, trucking, railroads and
intersections), customers are served in bulk.
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From the standpoint of capacity provision, transportation often relies on major
investments in infrastructure, such as roadways, runways or railroad lines.
Infrastructure intensive systems have only limited latitude for adjusting capacity to
responsd to fluctuating demand. Thus, queues recur at known times when customers
arrive at a faster rate than the infrastructure can accommodate. -

Another unique aspect of transportation is that the customer service mechanism
is often defined by the spacing between vehicles along a guideway, and not by how
quickly a person or piece of equipment can process customers. Thus, the time to
serve a customer is determined by the customer’s behavior. A queueing system also
behaves as a continuum of serial servers, with extremely short service times,
interacting with each other. Therefore, the system model depends not only on the
number of customers that queue at a particular location, but the physical length of
that queue, and whether that queue spills back into other servers. These phenomena
are the core subject matter of traffic flow theory, covered in Chapter 6.

Finally, transportation is different from most other queueing applications
because the service mechanism is frequently government owned. As a consequence,
pricing normally is not used to level out demand patterns, and there tends to be much
less flexibility in varying capacity to match fluctuating demand.

Most textbooks in queueing theory emphasize modeling stochastic
characteristics of queues that occur in steady-state (i.e., the probability distribution
for the state of the system is not time dependent). Unfortunately, for the reasons
mentioned above, this theory is not always relevant to transportation. Instead,
queueing models in transportation are more likely to concentrate on the non-
stationary characteristics of queueing, as well as on the optimization of system design
and system control. Examples include:

e Determining the best cycle length and phase lengths for traffic signals.
e Evaluating the consequences of adding lanes or changing the geometric
configuration of a highway on “recurrent” (peak period) and “non-recurrent”

(incident produced) delay.

e Optimizing the frequency at which buses or trucks should be dispatched along a
route, taking cost of operation and service quality into consideration.

® Determmmg how many service vehicles are needed to respond to randomly
occuring demand that is spread over a service region.
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5.2 Elements of a Queueing System

Queueing systems are defined by three elements: customers, servers and queues.
Customers are the persons or things that await service. They can be travelers, or the
vehicles that they travel in. Customers can also be the good, piece of freight or
container that is being shipped. The server is the resource that provides the service to
the customer. It could be a piece of roadway, a bus, or gate in an airport, to name a
few examples. The queue is the group of customers waiting to be served, along with
the place they are waiting. Queues can occur as orderly lines, but they also can be
groups of customers spread out in a terminal waiting area or perhaps a warehouse.
All queueing systems have customers and servers, though occasionally they don’t
have queues. This occurs when the system refuses to accept customers when they
camnot be served immediately.

The performance of the queueing system is defined by the arrival process,
service process and queue discipline. The arrival process represents the time pattern
by which customers enter the queueing system. Arrival processes in transportation
are usually non-stationary, meaning the average arrival rate varies in some
predictable way. Arrival processes also exhibit some level of stochastic variation,
which is usually represented by the probability distribution for the inter-arrival time
(the time separation between two successive arrivals). The service process represents
the time and resources required to serve a customer. Service process, like arrival
processes, exhibit stochastic variations and often non-stationary patterns (when
capacity varies by time). The service time can also depend on the type of customer.
The queue discipline is the rule for sequencing customers. Typically, this is a first-
come-first-serve pattern. However, other disciplines are used to account for

priorities, or to group customers for efficiency (such as a traffic signal, which groups
by turn pattern).

Queueing systems are important in transportation because of their effects on
customers, and because of the cost of providing the service. The dominant effect is
delay, which might be measured in such ways as “time in system”, “average speed,”
or “waiting time.” Fundamentally, queueing analysis is used to determine the
difference between how long it takes to complete a trip, and how long it would have
taken if there were no queueing or congestion. The following are examples of the

performance measures that can be predicted with queueing models or measured in the
field:

Throughput: Rate at which customers are processed by the system

Crowding or Congestion: Separation between customers, or density of customers
(e.g., vehicles per lane-mile of roadway).

Lost Customers: Number of customers that do not travel because of queueing.
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Queue Percentage: Percentage of customers that encounter a queue prior to
receiving service (instead of being served immediately).

Service Cost: The annual or per customer expense of providing the service.

Productivity: In some cases, the productivity of the server depends on the amount
of queueing and whether the system is saturated.

In some instances, queues are stochastic, reflecting a momentz.lry surge in
demand or drop in capacity. In others, queues are predictal')le, following a regular
daily pattern. And in some cases queues are perpetual,_ be_mg present. whenever a
facility is open for business. One of the objectives in demgnmg_ a queueing system is
remove perpetual and predictable queues, and then to minimize the occurrence of
stochastic queues.

5.3 History of Research on Transportation Queueing

Nearly all of the published research on queueing in transporta‘tion is motivated by a
modal application, such as vehicles on roadways or mass transit. Neverthel.ess, th'ere
is considerable cross-over in concepts and methods between modes. This section
provides a few examples.

Traffic: Vehicular Flow on Highways

Controlled access highways were first constructed in the 1930s and 1940s, ar}d
only became widely available in the United States in the 1950s and 1960s. Eyen in
the 1990s, they are uncommon in many parts of the world. Research on queueing on
highways paralleled this pattern, with the 1950s and 60s seeing a surge of activity,
with more or less steady activity ever since. To this day, problems in highway traffic
flow have influenced our understanding of queueing phenomena more than any other
mode of transportation (for instance, see Hankin and Wright, 1958; Lovas, 1994; z?nd
Older, 1968; as examples of how vehicular traffic research has influenced .modelmg
of pedestrian traffic). Its three greatest contributions have been: (1) modehng speed
and capacity as functions of vehicle concentrations, (2) modeling th.e forr_natlon and
size of queues with shock waves, and (3) application of cumulatwe dliagrz.ims to
represent non-stationary phenomena. Secondarily, it has ls‘nmu-lat‘ed thinking on
congestion pricing, though this research has yet to be applied in a significant way.

Queues on highways are typically manifest in slowed, rather than completely
stopped, traffic, making queues difficult both to count and model. It was obseweq as
early as 1935 (Greenshields), that traffic has a natural tendency to slow as the ve}_ucle
concentration (vehicles per unit length of roadway) increases, because ' vehicles
naturally reduce speed to provide safe spacing. Extremely large concentrations only
occur under jammed conditions, when both vehicle speeds and vehicle flows (product
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of concentration and speed) are small. Vehicle flows are maximized at moderate
concentrations, when vehicle speeds are only slightly impeded by congestion. The
maximum flow value is referred to as the highway capacity.

Lighthill and Whitham (1955) and Richards (1956) used speed/concentration
curves in their kinematic wave theory to model the formation of queues behind
roadway bottlenecks — that is, places where capacity is lower than upstream or
downstream sections. The end of a queue is modeled as a shock-wave, representing
an abrupt change in traffic density and speed. So long as traffic arrives at the
bottleneck at a faster rate than its capacity, the shock-wave grows upstream.

The 1950s is notable for introducing concepts from physics into the study of
traffic queues, as in the kinematic wave theory of Lighthill and Whitman, and and
also the thermodynamic theories of Newell (1955). It also was a period that
established traffic science, and more generally transportation science, as a field of
research that blends empirical and theoretical investigation. This is especially
evident in the work of Wardrop (1952), Edie (1956), Edie and Foote (1958) and Edie
(1961), and Herman et al (1959). Edie and Foote’s investigations are especially
famous, and are based on extensive data collection on traffic flows and speeds in the
Holland and Lincoln tunnels in New York.

Non-stationary phenomena are critical to analysis of queueing on highways, due
to peaking of traffic during commute periods. This type of queueing is sometimes
called “recurrent congestion”, as it occurs on a daily basis. Recurrent congestion is
distinguished from “non-recurrent congestion”, representing delay caused by random
occurrences, such as accidents. Considerable research has been devoted to analyzing
the effects of random incidents on highway, often by the same basic methods as non-
stationary phenomena. However, research on vehicular queueing usually does not
account for random variations in inter-arrival or service times, as is common in
mainstream queueing literature. Queueing caused by this type of randomness is
viewed as secondary relative to queues caused by accidents or queues caused by non-
stationary traffic patterns.

Cumulative diagrams have been a part of the traffic science literature for some
time as a representation of non-stationary phenomena. They are used to show the
cumulative count of vehicles passing a point along a roadway, but they are applied
more generally in queueing to represent cumulative counts of arriving and departing
customers. They can be used to measure vehicle concentrations, queue sizes, travel
times and delays. They are used to model empirically observed processed (i.e., based
on actual counts) and also to deterministically model average system performance.
Finally, they are used to represent non-recurrent incidents by randomizing event
times, durations and magnitudes. The methodology is documented in the texts by
Newell (1971, 1982) and Hall (1991), and later in this chapter.
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According to Newell (1993), empirically based cumulative curves first appeared
in published literature in 1960 (Edie and Foote), and were first used as a predictive
tool in 1965 (Gazis and Potts), though they had already been used for some time
within state transportation departments. May and Keller (1967) represented traffic
as a continuously flowing fluid within a cumulative diagram to model the formation
and dissipation of a queue caused by peaking in traffic flows. More recently, in-
1993, Newell merged the concepts of cumulative diagrams with wave theory, relying
on a three-dimensional version of the cumulative diagram (traffic is a function of
both time and space; Makigami ef al, 1971).

Roads in most countries have been financed through the imposition of taxes,
most commonly paid when purchasing fuel. As a consequence, road users do not
ordinarily pay additional charges on costly roads. And it is very rare for roadway
charges to be related to how heavily the roadway is utilized or the amount of
congestion on the roadway. As a consequence, economists have argued that
roadways are overutilized during peak periods. (This is because drivers impose more
delay on other vehicles during congested periods than they personally incur.)

Vickrey (1963, 1969) proposed that queues can be eliminated through the
application of a continuously variable toll, and that all road users would benefit
(despite that added toll). Beckmann ef al (1956), Beckmann (1965) and Dafermos
and Sparrow (1971) proposed route based tolls to influence traveler routes, and to
optimize use of roadway capacity on primary and parallel routes. Numerous papers
have been written since, but the basic approach has remained constant. Prices are set
such that travelers optimally equilibrate across travel times and travel routes, greatly
reducing or eliminating queueing. The equilibration is based on a combination of
direct cost and indirect cost (representing the inconvenience of traveling on a
secondary time or at a non-preferred time). In general, however, the models are
highly speculative, as realistic data are not available to verify their underlying
behavioral assumptions, and because pricing policies are dictated by politics,
technology and practicality more than idealized toll structures.

Traffic: Signalized Intersections

Signalized intersections operate as bulk service systems, in which the server
alternates between different customer types. A customer type represents a vehicular
path through the intersection, defined by a “from direction”, a “to direction” and
possibly by a lane. Unlike bulk service systems in production, intersections allow
different customer types to be served simultaneously, provided that their trajectories
do not intersect, allowing for many ways to combine trajectories into flow patterns.

The queueing delay for any trajectory through an intersection depends on the
signal’s cycle length, green phase length (portion of cycle that signal is green for the
trajectory), and the synchronization of the green phase with the pattern of vehicle
arrivals. It also depends on intersection parameters, such as vehicle service rates
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during the green phase and the average arrival rate. The usual pattern is that queues
accumulate during a red phase, dissipate at a rate matching signal capacity at the start

of the green phase and, after the queue vanishes and until the signal turns red again,
vehicles are served as they arrive.

Research on intersections has centered on optimizing cycle length, phase lengths,
phase patterns and signal offsets (representing time lags between adjacent
intersections). Cycle lengths are typically extended when it is necessary to increase
an intersection’s capacity. This is because capacity losses occur at each phase
change; hence, enlarging the cycle length reduces the capacity lost per unit time. If
arrival rates are small, cycle lengths are set shorter, so as to minimize cycle delays.
[If rates are very small, traffic may be better served by a stop sign or uncontrolled
intersection, further reducing cycle delays at the expense of lower capacity (Tanner,

1962; Cheng and Allam, 1992).] Phase lengths are apportioned according to arrival
rates and service rates.

As general practice, phase lengths must be at least large enough to serve all
vehicles that arrive in a cycle, and should sometimes be even longer if the arrival rate
is much larger for a traffic stream than others. Offsets are set to provide
synchronization between intersections. Ideally, a signal should enter its green phase
as the vehicles begin arriving from an upstream signal. These vehicles arrive in
“platoons” (i.e., clusters of vehicles), which have a tendency to disperse as they travel
away from an intersection (Pacey, 1956; Grace and Potts, 1964). When intersections
are spaced far apart, platoon dispersion (as well as turning traffic) makes it
impossible and perhaps unnecessary to synchronize traffic signals. Closely spaced
intersections, on the other hand, can be synchronized to minimize cyclic delays and

provide for a smoother progression of traffic (e.g., Allsop, 1970; Robertson, 1969;
Little et al, 1981).

Synchronization is easily accommodated on isolated one-way streets. However,
perfect synchronization is usually impossible on two-way streets (in which case
opposing directions may arrive at different times) or in signal grids (in which case
crossing streets may require different synchronizations). In any case, synchronization
demands identical, or integer-multiple, cycle lengths, to ensure that settings do not
drift apart. This in itself forces a compromise, as traffic levels at some intersections
may demand longer cycle lengths than others,

Grids of signals can also experience blocking effects. This can occur when
signals are closely spaced and poorly synchronized, and is exacerbated by poor
driver behavior. When a signal operates close to saturation, vehicles may queue back
to the preceding intersection. When the preceding intersection turns green, they are
blocked from passing through the intersection because the downstream segment is
already occupied. The situation worsens when the signals are out of phase with each
other, and can be especially problematic in a tight grid of intersections. Intersection
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blocking in Manhattan is the source of the term “gridlock”, which has lately become
synonymous with any form of queueing.

Essential trade-offs between cycles length, phase length and queue time were
captured as early as 1941 in the work of Clayton, but hfis since been e.nhanced
through consideration of stochastic effects and different signal con.ﬂguratlc.)ns and
control policies. Most of the literature treats arriving and departing vehicles as
fluids, flowing at constant rates within time intervals. In some cases, t.hese rates are
stochastic, and in others arrival rates may vary within a cycle (accounting for effects
of upstream signals). In Webster’s classic work (195_8), arrival pgtgerns. were
simulated, and empirical relationships were statistically estimated for waiting time as
a function of signal parameters. Newell (1965) examines s?gnal through analytical
expressions in which queue parameters are random varlable.s,_ l?ut once these
parameters are determined the intersection behaves as a deterministic/fluid system.
He, along with Miller (1963), examined the effects of spillover from one _trafﬁc cycle
to the next, which can significantly exacerbate queueing when operating close to

capacity.
Transit and Trucking

Mass transit and truck systems have similar characteristics in that they. serve
“customers” (people in the case of transit, and shipments in the case of trucking) in
groups (called bulk service). Bulk service also occurs in production systems, such as
batch chemical processes, printing, and metal stamping, and t}lerefore research on
queueing systems is somewhat intertwined among these applications. In all cases, the
basic issues are to determine when bulk services should occur, how many customers
should be served in each bulk service, and which customers should be served. .The
decisions are optimized against cost objectives (e.g., cost of provi.ding. th.e service),
customer service objectives (e.g., average time waiting or average time in inventory),
and throughput objectives (e.g., ensuring that customers can be seryed as fast as they
arrive). Unlike traffic signals, bulk service in trucking and trfmsn occurs v1rtually
instantaneously, as the vehicle departs. Furthermore, bulk service mode}s for trans;t
and trucking usually do not consider what happens to the resource (vehicle) when it
completes its service.

Perhaps the most famous and widely used modelhis the Wilson ecor‘lomic-o‘rdey—
quantity model, which was developed in the early 20™ century. Thg baS{c premise is
that a total cost function (sum of inventory and set-up cost) is minimized .by
optimizing the number of customers served in each bulk servicg. The resul‘gmg
equation provides a square-root relationship between order quanjuty e}nd the arrival
rate of customers. Similar ideas can be found in the transportation literature, most

~notably in the work of Newell (1971), Blumenfeld er al (1985), Burns et al (1985)

and Hall (1996). Newell demonstrated how to optimize the interval between
dispatches for non-stationary/deterministic systems.  The other .three papers
determined how the Wilson model can be applied in transportation contexts,
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accounting for inventory at both the source and destination of a trip, synchronization
with arrival and departure processes at the trip ends, and multiple-stop vehicle routes.
(These topics are covered in depth in Section 5.5)

One of the most interesting application papers in queueing is Oliver and
Samuel’s (1967) study of mail processing. This is one of a few papers that examines
sortation in terminals and transportation to and from the terminal as a linked process.
But the paper is most significant for determining how capacity should be determined
within a serial queueing system under non-stationary demand. Their fundamental
conclusion was that staffing should be allocated in a way that evens out capacities,
thus providing minimal queueing once the customer has passed through the initial
server.

A second area of interest is real-time control of routes, governing the release of
vehicles from stops in response to random arrival rates. Again, the earliest work in
this area falls outside of the transportation literature (Bailey, 1954; Neuts, 1967).
More recent work includes Powell (1985), Powell and Humblet (1984), and Powell
(1986), who investigated a variety of policies for dispatching or canceling services
based on the elapsed time from the previous service and the number of customers
waiting. ~ Similar policies have been investigated for transfer terminals by Hall et al
(2001) and cyclic truck routes (Hall, 2002). These contributions fall in the tradition
of dispatching policies form the production literature.

A final area concerns schedule control of vehicles traveling on routes with
multiple stops. Here, the application is almost exclusively transit. In this context, it
is usually impossible to hold vehicles at stops if there are insufficient customers.
First, it would be unwise to base a dispatch policy on just one stop when the bus will
later serve many downstream locations. Second, most transit systems advertise a
schedule that is relied on by customers. Finally, the majority of the service cost is
incurred whether the vehicle is in motion or stopped, so there is little cost advantage
in holding a vehicle or canceling a trip.

In routes providing frequent service (headways of 10 minutes or less), the
objective in schedule control is largely to ensure consistency in headways (time
separation between vehicle arrivals or departures). Customers on short-headway
lines typically do not consult schedules before arriving at their stops, and therefore
arrival patterns are reasonably stationary relative to the schedule. Second, as
demonstrated in Osuna and Newell (1971), average waiting time increases with the
square of the coefficient of variation in the headway (ratio of standard deviation to
the mean). Completely random Poisson vehicle arrivals generate twice the average
wait of deterministic arrivals. In fact, waiting time can be worse then the Poisson
case, as vehicles on frequent lines have a tendency to bunch. Headways on very
frequent lines are inherently unstable: when a bus falls slightly behind schedule, it
tends to pick up more passengers, causing it to slow further, until it eventually
bunches with the trailing bus (Newell, 1975, Barnett, 1974). This can be controlled,
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to some degree, by slowing down a trailing bus when it is catching up .vs{ith the
preceding bus. However, the added delay for passengers already on the trailing bus
limits the applicability of this (and other) control strategies, except at the very start of
lines.

The behavior of infrequent lines differs substantially from frequent lines.
Customers generally do consult schedules, making arrival patterns non-stationary.
Therefore, waiting time is not defined by the headway, but instead by the random
deviations in the bus arrivals at the stop, along with the customer’s selected arrival
time relative to the schedule. Finally, because late bus generally do not pick up
additional passengers, schedules tend to be much more stable.

Alrcraft and Airports

As in road transportation, a fundamental issue in air transportation is accommo@atir}g
peak traffic loads. And though techniques such as fluid models have been applied in
air transportation (e.g., Newell, 1979), a separate branch of research has evolved in
which stochastic phenomena are explicitly modeled. Unlike highwayktrafﬁcz the
number of customers (represented by aircraft) that may reside in a queue is re}atlvely
small, making it relatively easy to measure the system state as a discrete gntle, and
also making round-off errors introduced in fluid models somewhat more mgmﬁcqnt.
Consequently, this line of research is linked more directly to mainstream queueing
research.

Air transport research is dominated by the phenomena of runway queues.
Runways are traditionally a weak link in the air transport system, likely dqe to the
high cost and environmental constraints in their construction, and safety rc?qulr'ements
in operation. A complication in modeling runway queues is that the service time for
an aircraft depends on the type of preceding aircraft, which is defined by speed and
size (creating wake effects that can impose safety risks to trailing an‘craft)f and
whether it is taking off or landing. Therefore, as in many production systems, it can
be advantageous to sequence customers in a way that optimizes throughput (Newell,
1979).

Stochastic modeling of runway queues is represented in the work of_Gallagher
and Wheeler (1958), Koopman (1972), Peterson et al (1995a,b) and_ Odoni and Rpth
(1983). Odoni and Roth, for instance, developed an approximation for the time
constant within an exponential decay function, representing the difference between
the expected state of the system at a time t and the limiting sta.te as t goes tow.ard 0,
Newell (1982) is also notable for development of relaxation times, representing the
approximate time for a system to reach steady derive. Newell demonstra}ted that the
relaxation time goes toward infinity as the arrival rate approaches capacity, and that
steady-state equations are inherently inaccurate for systems that operatt? close to
capacity, even if arrival rates fluctuate only slightly. These were derived from
diffusion models, and were not intended for a specific modal application.
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with the assistance of switching. This contrasts with most other forms of
transportation, where vehicles can pass by steering into another lane or otherwise
outside the trajectory of the other vehicle. Most railroads are designed to have either
one track (shared by opposing directions) or two tracks (one for each direction). In
the first case, trains must be switched into sidings to allow faster trains to overtake
slower trains (e.g., a passenger train passing a slower freight train), or whenever
trains meet from opposing directions, no matter how fast they are traveling. With
two tracks, sidings are only needed to allow faster trains to pass slower trains.

Queueing research has centered on design, including: (1) provision of one or two
tracks, (2) separation between sidings, (3) operating policies, with respect to speed,
passing priority and train scheduling. Railroads must consider whether the benefits
of operational flexibility and reduced delay justify the added expense of constructing
additional track or sidings. This investment is typically only justified when traffic
levels are sufficient. Research on the subject is represented by Frank (1966),
Petersen (1974) and Welch and Gussow (1986). A common technique is to utilize
time-space diagrams (the vehicle trajectory, showing position as a function of time)
to identify train “interference” (i.e., the intersection of vehicle trajectories). Petersen
determines the interference frequency as a function of the train separations and
speeds, and associates these with interference delays siding locations. This research
is closely related to the traffic flow literature, both in its use of time-space diagrams

and in its modeling of interference.

Spatial Queueing

A final application area spans transportation and location science, and concerns
queueing for spatially separated resources, such as police or fire service. The general
question is to allocate resources in a way that minimizes a measure of response time,
while staying within an available budget. In some cases, the resources reside at fixed
bases (e.g., fire), and in other cases the resources are mobile (e.g., police). Versions
also exist where the customer travels to the server, rather than the server traveling to

the customer.

The response time typically includes a combination of travel time (from where the
resource is located to where it is needed), call processing time, and queueing time.
One of the interesting phenomena is that when the system gets busy, it is the travel
time that suffers rather than queueing time. This is because when nearby resources
are busy, a more distant resource is dispatched instead — creating a longer response
time. Simultaneously, the throughput degrades, as it takes longer to serve calls when

travel distance increases.

Much of the work on the topic can be attributed to a series of projects conducted
by the RAND Corporation in New York City in the early 1970s. Examples of
research in the area include Chaiken and Larson (1972), Green and Kolesar (1989),
Ignall ef al (1978), Kolesar (1975), Kolesar and Blum (1973), Kolesar et al (1975),
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Larson (1972) Rider, (1976). The work is most notable for how it has blended
empiricism, theory, and application. This includes modeling response distance as a
square-root function of the average territory served by each resource, explicitly
representing resource allocation and call rates as non-stationary functions, precisely
modeling service time distributions and verifying results against actual performance.

5.4 Representation of Queueing Processes

Cumulative diagrams and fluid models are the most important contributions of
transportation to the queueing literature, and this is our emphasis here. They have
been applied to all modes of transportation, and are useful in displaying and
modeling queueing phenomena, and in system optimization.

Basic Concepts

A cumulative diagram indicates how many customers (often vehicles) have
passed a point in the transportation system as a function of time (measured from an
initialization time). A cumulative arrival diagram indicates how many customers
have entered the system, and a cumulative departure diagram indicates how many
customers have left the system. Figure 5.1 provides an example empirical cumulative
diagram. In an empirical diagram, individual customers are represented by steps in
the curve, corresponding to the time instants when events occurred (either an arrival
or a departure). Additional curves can be created, is desired, for intermediate points,
as when customers pass through serial servers.

Cumulative diagrams are important because they provide many performance
measures in one simple picture. Let:

A(t) = cumulative arrivals from time 0 to time t
Dy(t) = cumulative departures from the system from time 0 to time t

The number of customers in the system at any time t is simply:

Ly(t) = number of customers in the system at time t
A(t) - D(t) 5.1

And the total time spent by customers in the system up to time t is:
W(t) = total time spent by customers up to time t

= of L(t)dr +, f [Ay(1)-Dy(1)]dr (5.2)
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Two critical performance measures are the average number of customers in the
system and the average time in system per customer. The average number of
customers is easily derived from W(t):

L(t) = average customers in system, time 0 to time t
L(t) = W(t)/t (5.3)

In cases where the system begins and ends in an empty state (i.e., L{(0) =
L(t)=0), the average waiting time is also easily defined:

W(t) = average time in system from time 0 to time t
W(t) = W(tYA®) 5.4

Combining these expressions, it can be seen that

tL(t) = A(OW(D) (5.52)
L) = [A)/ATW(E) (5.5b)

Equation 5.5b is a special case of Little’s formula (1961), which states that the
average number of customers in the system asymptotically approaches the average
time in system multiplied by the customer arrival rate for a wide class of systems.

All of these results are clearly seen in a cumulative diagram, as Figure 5.1
illustrates. The number of customers in system (queue size) is the vertical separation
between the cumulative curves, and the total waiting time is the area between the
curves. The average time in system is the average horizontal separation and the
average customers in system is the average vertical separation. If cust9m§r§ are
processed in a FCFS order, the diagram also shows the time in system for individual
customers, also measured by the horizontal separation. If the sequence is not ECFS,
then another graphical device, such as a GANTT chart, is needed to show the time in
system for individual customers.

Fluid Models

In a fluid model, individual customers are represented as a continuously flowing fluid
rather than discrete entities. This has the effect of smoothing out the steps in the
arrival and departure curves. Fluid models are often used to prédict the future
performance of queueing systems, or just to simplify the representation of observed
phenomena.
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In a fluid model, arrival rate, A(t), and departure rate, u(t), are defined by the
derivatives of their corresponding cumulative curves:
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Figure 5.1 Cumulative Diagram

A(E) = dA()/dt (5.6)
() = dD(t)/dt (5.6b)

In bulk service systems, the service rate can be undefined; otherwise it reflects
three factors: (1) the speed at which customers can be processed by the server, (2) the
size of the queue, and (3) the rate at which customers arrive. Servers ordinarily
operate at their fastest rate when queues are present, and operate at the same rate at
which customers arrive when queues are not present. Exceptions exist, as service
capacity can be variable, depending on demand, and service times can sometimes
change as queue lengths change.

To illustrate fluid models, we consider a simple system in which the service rate
is limited to a capacity ¢, but service times are very short. This might represent
queueing at a highway toll plaza, for instance. The arrival process and departure
process are both non-stationary, but are assumed to be deterministic, for purposes of
illustration. Under these conditions, Figure 5.2 illustrates how the queues would
evolve over a period of peak arrivals. The system is shown to evolve through a series
of four phases:
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Figure 5.2 Cumulative Fluid Model
Phase 1; Stagnant
A(t) = Dy(t) M) <c n(t) = () dL(t)/dt=0 (5.7)

Phase 1 represents the initial period when customers can be processed as fast as they
arrive (time 0 to time 20 in the figure).

Phase 2: Growth

A(t)> Dy() YOER u®=c dL@/dt=At)-c>0  (5.8)

Phase 2 represents the period in which the queue grows because customers cannot be
served as fast as they arrive (time 20 to time 80 in the figure).

Phase 3: Decline

A®>D®  AMH<c b =c LA =AH-c<0 (59
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Phase 3 begins when the queue reaches its maximum length, which occurs when the
arrival rate drops down to capacity. It ends when the queue vanishes. (Time 80 to
time 140 in the figure.)

Phase 4: Stagnant

A() = D) M) <c u(t) = M dL(t)/dt = 0 (5.10)

Phase 4 is when the queue is again stagnant at 0, with customers arriving slower than
they can be served. An interesting phenomenon is that p(t) exhibits a discontinuity at
the time the queue vanishes (5.3), dropping suddenly from ¢ to the current arrival
rate. Thus, the departure rate pattern is highly asymmetrical in queueing systems.

Analysis Through Cumulative Diagrams

Through perturbation analysis, it is possible to optimize the design of the queueing
system. It is relatively straight forward, for instance, to model the effects of changing
system capacity. Increasing capacity has a non-linear effect on time in system, as it
causes both the duration of the queue (length of Phase 2 and 3), and the magnitude of
the queue to decline. And when capacity exceeds the maximum arrival rate, the
queue vanishes. Comparison of departure curves can be used to select a capacity
from a set of discrete options.

Cost trade-offs can be evaluated through use of marginal analysis, in which
capacity is continuously varied. We define a total cost function as:

C = capacity cost + waiting cost
C= ac + Bw(c) 5.11)

where:
o = capacity cost per unit capacity
B = waiting cost per unit customer time

W(c) = total waiting time when capacity equals ¢

A necessary condition for optimality is that cost must not decrease if the capcity is
changed by a small amount Ac. The change in cost, AC, if ¢ is increased by Ac can
be written as the sum of the change in capacity cost and the change in waiting cost:

AC = aAc + B[W(c+Ac) — W(o)] (5.12)
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The change in waiting time (the term within the brackets) can be calculated from the
cumulative diagrams. Assume, as in Figure 5.3, that one predictable queue
occurs per time period. Then, for small values of Ac, the change in waiting time can
be approximated from the area of the triangle shown in the figure. That is:

W(c+Ac) — W(c) ~ % T(c) [T(c)Ac] (5.13)

AC represents the marginal change in cost, which must equal zero at the 6ptimum
(provided that W(c) is continuously differentiable). Substitution of Eq. 5.13 in Eq.
5.12 provides the following optimality criterion:

T*(c) = \20/B (5.14)

Eq. 5.14 states that the optimal capacity is represented by the duration of the
queueing period — time from when the queue first forms until it vanishes — and riot by
the arrival rates during the queueing period. The optimal duration increases with the
square root of the capacity cost (when capacity is expensive, longer duration queues
can be tolerated) and decreases with the square-root of the waiting cost (when
waiting is expensive, queues should be shorter in duration).
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Figure 5.3 Marginal Analysis
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Extensions
The cumulative modeling approach has been extended in a variety of ways.

* Investigation of the combined effects of stochastic variability and non-
stationarity, principally through application of diffusion models.

*  Optimization of other system attributes, such as staffing plans and time-off
scheduling.

e Measuring the effects of incidents that cause capacity to decline over short
intervals

¢  Estimating effects of behavioral responses, causing arrival rates to be a function
of queue lengths, waiting times or tolls.

* Evaluating queueing in bulk-service systems, such as signalized intersections,
transit and trucking.

Bulk service will be examined in some depth in the following section. But first, we
note that incidents often have a pronounced effect on system performance. This is
especially true when incidents occur around the time that a queue begins to form, as it
affects everyone who arrives over the queue’s entire duration. The effect is not
nearly so great when an incident occurs later, as it only affects those customers that
arrive later. As a consequence, queue management demands special care during
Phase 2, both to prevent harmful incidents, and to persuade customers, if possible, to
arrive at other times.

5.5 Bulk Service Models

Economic Order Quantity (EOQ) and Economic Production Quantity (EPQ) models
have been used for many years in transportation and manufacturing to optimize cycle
lengths, load sizes and batch quantities for bulk service. While research in this area
today is focused on complex scheduling systems, many of the underlying assumptions
of the EOQ/EPQ models have been retained, especially in transportation
applications.

This section describes how the EOQ/EPQ methodology is applied, taking both
Input processes and output process into account. To this end, a set of "characteristic
cumulative diagrams" is developed to represent a range of scenarios. The principal
assumptions are: (1) input and output processes occur at constant and deterministic
rates (in some scenarios, rates are allowed to alternate between "on" and "off" phases
through batch processing). (2) Set-up and order costs are independent of batch size.
(3) Batches can be initiated instantaneously when the queue size drops to zero. (4)
Queueing costs are linear functions of the average queue size.
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The systems considered will have three components: an %n'put process, a bulk
transportation system, and customers. The models explicitly represent bl..llk
transportation of goods, but they are easily adapted to fepresent other transportat%on
systems, such as traffic signals and buses. Hence, the input represents a prod‘ucgon
process. The section is organized to demonstrate the effe(':ts of ) Synchromzauon
of input batch sizes with output batch sizes; and (2) Coordination of input and output
when there are multiple customer or product types.

Basic Methodology

The general approach is to represent total cost per unit time as the sum of.a queue
cost and a "set-up" cost. The queue cost equals the average queue level multiplied by
a queue cost parameter. The set-up cost equals the numbe'r c?f set-ups or orders per
unit time (the demand rate divided by the batch size) multiplied by the cost per set-

up.

The following parameters are used to represent the system. In some cases, these
parameters are subscripted to denote an individual customer or product.

d = output rate (items/time)
p = input rate (items/time)
S = input set-up cost (money/set-up)
A = transportation "set-up" cost (money/order)
h = queue cost (money/customer per unit time).

To simplify expressions, transportation lead time (i.e., the transpor_te%tion time f.'rorn
origin to destination) is assumed to be zero. With respect'to optimizing ba‘Fch sizes,
this assumption results in no loss in generality, provxc%ed that 16?&(1 times are
independent of the other parameters. While it is not- dxfﬁgult to incorporate a
"pipeline" cost to represent lead-time, the cumulative dlagr-ams- lose .clarle.
Queueing cost is also assumed to be identical at source and des@natlon, again with
the intention of highlighting principles. For similar reasons, th.e time to perfprm the
set-up is assumed to be negligible relative to the run time. Finally, batch sizes are
assumed to be unconstrained.

The decision variables are the order and production batch sizes, which in turn
define the order and production cycles:

Qp= production batch size
Q. = transportation order quantity
T, = production cycle time = Q,/d
T, = transportation cycle time = Q/d.
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While in most cases the production and order quantities are held constant, it will, in
some instances, be less costly to allow for varying quantities.

Queue holding costs are defined by the cumulative production at the source and
cumulative demand at the customer (or customers).

P(t) = cumulative production from time 0 to time ¢
D(t) = cumulative demand from time 0 to time t.
I(t) = customers in the system at time t = P(t)-D(t) .

The order and set-up costs depend on P(t) and D(t), as achieving a small queue
requires more frequent set-ups and orders.

Dispatching Rule We now define a general characteristic of batch transportation
systems under optimal control. The characteristic is a necessary condition for

optimality when the following four conditions apply, but as a matter of practice
applies more broadly:

(1) transportation set-up cost is fixed with respect to shipment size,

(2) queue cost is a linear function of the total queue in the system (i.e., P(t)-D(t)),
(3) vehicle size is unlimited,

(4) P(t) and D(t) are non-decreasing and represent a single product.

Let:

T(t) = cumulative items dispatched from the manufacturer, from time 0 to time t.

Then at the time of any dispatch:

T(t) = D(t) immediately before dispatch
T(t) = P(t) immediately after dispatch.

In words, the dispatching rule states that a shipment should be sent as soon as the
queue is exhausted at the customer, and that the order quantity (i.e., shipment size)
should be identical to the queue on-hand at the manufacturer: P(t)-D(t). Visually, this
rule is manifest in the cumulative graphs presented later through the staircase pattern
for T(t), which alternately "bounces" between D(t) and P(t).

The optimality of the dispatching rule can be proved by contradiction. From
any solution that violates the rule, it is possible to construct a solution which obeys
the rule, with equal or lower cost. Specifically, if T(t) does not equal D(t)
immediately before dispatch, then the shipment can be delayed until T(t) = D(t), with
no increase in queue cost, and a possible decrease in transportation cost (@if two
shipments can be consolidated). If T(t) does not equal P(t) immediately after
dispatch, then the shipment size could be increased, with no change in queue cost,
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and a possible decrease in transportation cost (if a subsequent shipment can be
eliminated).

Queue Models

This section creates a set of seven characteristic cumulative diagra_ms, ;ach
representing a different cyclic queueing patterr.x. In a subsequent sectg)‘fr}ll,.lt f}i:
curves are used as building blocks for developing EQQ/EPQ models. 1eth
diagrams represent production/distribution, they are easily adapted to represent other
situations in transportation.

The average queue level equals the average separation t?etween the ctlm'{ulatgz
production and cumulative demand curves, wh1.0h is determmed-by calcu :imng e
area of separation and dividing by the elapsed time. The.separathn de?penl stogz) e
batch sizing policies, both in production and tr.ansportatmn. In 1ts' smpsez is the,
production and demand are characterized by Figure §.4 or 5.5. Flgurce1 A ¢
textbook version of the EOQ model, as it assumes instantaneous pro uction més
transportation. Figure 5.5 is the textbook version of the EPQ mpdel, zlxs it a(jsiu(ﬁlin
production occurs at some set rate, and transportation occurs continuously, an

batch.

In a more general sense, average queue level may be deﬁne.d by. 1z;nby ofﬁ};g
following types of cumulative production and demand diagrams, which will be ca "
the "characteristic curves." (Recall that, in all cases, constant demand is assumebi
The set of cases is not completely exhaustive, b1.1t does encompass most reasonable
patterns that apply to direct transportation routes in production/distribution.

1. Instantaneous Production/Batch Distribution (Synchronized) This is the
textbook EOQ model (Figure 5.4).

Average Queue Level=  Qy2
2. Instantaneous (or Constant) Distribution/Batch P'roductlim? A; in Figure 5'.5,
production is immediately available for consumption, eliminating batclh size
inventories in distribution. Figure 5.5 is equivalent to the textbook EPQ model.

Average Queue Level = (Qy/2)(1-d/p)

3. Constant Production/Batch Distribution As in Figure? 5.6, produc.tlon ;nd
demand occur at a constant rate.  Inventories exist at both point of production an
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Figure 5.5 Instantaneous Distribution/Batch Production
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point of demand as a result of distribution batch sizes with constant sizes and
constant separation.

Average Queue Level = Q,

4. Batch Production/Batch Distribution In all of these cases, the product is both
manufactured in batches and transported in batches.

4a. Synchronized/lot-for-lot As in Figure 5.7, transportation is synchronized with
production, so that a dispatch occurs as soon as a batch is manufactured. The
average queue level at the customer is the transportation batch size divided by two.
The average queue level at the manufacturer is one-half the production batch size,
multiplied by the proportion of time that the machine is running (d/p).

Average Queue Level = (Qy2)(d/p) + Q/2= (Q/2)(1 + d/p),

where Q = Q, = Q, (due to lot-for-lot production). If d=p, the machine runs
continuously and the average queue level is the same as for case 3. If p>>d,
production is effectively instantaneous, and the average queue level is the same as
case 1. Finally the ratio of average queue level relative to case 2 (instantaneous
distribution) is (p+d)/(p-d). Hence, if d<<p, average queue levels are approximately
the same. As d approaches p, the ratio approaches infinity, indicating that the EPQ
model greatly underestimates queue level in batch distribution when production and
demand rates are similar.

4b. Synchronized/multiple transportation lots Due to this case's complexity, the
queue model will be presented later within the context of a specific system scenario
(Scenario F).

4c. Non-synchronized/lot-for-lot As in Figure 5.8, the transportation and production
cycle lengths are identical. However, transportation is not scheduled to coincide with
the end of a production run. (This may occur if multiple products, each with a
different start/end time, are transported in each cycle.)

Average Queue Level = (Qy/2)(d/p) + Q2 +1d = (Q/2)(1 +d/p) +1d

where 7 is the time lag between the end of the production run and the time of dispatch
(Q=Q=Qy).

4d. Non-synchronized As in Figure 5.9, production and transportation both occur in
batches, but are not synchronized. As a result, the average queue is the sum of case 2

and case 3 (Blumenfeld er al, 1985).

Average Queue Level: (Qy/2)(1-d/p) + Q
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Set-Up Cost Models

The set-up cost per unit time is the cost per set-up (or order), multiplied by the
gu.mber of set-ups (0.1‘ orders) per unit time. For consistency with the queue models,
it is necessary to derive the number of set-ups per unit time as a function of the batch

size (or sizes). In the classic BOQ and EPQ models, this function is simply the
following: ©

f, = production set-up frequency

fp, =d/Q,= /T, (5.15a)
fi= transportation "set-up" frequency
fi=d/Qy= 1T, . (5.15b)

These models are adequate when a single product is manufactured/distributed, but
more precision is needed for multiple products. In the transportation process, in
particular, it is customary to serve multiple products within the same batch. Her;ce
for any origin/destination pair, there is a single transportation cycle length, which i;
identical for all products: ’

fi=d/Qy = dy/Qa = .. = d/Qy = ... (5.16)

yvhere the first subscript on d and Q denotes product number, and where Q is
interpreted as the shipment size per dispatch. Equivalently, a "composite product”
can be defined, where demand is the sum across all products, expressed in a common
unit (S}lCh as weight or dollar value). Then Eq. 5.1 would apply, provided that Q and
d are m_terpreted in this common unit. In Case 4b, where batch sizes vary within a
production cycle, a further modification is needed. The transportation set-up
frequency will be the number of orders per production cycle (n) multiplied by the
production set-up frequency (d/Q,).

Problem Dimensions

The number of potential variations to the EOQ and EPQ model is quite enormous.
Our purpose is to present a range of scenarios, and later discuss the implications of
the more significant variations on cost. This will be accomplished by identifying the
"charac.teristic cumulative diagram" that applies to the scenario, computing total cost

and optimizing the production batch size and transportation order quantity. ’

The scenarios are defined at two levels. At the top level, the defining attributes
are the number of customers and the number of plants. At the lower level, scenarios
are defined by the number of machines within each plant and the number of products:

140 Handbook of Transportation Science

Top-level Attributes
1) Single Customer/Single Plant
2) Multiple Customer/Single Plant

3) Single Customer/Multiple Plants
4) Multiple Customer/Multiple Plants

Lower-level Attributes

a) Single Machine/Single Product
b) Multiple Machines/One Product per Machine
) Single Machine/Multiples Products per Machine

d) Multiple Machines/Multiple Products per Machine .

Attributes (a) and (b) do not require production changeovers; hence, production is
continuous, and the transportation order quantity is the only decision variable.
Attributes (c) and (d) demand changeovers between products; hence, both production
batch size and order quantity must be optimized. Table 1 summarizes the scenarios
covered in the section, which are constructed by combining attributes. The first three
are fairly straight-forward, and do not entail schedule interactions among products.
The second three are more complex.

Cost Analysis: Simple Scenarios

This section develops cost models for three simple scenarios, which illustrate the
effects of accounting for: (1) queue costs at both the manufacturer and customer; 2)
consolidation of multiple products from multiple machines; and (3) costs for
unsynchronized systems.  These are classified as simple cases because all treat one
product at a time.

A. Single Customer/ Single Plant (Queue at Manufacturer and Customer) In
this scenario, one machine operates at a constant rate (equaling the demand rate),
producing a single product, without interruption, for a single customer. Set-ups do
not occur because product change-overs are not needed. Hence, the only decision
variable is the transportation order quantity.

The cumulative diagram in Figure 5.6 (constant production/batch distribution)
characterizes the situation. The objective function, and its optimal solution, are then:

C(Qy = A(/Q) + Qh (5.17a)
Q* = VAdh (5.17b)
C*= 2vAhd. (5.17¢)

B. Single Plant/Multiple Machines/Single Customer (Consolidation Effect) In
this scenario, each machine produces a single product at a constant rate, for which
demand also occurs at a constant rate. The products are manufactured at a single
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plant, and distributed to a single customer. Unlike the prior scenario, different
pro_ductg are consolidated in the transportation process. This situation iliustrate:n
major dlffere?nce between EPQ and EOQ models. Whereas batch production doees1
not allow different products to be processed simultaneously (rather, alternatin

phase§ are needed), batch transportation virtually mandates simultane’ous serviceg
That is, _from the standpoint of cost minimization, it is cheaper to consolidat‘
products in the same vehicle than to transport each product separately. ’

Blumen'_feld et al (1985) examined this situation, and introduced the concept of a
composite product to represent the portfolio of product characteristics contali)ned in
the load. Hence, Figure 5.6 is interpreted as the demand among all products sellat
between the manufacturer and customer. The cost model, and optimized results, are

shown below. Cycle length is used as th isi i
‘ e decision variable, rather than i
because batch size varies among products: petel size

C(Ty) =A/T, + THD
VIt 5.18
Ty* = VA/HD ((5. : 8{3
C* =2VAHD, (5.18¢)
where:
HD = 3 hd;. (5.19)

C. Multiple Plants and Customers (Unsynchronized) In a system with multiple
plants z_md customers, it may be impossible to synchronize transportation alzld
production cycles due to scheduling conflicts. As a result, larger queues must be held
at the rpanufacturer to buffer against cyclic fluctuations. In this scenario batch
Pro.dqctlon and batch distribution are assumed. The system is decom c;sed t

individual plant/customer/product combinations, assuming the abssnce o(%

synchronization, as in Fi imi
oyner igure 5.9. The cost model, and optimized results, are shown

CQpQ) = S(d/Qy) + A(d/Q) + [(Qy2)(1-d/p) + Qh (5.20a)
o *Qt* ; VAd/h (5.20b)

= \2Sd/h(1-d/
C* = VAR + \2Shd(1-d/p) . ((55 .'2233

In this case, the production and distribution results are decoupled. Further, the
production k?atch size is identical to the textbook EPQ model. Thé transpon;tion
order quantlty, on the other hand, is identical to Eq. 5.17b. Hence, the base
comparisons for the transportation order quantity are the same as those r’esent d i

the single customer/single plant scenario. g’ o
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More Complicated Scenarios

Within this section, cost analysis is shown for three more complicated scenarios, to
illustrate issues involving multiple products and multiple customers. In the first
example, a single machine produces a single product to serve multiple customers. In
the second, a single machine produces multiple products for a single customer. In the
last, a single machine produces multiple products for multiple customers, with one

product per customer.

Within the framework of EOQ/EPQ modeling, it is impossible to fully account
for complex scheduling systems. In the examples, schedule conflicts are avoided by
assuming either (or both) of the following: (1) products are manufactured
sequentially in a common rotation cycle, or (2) production rate greatly exceeds
demand. Within a rotation cycle, the production rate for a machine is assumed to be
the same as the total demand for the machine. The large production rate case will

only be used for multiple customer scenarios.

D. Single Machine/Multiple Customers In this scenario, a single machine produces
a single product at a constant rate for multiple customers, without interruption.
Though set-ups do not occur, production must still be divided into time segments,
corresponding to customers. Consequently, the average queue depends both on the
time to produce and the time to consume a quantity. These values are different
because the production rate, by the necessity to serve multiple customers, must
exceed the demand rate of any one customer. This effectively results in production
batches without the need for production set-ups. Hence, the characteristic queue
curve for any one customer is a batch production/batch distribution case (Figure 5.7),

but the production set-up has a cost of zero.
For an individual customer, the cost can be expressed as:
CQ) =A®Q) + h(Q/2)(1 +d/p). (52D

Assume that customers are served in a common rotation cycle (length Ty), and that
the production rate matches the sum of the demand rates. Because there is a common
product, further assume that the queue holding cost is the same for all customers.
Using T, as the decision variable, the total cost for the rotation can be expressed as:

C(T) =nAYT, + Z [(Tdy2)(1 + d/Z dy)] (5.22)
C(T) = nA!T, + h(T/2)(nd +E(d2)/d)
C(Ty) = nAYT, +h(T/2)d'(n+ 1+ C2),
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where:

d' = average demand rate
A'= average value of A;, among customers i=1,...,n
C = coefficient of variation of the demand rate

E(d?2)= average of enclosed quantity.
The optimized values of T, and C(T,) are then:

T = \2nAThdm+1+C2) (5.23a)
CT¥) =  \2nAhd@+1+CD). (5.23b)

Note that if n=1, C must equal zero, and the model reduces to the same form as Eq.
5.17, or the simple single plant/single customer case. As n approaches infinity, the
model converges toward something like the classic EOQ model, with T* = \/2A‘/hd',
and C(T*)/n = \2A'hd". However, they are based on averages among all customers,
not individual customer values. The scenario demonstrates that when the demand for
an individual customer falls well below the production capacity, the queue model is

much like the classic EOQ

If the production capacity greatly exceeds the demand rate, it might be
reasonable to optimize order quantities on an individual customer basis. Eq. 5.21
could then serve as the objective function, resulting in the following solution:

Q* = \2Adm(I+dlp) (5.24a)
CQ* =  \2Ahd(1+dp). (5.24b)

If p>>d, these results reduce to the exact same form as the classic EOQ.

E. Single Machine/Multiple Products: Single Customer In this scenario, demand
occurs at a constant rate for each product, but production is cycled among products
on a single machine, with set-ups and changeovers. First, products are assumed to
be produced at the same rate, with the same queue holding cost. Later, this
assumption is relaxed. As stated at the beginning of the chapter, set-up times are
assumed to be negligible.

Figure 5.9 is the characteristic cumulative diagram for individual products.
Given that each product must be produced at a different time (recall, a single
machine is used), it is impossible to synchronize all products with distribution. The
aggregate queue diagram for the rotation cycle (Figure 5.10) is more revealing. The
similarity to Figure 5.6 is a striking feature of Figure 5.10, for it suggests that a
rotation cycle can bear the same queue cost as simple single product cycles. That is,
queues are built up at a rate p-d during a production phase, and depleted to zero at a
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Figure 5.10 Single Machine/Multiple Products/Single Customer
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Figure 5.11 Single Machine/Multiple Products/Single Customer: Decoupled
Production and Distribution Cycles
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rate d when production is cycled off. The batch transfer process acts to consolidate
products into the same load independently of their position within the rotation.
Hence, the first product in the rotation, which must wait nearly a full cycle before
dispatch, is transported at the same time as the last product in the rotation.
The cost formulation can now be represented as follows:
C(T) =(A+nS"YT + Tnhd', (5.252)
Where

S'= average of S;, among customers i=1,...,n (5.25b)

The optimized result is then:

T* = (A+nS')/nhd' (5.26a)
C(T*) = 2V(A+nS"nhd". (5.26b)

These results are the same as Scenario A (single plant/single customer), with the
exceptions that the "set-up cost” includes both the order cost and the combined set-up
cost across all products, and that the demand is the total demand across all products.

In some instances, it is preferable to decouple production and transportation
cycles, with the latter occurring more frequently than the former. These decisions
can be totally decoupled when one ignores the round-off errors that result when a
dispatch occurs in the middle of a product's production run. The average queue at
the manufacturer is then one-half the distribution batch size. The average aggregate
queue at the customer is one-half the production batch size (Figure 5.11). Again
assuming a rotation cycle, the total cost is the following:

C(T,, Ty = A/T, +nSYT, + (Ty/2)nhd' + (T,/2)nhd'. (5.27)

The optimized results are then:

T¢* = 2A/nhd' (5.28a)
T,* = \2S'hd' (5.28b)
C(T*,T,*) =V2Anhd' + n\2Shd'. (5.28¢)

To be implemented, the cycle lengths must be adjusted so that the manufacturing
cycle is an integer multiple of the transportation cycle.

F. Single Machine/Multiple Products: One Product per Customer In this final
sc.enar%o, each production batch serves a single customer, and is fully synchronized
with distribution. As soon as a production run is completed, all queue for the given
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product is dispatched to the customer. Production can either occur on a lot-for-lot
basis, or with multiple distribution lots per production cycle.

Simple Rotation Cycle In a simple rotation cycle, production and transportation are
synchronized with the same cycle length for all products/customers. The queue
pattern for this scenario is batch production/batch distribution, synchronized lot-for-
lot (Figure 5.7). The total cost for a cycle is then:

C(T) =n(A'+SYT + Z (T/2)hdi(1 + di/py) (5.29)

The optimized cycle length and cost are:

T* = \2(A"+S")/[HD+E(h;d2/p;)] (5.30a)
C(T*) = nV2(A+S"[HD+ E(hyd;2/p;)] (5.30b)

As a point of contrast, Scenario D (single machine/single product/multiple
customers) did not include set-up costs, and the production rate was simply the sum
of the demand rates. This leads to a relatively higher set-up cost in Eq. 5.29, and a
slightly modified queue holding cost. Hence, the optimal cycle length is longer for
the multiple product scenario (F) than the single product scenario (D).

As a second point of contrast, Scenario E (single machine/multiple
products/single customer) uses only one transportation set-up per cycle, and queue
cost is larger. Hence, the optimal cycle length is longer for the multiple customer
scenario (F) case than the single customer scenarios (E).

Large Production Capacity If the production capacity greatly exceeds the demand
rate, it might be reasonable to optimize order and production quantities on an
individual customer basis. The following could then serve as the objective function
for an individual product:

C(T)= (A +S)/T + (T/2)hd(1 + dip) . (5.31)

The optimized results are then:

T* = \2(A+S)hd(1+d/p) (5.32a)
C(T*) =\2(A+S)hd(1+d/p) (5.32b)

Allowing for Multiple Dispatches If queue holding costs are sufficiently high, it
might be reasonable to provide multiple dispatches per production cycle. Let:

I, = queue in the system at the start of the production run
Qi = size of transportation batch i (i = 1,2,...), within a production run
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The initial queue, Iy, is exhausted at the moment that batch 1 is transported. Hence,
Q1 equals the production during the time required to consume I, units of queue:

Qi=p(y/d) . (5.33)

Similarly, all subsequent batch sizes are dictated by the prior batch sizes, in the
following fashion:

Qi = p(Qui/d)= Iy(p/d) . (5.34)

Io can now be derived, by recognizing that the sum of the transportation batch sizes
within a cycle must equal the production batch size: :

Q=2Q= I, = (p/d) > (5.35a)

or
i Cumulative P(t
Ii=Qy/[Z (p/d)]. (5.35b) Items ® A

Referring to Figure 5.12, the average queue level can now be characterized as the
sum of a base level, I, and an EPQ type quantity:

Average Queue Size =1, + Qul(p-d)/p)/2 . (5.36) \

With I, as given in Eq. 5-35b, the average queue size becomes: D(t)

T(t)

C(Ty) = (mA+S)/T, + hT,[1/Z (p/d)i + (1-d/p)2], (5.37)
i=1

I ]

where m is the number of transportation cycles per production cycle. Through a

combination of search techniques and calculus, it is not difficult to optimize m and T, Time
within the above expression.

\J

Summary of More Complicated Scenarios Introduction of scheduling Figure 5.12 Synchronized/Multiple Transportation Lots
considerations complicates EOQ and EPQ calculations in several ways. First, to '

avoid schedule conflicts, either a rotation cycle must be optimized, or simplifying
assumptions must be made with respect to production capacity. Second, the
combination of batch production and batch distribution results in somewhat non-
standard forms for the queue equations. Third, both production and transportation
set-up costs must be considered when optimizing cycle length.
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Extensions

The scenarios presented in this section served to illustrate a methodology, and to
illustrate the complexity of accurately accounting for queue sizes when input and

output processes are discontinuous. Many extensions have been covered in the
literature, including the following:

Random Cycle Length Batch processes seldom occur precisely on schedule.
Consequently, the headways between batches vary randomly, causing average and
maximum queues sizes to increase. This occurs because customers are more likely to
arrive during longer headways, and because the average wait for a long headway is
greater than the average wait for a short headway. In the special case where
customers arrive at random relative to batch times, the average wait is given by:

E(W) = [E(h)2][1 + C*(H)] (5.38)

Where E(h) is the mean headway and C(H) is the headway coefficient of variation. If
batches occur with the randomness of a Poisson process, E(W) = E(h), which reflects

the memoryless property of the exponential distribution (the headway distribution for
a Poisson process).

Non-Stationary Demand Headways between batch services should vary in
relationship to the demand rate. Larger demand invites shorter headways, according
to an inverse square-root relationship. In some systems, however, the total waiting
time per dispatch should stay constant for all demand rates. For example, if demand
increases by a factor or 2, then headway should decrease by a factor of V2, batch size
should increase by a factor of V2, and the product stays constant. Another common
characteristic of optimal batching is that the arrival time at the time of service equals
the ratio of the number of customers served to the time until the subsequent dispatch.

Multiple Stop Transportation Routes Scenarios can be further delineated by
transportation characteristics, principally, whether or not transportation equipment is
shared among customers and plants. Sharing, in the form of multiple-stop pick-up
and delivery routes, can provide substantial savings in transportation and queue cost
in low demand systems (Burns et al, 1985; Daganzo, 1985; Hall, 1985).  This
naturally adds complexity, as it may be desirable to serve some customers less
frequently than others, yet also ensure that their service intervals are synchronized so
that all shipments within a territory occur on a common schedule.

Capacity Considerations Capacity is important in two ways. First, batch sizes may
be limited by the size of available vehicles and, second, the batch service system may
be limited in the total rate at which customers are processed. Either factor leads to
solutions that violate the “Dispatching Rule” presented in this section. In the former
case, the optimal feasible batch size is generally the minimum of two values: the
vehicle size or the cost minimizing batch size, as determined in this section. In the
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latter case, the batch size may need to be enlarged, to reduce t'he batch frequency, and
reduce loss times when initiating batches. This is espec.lally re@evant. to traffic
signals, where cycle lengths are typically defined by capacity considerations rather

than set-up costs.

Real-time Control Random variations in demand can make it desi.ra.ble to e'xlter
headways and batch sizes in real-time. When the number of gustomer-s is 1nsgf§c1elrlt,
a headway can be extended or a batch can be cancelled. Dl?p?.tqh-tlmés mlgf ft a s?[
be altered to provide greater consistency in headways, thus minimizing its coefficien
of variation and reducing waiting time.

5.6 Future Directions

As it has in the past, future research on queueing in transportat.ion is likely to fespong
to innovations in the methods of transportation. Technologies for automating an
controlling vehicle movements on highways has al.ready stnnula?ed queueing
research, addressing delays and capacities associated with le%ne-ff)llowmg s’qz’fcegles(i
lane-assignment and entrance/exit processes. Changes in aircraft routing ‘gnd
control, possibly allowing aircraft to travel in free-space rather than on prescribe
paths, is also likely to stimulate original research.

Future research will also be directed at gaps in the.literature. A notak?le exan?ple
is the paucity of research on queueing within terminals, apd on'the .mteractlons
between sorting processes and transportation processes. Relatively little is known on
how terminal queues interact with vehicular queues. Yet the problem grows in
importance, as more shipments are transpoxtted through parcel transportation
companies, in which sortation is a critical cost driver.

Finally, despite the considerable accomplishments in understanding tbe behav11(l)r
of queues on roadways, researchers have been largely unsuccessful in ac‘tuahy
eliminating vehicular queues. It appears inevitable, as observed ‘long ago, that in tde
absence of road pricing queues will exist. Develop%ng and testing pricing metho Is
for roadways, and then creating a mechanism by which they can be }mplemented, és
perhaps the most important challenge to the field. But success in this area demands
far more than an understanding of the mathematics of queues; it dc?ma‘nds‘ accurate
representations of human behavior, along with knowledge of the institutional and
technical aspects of toll collection.

One clear aspect of research on queueing‘ir'l .transportation is that the most
significant papers have offered a blend of empiricism a_nd the(?ry, and havle be;n
innovative in exploring new applications. It is simply ?nsu.fﬁment to ‘fieve opt S
mathematical theorems. The papers that best explain important rea}l-world
phenomena, or provide generalizable methods for systerp design and operation, have
been the most significant, and will likely continue to be in the future.
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