chapter 6

Nonstationary Arrivals

If you were to think of the most frustrating, the most aggravating, and the most time-
consuming sort of queue, there is a good chance that the evening rush-hour commute
home from work would come to mind. The rush hour, both morning and evening, is the
product of large numbers of people desiring to use the roads and highways at the same
time. It is also an example of a nonstationary arrival pattern.

A nonstationary (also called nonhomogeneous) arrival pattern occurs when the
customer arrival rate varies over time. It is a phenomenon that virtually all queueing
systems experience to one extent or another. Restaurants have rush periods at lunchtime
and dinnertime. Retail stores experience a rush period in the month before Christmas.
Accountants experience rush periods prior to tax due dates. Rush periods are the conse-
quence of the natural cycles in our lives. We orient ourselves toward daily, weekly,
monthly, and yearly patterns. We tend to work at the same time, eat at the same time,
sleep at the same time, shop at the same time, . . . And this puts a strain on queueing
systems. It is far easier to serve customers when they arrive at an even rate than an uneven
rate.

We have seen that when a queueing system operates in steady state, queues are
produced by random variability in service times and arrival times. In steady state, there is
no way to know when these queues will occur because they are totally random. A
nonstationary arrival pattern presents an additional source of variability: predictable
variability. Predictable variability in the arrival pattern means that queues occur in a
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predictable fashion, at the same time every day, or every week, and so on. Predictable
queues (such as the evening rush hour) tend to be much larger and costlier than random
queues.

This chapter provides several approaches for modeling a nonstationary arrival
process and queueing system. It begins by defining the nonstationary version of the
Poisson process. Next, a procedure is presented for using steady-state equations to model
certain, lightly used queueing systems. This is followed by a description of how to
simulate a nonstationary queueing process. Then a much simpler model, known as a fluid
approximation, is provided. The chapter concludes with an alternative way to define the
arrival process, in terms of desired departure times from the system.

<

6.1 THE NONSTATIONARY POISSON PROCESS

The nonstationary Poisson process is a Poisson process for which the arrival rate varies
with time. More specifically, it can be defined as follows:

Definitions 6.1

The counting process N(1) is a ron-stationary Poisson process if:

A. The process has independent increments

= 0] =1 — Aot
B. Pr [Nt + dfy — N@) = 1] = NMddr
>1] =0
where
A(#) = the arrival rate at time ¢
dt = a differential sized time interval

The definition is identical to the stationary Poisson process (Chap. 3), with the
exception that the arrival rate, A(z), is now a function of time. As before, the arrival rate
represents the expected number of customers to arrive per unit time. If A (9:00) equals 10
per minute, then we would expect to see ten customers arrive in the I-minute interval
between 9:00 and 9:01 on average. The actual number of customers to arrive can be either
smaller or larger than ten.

The arrival rate, having the dimensions customers/time, when integrated with
respect to time, yields the expected number of customers to arrive over a time interval:

b
E(arrivals between time a and time b) = ) f Nt)dr 6.1)
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One can think of the stationary Poisson process as a special version of the nonstationary
Poisson process. So, to take an example, if M#) = A = 10 customers/hour, then the
expected number of arrivals over a I-hour period is

1
E(arrivals over 1 hour) = ] f 10dr = 10r ]} = 10 customers

And the expected number of arrivals over a half-hour period is
]
E(arrivals over ¥ hour) = | [7 10dt = 10t 3 = 5 customers

As might be expected, these results are identical to what was found in Chap. 3 when the
“stationary Poisson process was presented. Of course, A(f) does not have to be constant.
Suppose that customers arrive at a restaurant at the following rate:

MO = 100sin(tm/2) 0 < ¢ < 2 {customersthour) (6.2)

where time ¢ = 0 is 11:30 A.M. and time ¢ = 2 is 1:30 p.M., and the sine angle is
measured in radians. With this function, customers arrive at the fastest rate at 12:30 (100
customers/hour) and the slowest rate at 11:30 and 1:30 (0 customers/hour).

Definition 6.2

A(1) is the expected number of arrivals from time 0 to time #. A(f) is calculated by
integrating A(¢) from O to time .

A = sz 100sin(wr/2)dr = (200/m)[1 — cos(w#/2}] customers (6.3)

Note that the variable used in the integrand () must be distinguished from the variable
used to bound the integral (#). Also note that A(r) is measured in terms of customers,
whereas M1) is measured as a rate: customers per hour. A(?) is plotted for the example in
Fig. 6.1. The slope of A(?) (that is, the derivative) is M(#). The figure shows that the arrival
rate is largest at the center of the time interval and smallest at the ends, as already
predicted. Remember that A7) represents the expected number of arrivals to occur by time
t. The actual number of arrivals can be either larger or smaller than A().

It is more common to base \(f) on interval counts than on an equation, as shown
above. In the restaurant example, records might indicate that the average numbers of
arrivals in each of four time periods are the following:

Time Average arrivals
11:30-12:00 19
12:60-12:30 45
12:30-1:00 45
1:00-1:30 19
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Figure 6.1 Expected cumulative arrivals at restaurant versus time.

Il‘lhesg numbers can b; translated into an arrival rate by dividing the number of arrivals by
the size of the time interval. In all four cases, the time interval is one-half hour, so the

arrival rate is

38 0<s1< 5§
A = 90 S5<s1<15
' i
38 15<r<? {customers/hour)

(6.4)

Ehe units here are important. If the interval counts are divided by a time unit measured in
ours, then A(z) is measured in terms of arrivals per hour. A(?) can, as usual, be found by

integrating A(z):

38t 0=st< 5
AlH = 19 + 90(t — .5) S=s1<15
109 + 38(r — 1.5} 15<t<

A(5) is the average number of arrivals recorded for the first half-hour, A(I) is A(.5)

(6.5)

plus

the average number of arrivals recorded in the second half-hour, and so on. So A(#) can
actually be calculated by summing the interval counts and interpolating between the

points. This new version of A(7) is shown in Fig. 6.1 next to the plot of the equatio

n for

A(t). For the interyal cpunts, A(r) is a piecewise linear curve, and A(#) (the slope of A(7))
18 a step curve, with discontinuities at the ends of the time intervals. In reality, the true
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arrival rate (the M(7) that generates the arrivals) would not have these discontinqities. The
discontinuities are the unavoidable by-product of averaging the number of arrivals over

time intervals.
6.1.1 Properties of the Non-Stationary Poisson Process

The nonstationary Poisson process does not possess the property that interarrival times are

exponential random variables. Hence, it also does not possess the property that thel tm?e

until the nth arrival is a gamma random variable. Yet it does have seyeral properties in

common with the stationary Poisson process. Most important of these is that the number
" of arrivals over any time interval is a Poisson random variable:

Property 1

The number of arrivals over the interval [a,b] is Poisson with mean
b
EIA®D) — A@)] = af)\(t)dt = Ab) - Ala)

Example

The restaurant owner would like to determine the probability that three or fewer customers
will arrive between 11:30 and 11:45, using the equation for A(f}. The e%q.)ected number of
arrivals, from Eq. (6.3), is A(.25) — AQ) = 4.85 customers. The probability of n customers

arriving is
485"
e 4.85
n!

P(n artivals between 11:30 and 11:45) = n=01,...

ili g ivals i luating the above equation for n =
The probability of three or fewer arrivals is found by eval ¢
0,n=1...,n =23, which equals 008 + .038 + .092 + 149 = 287

The event times within a time interval also have properties sirpilar to the stationary
Poisson process. As with the stationary Poisson process, the time of a‘llmy~ Ievetntt }:S
independent of the time of any other event. The pongauonary process is also simi ar to 'Z
stationary process in that the probability distribution for the unordered event times 1

defined by A():
Property 2

If A(f) is the number of events in the interval [0,7], the unardellred.eve}}t times are defined
by A(f) independent random variables with the probability distribution:

Al 6.6)
A7)

PT<i) =

where T is the random variable representing the event time. o I
With the stationary Poisson process, A(f) = At, s0 P‘(Tst) is sqnply tlv. | is
defines the uniform probability distribution over [0,r]. Again, the stationary Poisson
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process is a special case of the nonstationary Poisson process. More generally, the event
times can have any distribution, as defined by the function A(¢). There is no reason to
expect that it has any particular shape. The shape is determined from historical records of
customer arrivals.

Example

The restaurant owner knows that five customers arrived between 11:30 and 11:45. He would
now like to determine the likelihood that nio one arrived before 11:35 , using Eq. (6.3). The
probability that any one of the five customers arrived before 11:35 is

A/12) 545
A(25) 485

The probability that no one arrived before 11:35 is (1 — .112)° = 551,

« Plarrived before 11:35) =

= 112

Keep in mind that because the interarrival times are not exponential, the nonstation-
ary Poisson process does not possess the memoryless property.

6.1.2 Goodness of Fit

The basic concept of checking for goodness of fit is the same for a nonstationary Poisson
process as for a stationary Poisson process. As always, this begins with a check of
plausibility. Does the probability that a customer arrives at any time depend on the times
when other customers arrived? Do customers arrive one at a time? The answers to these
questions must be affirmative for both the nonstationary and the stationary processes. The
major difference in the plausibility check is that the arrival rate does not have to be
constant. Thus, the conditions for the nonstationary process are not as strict. Many real
arrival processes satisfy the conditions underlying the nonstationary Poisson process.
The quantitative goodness of fit tests are somewhat different, because the interar-
rival times do not have to be independent exponential random variables, and the arrival

times within a time interval do not have to be uniform. The primary check is for the
hypothesis:

H\: The number of events in any time interval has a Poisson distribution.

This test requires large quantities of data, representing the numbers of arrivals over many
recurring cycles. It is not enough to know how many customers arrived over each time
interval of a single cycle (a day, for example). One must know the number of arrivals over
each time interval of many cycles. Then the number of arrivals within each interval should
be a Poisson random variable. This test can be carried out through a slight modification of
the Kolmogorov-Smirnov test (see the statistics texts cited at the end of Chap. 3).
Practically speaking, however, it is virtually impossible to obtain sufficient data to carry
out the test, and, in the end, one must rely on the plausibility check. If you believe that
arrivals are independent and you believe that customers arrive one at a time, then it should
be safe to assume that the arrival process is nonstationary Poisson.
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6.1.3 Parameter Estimation

The nonstationary Poisson process is not defined by the sipgle parameter, A, b‘ut by a
function, A(#). This makes parameter estimation more comphcat'ed. The mpst s.tralghtfor-
ward approach is to base A(f) on interval counts, gs yvas already 111ust.rated in thzs ctbxapter.
Suppose that £, is the average number of arrivals in interval n, from time a to time b, over

I cycles. Then

L
b—a

O = t<bh 6.7)
% A confidence interval for A(?) can be formed under the hypothesis.that the number of
arrivals in any interval is a Poisson random variable. Hence, the variance of the number
of arrivals is the same as the expected number of arfivals. Because f, is the a.ve{age of aset
of random variables, it must have a iormal distribution if { is large (central limit theorem).
This leads to the following confidence intervals:

95% Confidence (I = 50)

PULJb — a) — L96HIb — a) < N0 < f(b ~ a)
+ 196 /b — @) = 95 (6.8)

99% Confidence (I = 50)

PUfJb — o) = 2.58[f/lib — o) < Mo < f/(b — a)
+ 258 b ~ a)] = 99 (6.9)

Example
Suppose that the interval counts for the restaurant are based on 60 da'ys of records. The 95%
confidence interval for the 11:30 to 12:00 period, in which 19 arrivals were observed on
average, is calculated as follows:

— —
P(19/(.5) — 1.96 (19/60/.5 < M¢) < 197.5 + 1.96 [19/601.5) = .95
PGS — 22< M) <38 4+ 22) =95

In the example, the 95% confidence interval is fairly small, but this r‘el'u?s.on 60
days of records. Clearly, obtaining precise estimates of A(z) requires, at a minimum,
detailed data on dozens of cycles. Yet, even doing this may not suffice, for there may be
no way of guaranteeing that the arrival rate will stay the same every day, every week, or
every month. The pattern may never recur. This presents a probls:m with no cle‘ar
resolution. No matter what approach is used, predictions based on estimates of M(#) will

€ 1mprecise. . ]
usuan}/;:otherpdecision to consider is how large the time intervals should be. It is yertamly
much easier to obtain a precise estimate for the number of arrivals over ‘l —hgur intervals
than 1-minute intervals, yet, if the arrival rate truly varies over the hour interval, the
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variation will not be detected. As a rule, the intervals should be sufficiently smail to detect
any major changes in the arrival rate, but no smaller than necessary (unless there is an
easy way to record arrival data). If a typical queue lasts 1 to 2 hours, then intervals of
width 10 to 20 minutes should be sufficient. If a typical queue lasts an entire day, intervals
of 1 hour should be sufficient; and if a typical queue lasts a week or more, then intervals of
one day should be sufficient.

The alternative to interval counts is to derive A(r) from an estimate of A(f). Suppose
that A, (1) represents the cumulative arrivals to time ¢ for cycle n of I total cycles. Then an
estimate for A(#) can be obtained as follows:

I
” Aw = E] S (6.10)
I

The natural estimate for A(f) would be the derivative of Aw. However, because A, (1) is a
step function, A(#) must be too, meaning that the derivative of A(Y) is undefined. As an
alternative, A(7) can be set equal to a smooth approximation to the average of the arrival

curves (a similar approach is shown in Fig. 4.4). The confidence interval for A(f) is
formulated in much the same way as the confidence interval for A(f);

95% Confidence (I = 50)

PIAG) — 1.96 AT < AG) < Ay + 1.96/Awin = .95 (6.11)

99% Confidence (I > 50)
PIAG) - 258 (A < A() < Aw) + 2.58 Ay = .99 (6.12)

The confidence interval is itself a function of 1. The absolute width of the interval expands
as ¢ increases because the standard error for the estimator A(t) grows with ¢ (but the
relative width declines). ‘

A third approach to estimating A(?) is to approximate the average of the cumulative
arrival curves with an equation. The advantage of this approach is that it is much simpler
to analyze an equation than a large data set. However, some loss in accuracy may result.
The methodology for estimating such an equation is beyond the scope of this book, but
can be found in texts on econometrics and statistical regression (see the end of this
chapter).

An obvious disadvantage of the second and third approaches is that data on specific
arrival times are required, whereas the interval approach only requires interval counts,
The added data collection effort may not be justified in terms of increased accuracy.

Future arrival rates might also be partially predicted through a forecasting tech-
nique, of which there are many. A common approach is to base the shape of the curve A(r)
on the average of the historical arrival curves, but to scale the curve according to the
forecast for the number of arrivals for a given cycle. That is, A(T) would equal a forecast
for the number of arrivals during the cycle, and A(r) would be scaled up or down from
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A7) by the ratio ATVA(T). (References on forecasting are provided at the end of this
chapter.) Keep in mind that one’s own judgment sometimes provides a good forecast,
particularly when the arrival pattern is influenced by many external factors.

Finally, a nonstationary arrival process does not have to be cyclic; A(f) can be any
nondecreasing function. However, unless A1) is cyclic, it may be impossible to estimate
A(2), in which case the arrival pattern is not truly predictable. If the arrival pattern is not
predictable, then it should not be modeled as a nonstationary Poisson process. The
essence of the nonstationary Poisson process is predictable variability in the artival

process.

6.2 STEADY-STATE APPROXIMATION FOR A SLOWLY VARYING
ARRIVAL RATE

A queuveing system with a nonstationary arrival process will never enter steady state. The
varying arrival rate constantly changes the probability distribution for the pumber of
customers in the system. Yet this does not prevent the use of the steady-state equations to
approximate the behavior of the system, particularly when the arrival rate is slowly
changing and the system operafes below capacity. When valid, the system will be said to
be in quasi-steady state.

Consider the performance of a single server queue, with exponential service times
and a nonstationary Poisson arrival process.

Definitions 6.3

u(fy = the service rate per server at time ¢
p(f) = the absolute utilization at time 1
= MO/
P (1) = the probability that n customers are in the system at time ¢
Then the steady-state approximation for P (1) follows directly from the MIM/1 queueing
equations:

P =11 = p@llp®)" n=0,1,2 (6.13)

The validity of this approximation clearly depends on at least one factor: p(1) must be less
than 1 for all t. This factor in itself is quite restrictive, for systems with nonstationary
arrival rates also tend to be overloaded from time to time. p(f) must also be a slowly
varying function. If p(¢) changes t00 quickly, then the system could not respond as fast as
the steady-state model predicts. More precisely, the steady-state approximation can only
be accurate if the change in p(t) during one relaxation time (see Chap. 4) is small in
comparison to the average queue length. Based on this principle, Newell (1982) provides
the following rule for assessing the validity of the steady-state approximation:
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dp(n)

A= [ Mit) H [1 —]pmﬁ J dt

Single server approximation valid when & << 1

pl <1 (6.14)

O“e Way to mter Plet Eq. (() 14) 18 tllat t]l(:‘ amount tha[ p { Challges duﬂ“g Oone service
( )
time (dp(l)/dl l 1/“4) Sh()uld be Slnan COIllpared to ﬂle quantlty [l p(”] '

Example

Consi i, wi
‘ (:)r;s;f::er dthe .rc;tauram example again, with Mr) = 100sin(#m/2). Suppose that the operator is
with queues of customers waiting to be seated by the maitre d’hotel Hypo-

thetically, the time to serve a cus
, tomer has an exponential distributi i
(.00556 hour). p() is defined as follows: P rbuiom i mean 20 seconds

o = O 100sin(r2) 556sin(m1/2)
I 180 )
To evaluate Eq. (6.14), the derivative of p() is calculated first;
—dp—(t)— = .556 X cos(mt/2) = 873 co
p 2 . s(Tt/2)

A can now be written as

A = 1 |.873 cos(nt/2)]

180 {1 — .5356sin(w/2)}

The above is calculated for various values of ¢

r 0 . . . . .

In this in i
i vitrance, t:'lle quasi-steady-state model seems appropriate (largely because the servic
y small) and the system quickly adapts to changes in the arrival rate ’

Should the steady-state a imati i
. pproximation be valid, then the perfo
equations from Chap. 5 can be used. For the example of an M/Agfl s;rsrtlz?nc T

_ p()
EIL(D)] = T= o0 (6.15)

Figure 6.2 shows E[L.(#)] for the
¢ X restaurant example. The multiple server steady-
results (the M/M/m and M/G/1 models, for example), can also l?e used if lsifiadg lsjati:

satisfied, provided the followi [tuii
- Sollowing substitutions are made Jor (1) and p(t) in Eq. 6.14,

Definitions 6.4

c(r) = the combined service capacity among all servers at time ¢
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1.3
1.2

ElL )]

Time (1)

Figure 6.2 Expected customers in system for restaurant, determined by quasi-steady-
state model.

n

p(f) = proportional utilization at time ¢

il

A/ ed)

For example, if four servers work at the rate of ten customers per houf egch, ihep ?(t) =
40 customers/hour. Unfortunately, the steady-state equations havg hn:lli&d 'vahdlty be-
cause they are not accurate when p(r) is close to or exceeds 1, which invariably occurs
from time to time when the arrival rate is not stationary.

6.3 SIMULATION OF A NONSTATIONARY POISSON PROCESS

If quasi-steady-state analysis is not applicable, one alternative is to simu?ate the queueing
system. As mentioned in Chap. 4, simulation is a very robust technique that can l?e
applied to a variety of situations. However, simulz}txon does not filways provide as
meaningful results as does direct analysis. In this section, .three teclhmques are prcsenFed
for simulating a queueing system with a nonstationary Poisson am.val process. The first
two are similar to techniques used in Chap. 4 for the stationary Poisson process and t}ne
third is new. A fourth technique is presented for the special case where Al is piecewise
linear. In all but the third technique, the basic approach is first to simulate am‘val times,
second simulate service times, and third combine the data to form the queue simulation.

Sec. 6,3  Simulation of a Nonstationary Poisson Process 181

The second and third steps are no different from those in Sec. 4.5, so they will not be
repeated. The emphasis here is on simulating the arrival times.

6.3.1 Simulation Method 1

Recall that there are two ways to simulate a stationary Poisson process. The first of these
is to simulate exponential interarrival times and sum them to obtain arrival times. Clearly,
this approach will not work for a nonstationary arrival process; the interarrival times are
not exponential random variables. However, a modification will work. Let

A = max A(f)
13
The nonstationary Poisson process is simulated as follows:

1. Simulate a stationary Poisson process with rate A, by summing exponential
interarrival times,

2. For each arrival simulated, generate a Bernoulli {0,1} random variable, with p =
MO\ s from a U[0,1] random variable, U:
U < p denotes a success:accept arrival
U > p denotes a failure:reject arrival

Example

The restaurant is to be simulated over the time interval from 11:30 to [ 1:45(t = 0 to .25, with
Eq. (6.3)). The maximum arrival rate over this period occurs at t = .25, and equals

A = 100sin(.25%/2) = 38 customers/hour (Eq. (6.2))

Taking U10,1] random variables (U, and U,,) from a random number table, the simulation is
summarized in the table below:

n Uy X, Yo P =M Ap U, Accept

x

1 2088 040 .04 165 8479 No
2 4846 019 .059 243 6108 No
39586 000 .060 248 5703 No
4 4061 024 .0%4 346 313 Yes
5 .1037 060 144 590 3349 Yes
6 5104 018 .162 662 4038 Yes

-7 6088 013 175 714 9031 No
8 0707 070 245 988 798 Yes
9 7919 006 —

The seties Y, represents a stationary Poisson process with rate 38. The nonstationary

simulation accepts four of these arrivals, yielding the arrival times .084, .144, .162, and .245
hours.

Note that the acceptance probability varies in proportion to the arrival rate, so the
simulation is truly nonstationary.
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6.3.2 Simulation Method 2

The second approach presented in Chap. 4 can also be modified for a nonstationary
Poisson process. The arrival process is simulated in these three steps.

1. Simulate a Poisson random variable A(T) representing the number of arrivals over
the time interval [0,T].

2. Simulate A(T) random variables representing the arrival times.

3. Sort the arrival times in ascending order to obtain the function A(f).

The mean of the Poisson random variable equals A(T). The simulgtion in the second step
follows from the probability distribution for the arrival timgs defined by {\(z). Suppose
that Y represents an arrival time. Then ¥ is found by selving the following, where U

represents a uniform {0,1 random variable:

_AD oA A (6.16)
AMT)

Example
The restaurant is to be simulated a second time over the interval from 11:30to 11:45(¢ = 0 t.o
.25, with Eq. (6.3)). The expected number of arrivals over this interval equals 4.85. A(.25) is

found as follows:

a. = 435 (from random number table)

= 287

b. From the Poisson distribution: P{A(.25) = 3] =
< 4] = 467 — A(25) = 4

PIA(.25)
The arrival times are generated from solving the following:

200y — cos(myr2)]

T 2 2l v 4.857\':\
U = 4.85 - Y = —W—cos 200

Taking U[0,1] random variables from a random number table leads to the following values:

n ule,11 Y

1 8177 226
2 3677 51
3 2125 RIE
4 5474 185

As in Chap. 4, the arrival times are sorted in ascending order to obtain A(f).

The example can be visualized through Fig. 6.3, which shows how the arrival times are
generated. The curve is A(), for ¢ in the domain [0,.25].
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Figure 6.3 Simulation of a customer arrival time for a nonstationary process.

6.3.3 Simulation Method 3

An alternative simulation approach is to use an activity scanning procedure. This ap-
proach draws on the primary definition of the nonstationary Poisson process—that is, that
the process has independent increments, and the probability of an arrival in a differential
time interval dt is M(#)ds. The simulation is an approximation to the Poisson process and is
something like flipping coins whose probability of success = \(#dr. It is carried out in
these steps:

1. Divide the time period {0,T] into small time increments.
2. For each time increment, generate a U[0,1] random variable.
3. For each increment simulate a Bernoulli random variable

If U < Mf)dr — then an atrival occurred in the increment.
If U > M{)dt — then no arrival occurred in the increment.

The accuracy of the simulation depends on the size of the time increments. If these
increments are very small, then the simulation will be indistinguishable from a nonstation-
ary Poisson process; if the increments are large, then A(T) will have a smaller variance
than a nonstationary Poisson process (but usually the same mean). If the probability that a
customer arrives in any time increment is no larger than . 1, then the standard deviation of
A(T) will be within 5 percent of the standard deviation of the nonstationary Poisson
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process, and if the probability that a customer arrives in any time increment is no larger
than .05, then the standard deviation of A(T) will be within 2.5 percent of the standard

deviation of the Poisson process. Though it is usually easiest to use equal sized incre-
use of smaller time increments when the arrival rate is large

ments, nothing prevents the
the probability of an

and larger time increments when the arrival rate is small. In so doing,

arrival in an increment stays more or less constant.
It should be apparent that method 3 requires more computations than method 1 or 2,

particularly if a high degree of accuracy is desired. Yet method 3 is not without merit. It is
a more robust approach and applies to a greater variety of queueing characteristics because
it allows the arrival and service simulations to be carried out simultaneously. For

" example, it can be used to simulate reneges, which do not necessarily occur when
customers arrive or depart, but may occur at any point in time. The approach is
particularly effective in an interactive computing environment, for it allows the user to see
how the queueing system evolves over time (at a rapidly accelerated time scale). Many
computer simulation programs use the activity scanning approach.

Example
The restaurant is to be simulated a third time over the interval [0,.25], this time with method
3. The maximum arrival rate over this interval is 38/hour. To keep the probability of an
arrival less than .1, the time intervals should be no larger than 1/380 hours = 9.5 seconds.
This has been rounded off to 10 seconds. Thus, a total of 50 time increments are simulated

over the 15 minute period, as shown in Table 6.1.

The queue can be simulated by generating arrivals, generating service times, and combin-
ing the data, just as before. However, should one go to the effort of using method 3, an
alternative approach would likely be used. At each time increment, the following steps

would be performed:

1, Determine whether an arrival occurs.
2. For each customer in service, determine whether service is completed in the time

increment.
3. Determine whether any customer enters service in the time increment.

[n addition, extra steps can be added to account for reneging or other factors. Method 3
amounts to a dynamic simulation, as opposed to the alternatives, which are more of a

batch simulation.
6.3.3 Special Case: Alt) Is Piecewise Linear

A nonstationary arrival process is easiest to simulate when A(f) is a piecewise linear
function, meaning that the arrival rate stays constant over each of several time intervals.
This special case is not all that unusual, for if A(f) is based on interval counts, the arrival
rate must be assumed to be constant over each interval. In reality, the arrival rate is likely
some smooth function of time—it is just that data are not available to determine its exact
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shape. Hence, a piecewise linear A(f) can be viewed as an approximation to the true A(Y),

which cannot be derived from the available data.
For this special case, the interarrival times within each piece of the piecewise linear

curve must have an exponential distribution, with mean 1/A;, where \; is the arrival rate
for piece j. Let T; represent the time that piece j begins. The simulation proceeds as
follows.

0. Setj = 1 to simulate arrivals over the first period.

1. Simulate a series of exponential random variables, mean I/N:X, Xa,. -+ Sum the
exponential random variables to obtain the arrival times for period j: ¥, = T; + X\,
Yy =Y, + X, ¥y = Yo F Xs, . ..

2. Stop the simulation of piece j when Y > Tjp .

Increment j to j + 1, and returm to step L.

The simulation is completed by catenating the arrival times within the periods.

A key difference between this simulation and the simulation of a stationary Poisson
process is that the first arrival within a piece does not equal X; plus the time of the
previous arrival. Instead, it equals X, plus the time the piece began. The validity of this
approach relies on the memoryless property of the exponéntial distribution. For piecewise
linear arrival rates, the distribution of the time until the first arrival in a time interval does
not depend on the elapsed time since the last arrival.

Example
According to historical records, customers arrive by a nonstationary Poisson process af a
small post office at the rate of Sthour between 11:00 and 12:00 and the rate of 10/hour
between 12:00 and 1:00. The simulation proceeds as follows:

Piece 1: 11:00-12:00

n 1 2 3 4 5 6
U, 5528 .6105 .9726 .8983 .1614 .0180
X, (mn) 7.1 3.9 3 13219 482
Y, (min) 7.1 13.0 133 146 365 —

Piece 2: 12:00-1:00
n 6 7 8 9 10 i1 12 13 14 15 i6

U, 7521 8912 1927 1579 7268 .6218 4875 .5608 5403 3921 .0480
X, (min) 1.7 799 111 19 29 43 35 37 56 18.2
Y, (min) 617 624 723 834 853 882 925 960 99.7 1053 —

The simulation produced 1S customers.

6.4 FLUID APPROXIMATIONS: SHORT SERVICE TIME

A nonstationary Poisson process encounters two types of variation: random variation and
predictable variation. The predictable variation is reflected in the function A(f), which
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gives the expected number of arrivals as a function of time. The random variation is
reﬂect‘ed in the precise arrival times. Both are revealed in Fig. 6.4, which compares A(f)
to a simulation of A(?) for the restaurant queue. While the simulation follows the same
;gizneral patiern as A(r), it is susceptible to minor perturbations reflecting random varia-
nS.

Because the number of arrivals in any time interval has a Poisson distribution, the
mean, A(z), must equal its variance. This means that the coefficient of variation (rati’o of
standard deviation to mean) is the following: ‘

Al = 420 1
[A(] ) G 6.17)

Equation (6.17) states that the larger the value of A(f), the smaller will be the
raqdom variations in the number of arrivals (in relation to the expected number of
arrivals). For busy queueing systems, these random variations may be of minor impor-
tance relative to the predictable variations. To take an extreme example, a busy freeway
tolll plaza may have 8000 arrivals per hour, which would provide a coefficient of variation
of just .011 for 1 hour. This means that a nonstationary Poisson arrival pattern can be
accufately approximated with a deterministic model. The word *‘determinism’” represents
a b;hef that every event is the inevitable consequence of its antecedents. In the context of
arrivals, determinism means that A(f) is assumed to be known with certainty and equals
A(r). Though M) is not constant, the variations are entirely predictable.
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Figure 6.4 Comparison of arrival simulation to expected arrivals at restaurant.
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Deterministic queueing models usually fall in the category. of fluid approximations.
Whereas customets are discrete entities, fluids are not If a unit of fluid is divided into any
proportion, the result will be a smaller quantity of the same entity—it is still a fluid. The
same cannot be said of customers, for if a group of customers is divided into proportions,
the result may no longer be a group of customers. Half a customer is not a customer at all.
Customers are not infinitely divisible. Nevertheless, a quantity of customers can be
approximated by a continuous variable (particularly if the quantity is large) and modeled
as a fluid. If A7) equals 155.3, little harm is caused if A(?) is also assumed to equal 155.3.

Deterministic fluid models are much simpler to use than simulation and also provide
more meaningful results. They highlight the important relationships between system
attributes and system performance, They should be used when random variation is small
relative to predictable variation.

A useful way to think of the fluid queueing model is in terms of the illustration in
Fig. 6.5. A faucet deposits water into a tub, and a drain empties water from the tub. The
tub represents the queue, and the water represents customes. The arrival rate is the rate at

* which the water flows out of the faucet into the tub, and the service rate is the capacity of
the drain for emptying water from the tub. If water enters the tub faster than it is drained,
then the water level in the tub rises. Analogously, if customers arrive faster than they are
served, the queue grows. And, if water is drained Faster than it enters, the water level will
drop, until no water i§ left in the tub.

Suppose that vehicles arrive at a freeway toll plaza according to the curve A(7) in
Fig. 6.6. Based on a fixed service capacity, we would like to determine D (f) and D{7),
cumulative departures from queue and from system, respectively. However, because
service times are assumed to be small, D,(f) = D), and we will be concerned only with

the former.

Definition 6.5

¢ = combined service capacity among all servers (constant rate aver time)

Suppose that vehicles are served at the plaza at the rate of ¢ = 3600 vehicles per
hour. Then the deterministic fluid approximation for D(¢) has the appearance shown in

Faucet (arrivals)

—-1— (ueue

Figure 6.5 In a fluid model, the

. customers can be viewed as a liquid that
Drain (departures) accumulates in a tub, Queues increase
when the fluid enters the tub faster than it

leaves.
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:’;gm:re 6.6 Cumulative diagram illustrating deterministic fluid model. When a queue
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Fig. 6.6. Between the time 6:00 and 6:20 a.m., D, (1) is identical to A(z) because vehicles
can be served at a faste.r rate than they arrive. At 6:20 A.M., the arrival rate (slope of A(5)
h;ls increased to the point whgre it exgctly equals the service capacity. From this point on
tA ¢ queue grows because vehicles arrive at a faster rate than they are served. The ueu’
finally begins to decline when the arrival rate again equals the service ca a:cit \(}vh' ﬁ
occurs at about 7:20. The queue eventually vanishes at about 8:00 A.m e, Wi
o T}(l) draw D (1), 1dinnfy iheApoipt where A(f) first exceeds c (that is, the first point
: ere the slope of A(f} = ¢, 6:20 in Fig. 6.6). From this point, draw a line tangent to A(f)
WIFh slope ¢, forward until it again intersects A7) (8:00 in Fig. 6.6). From this sec d
point gnwarflll, A(D =d D) until such time that () again exceeds 'c "
ver the period from 6:00 a.m. : 5 .
phases, which aIr)e identified ‘as fol?oxs:to It e system passes trough four

Phase 1: Stagnant

Al = < .
=D AMy<c -—jt“* =0 6.18)

Phase 1 represents th i - . . :
drive. presents the period from 6:00 to 6:20; when vehicles are served as fast as they
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Phase 2: Queue Growth

Al > D MO >c -‘%‘[f@— =M - c>0 (6.19)

Phase 2 represents the period from 6:20 A.M. to 7-20 A.M., when vehicles arrive at a faster
rate than they are served and the queue grows.

Phase 3: Queue Decline
dL (¢
A\ <c ——ditQ— = N - ¢ <0 (6.20)

Phase 3 represents the period from 7:20 to 8:00 when customers arrive at a slower rate
than they are served and the queue shrinks. Note that a queue can exist even when the

arrival rate is smaller than the service capacity.

A > D0

Phase 4: Stagnant

A® = D) \D<c ﬁ%ﬂ=o 6.21)

The last phase begins at 8:00, when the queue finally vanishes.
In all four phases, the arrival rate and the service capacity determine the rate at

which the queue grows or shrinks. When is the queue the largest? At the end of the phase
2, when the arrival rate equals the service capacity:

Queue is largest when: Ay = ¢ (6.22)

This is the time when the queue stops growing and begins shrinking. When does the queue
vanish? When A(7) = D,(¢). Note that the arrival rate can be much smaller than the service

capacity when this happens.
Definition 6.6

w(?) is the departure rate at time ¢

e Lo >0 _ dDf
0=y Lo=0 =

The function w(r) is the rate at which customers are departing at time ¢, whereas ¢ is
the capacity for serving customers. If there are zero customers in the queue, customers
can depart no faster than the rate at which they arrive. w(f) is also the slope (derivative) of
D (1). Figure 6.7 plots A(f) and o(f) for the vehicle queue. In phases 1 and 4, o(t) = A1),

3, w(f) = ¢. The division between phases 2 and 3 occurs when Mty =

and in phases 2 and
y the time the

(f) (7:20), which signals the point where the queue begins to decline. B
queue vanishes (8:00), A(f) has dropped far below c. This creates a discontinuity in o(1),

L, {t) (customers)

i)

o
(=]
T

L /w(t) =¢ = 60/minute

s
(=1
1

Arrival/Departure Rates (customers/minute)

I Phase 1 Phase 2
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1 ! | L
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Figure 6.7 .Arriflal and departure rates versus time for a deterministic fluid model.
When queue is at its maximum, the arrival and departure rates are equal. By the time the
queue vanishes, the arrival rate is much less than the departure rate.
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Figure 6.8 Customers in queue versus time for a deterministic fluid model. Queue size
grows gradually at beginning, but declines rapidly at end.
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as it shifts from the service capacity, ¢, to the arrival rate. These facts are further reflected
in Fig. 6.8, which shows L(?). Note that the queue grows gradually at first, but at the end,
the decline is swift, as evidenced by the intersection of L) with the horizontal axis.

These phenomena are in no way unique to vehicle queues. The features of queue
growth when A(f) > ¢, queue shrinkage when A(7) < ¢, maximum queue when Mi) = ¢,
and discontinuity in @(r) when the queue vanishes are universal. From the server’s
perspective, the end of the queue is quite dramatic, &s the transition occurs from the
service capacity to a very small departure rate.

The performance measures are calculated from the cumulative arrival and departure
curves in the exact same manner as if they represented empirical observations (see Chap.
2). For example, the area between A(p) and D (1) is the total time spent in queue, and this
area divided by the number of customers served is the average time in queue. The average
pumber of customers in queue is the area between the curves divided by the length of time

studied.

6.5 FLUID APPROXIMATIONS: LARGE SERVICE TIME

So far, no distinction has been made between departures from the system and departures
from the queue. Earlier, we saw that D7 1(n) = Dy i(r) + S(n), where $(n) is the service
time for customer 7 (that is, departure time from the system equals departure time from
the queue plus the service time). With a deterministic approximation, S(n) would be the
inverse of the service capacity multiplied by the number of servers, m/c. This means that
D) is the same as D,(1), except that it is shifted to the right by m/c. In tollbooth,
highway, and ticket window queues, the service time is very small (about 6 seconds),
meaning virtually all the waiting time is spent in queue. Nevertheless, the queue is still
caused by inadequate server capacity, and any effort to eliminate delay should be focused
there. One should not try to eliminate the queue by expanding the capacity for storing
queueing vehicles (this has been tried on highways).

Service times are not always small relative to time in queue, and D (#) cannot
always be assumed to equal Dy(f). Figure 6.9 shows an arrival curve with the same shape
as Fig. 6.6; however, the axes have been rescaled. The total number of arrivals over 2 1/2
hours is now 105, The service process consists of 20 servers, with a service time of 20
minutes per customer. Thus, the 20 servers can process customers at the rate of one per
minute. :

The procedure for constructing the departure curves is more complicated than it was
for a short service time. It follows from the following two conditions, which must be

satisfied at all times: 7
1. Dt + mic) = D) (6.23)
2.D,0 = min{A(®), D) + m} (6.24)
The fact that D{f) depends on D) and D(f) depends on D(f) suggests why the

procedure is difficult. The procedure will be presented by way of an example. The
segments below refer to portions of the curves D,(¢) and D), as indicated in Fig. 6.9.
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ilgurg 6.9 Deten‘ninisti.c fluid model with a long service time. Ripple pattern mirrors
e arrival pattern immediately preceding the formation of a queue.

S_eg/;r(lte)n% ﬁ) mli(r::llclj i/til(z‘) 1= Ir)n ((t < 1/: 15), customers enter service immediately and D,®
= . lon 1, Dt + mfc) = D) = Af). That is, i
the same shape as A(r), but it is shifted rigﬁt by 20 minutes. nscement A, D0 has

gesgt?rznt [g hAt 11:15, 20 customers l}ave arrived, but no customer has yet left the
sZcond’ert lgf Cgle;rtl.s th2at Da ?geue begins to form. D,(r) is now determined from the
ndition 2: D (8) = DJt) + m. That is, segment B of D_(£) i
of D (#) shifted upward by mq = 20. From conditi e By e e A
Dy . ondition 1, segment B of D (1) i
shifting segment B of D () to the right by 20 minutes. : o DA s Tound by

The same i )
difforent procedure is repeated for segments C and D. Segment E is somewhat

Segment E  From 12:15 until 12:30, D(H) = D

. : 12:30, Dy(t) = D(#) + 20. At 12:30, D (1) intersect
gnfegg;lé%t it(l)\st 2theD queue has vanished. From this point on, D () is defin[é(d)b; fhr:ef?lrztAp(;Z%
of cond :Dy(8) = A(2). D(1), as usual, is found by shifting D {#) to the right by 20

SerVEdTil;e Srlg};;i: patffn;, in D (f) and DX(.t) isa distinc} feature of the model. Customers are
e w?th 5, whic f)arallel the arrival pattern in the first 15 minutes. These spurts
" -minute lulls, when D () remains constant. The spurt/lull cycle occurs

cause a new batch of customers cannot begin service until the previous batch has
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completed service. This contrasts with the short service time fluid model, shown as a
straight line with the slope of 1 customer/minute in Fig. 6.9. Note that the short service
time model approximates D,{¢), except that the ripples are eliminated. The smaller the
service time, the more similar the two departure curves will be.

In reality, random perturbations in service times will tend to smooth out the ripples
in D () and D,(z) over time, as is reflected in the queueing simulation provided in Fig.
6.10, based on the same set of data. The service time distribution is assumed to be normal
with a mean of 20 minutes and a standard deviation of 5 minutes. The arrival process is
nonstationary Poisson. The ripples are evident at the beginning of the simulation, but are
later smoothed. Despite the absence of ripples, the general departure patterns of the

* simulation and fluid model are nearly the same.

6.6 ADJUSTMENTS TO DETERMINISTIC APPROXIMATION

Clearly, the validity of the deterministic approximation depends on the variability in
service and interarrival times. Whereas the approximation predicts that queues do not
begin to form until f(5) = N(2)/c(r) > 1, we already know from steady-state analysis that
random queues will exist when p(f) < 1. The approximation should somehow account for
these random queues.
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Figure 6.10 Simulation of a queueing system with long service time. Arrival and
departure curves are similar to the deterministic fluid model (Fig. 6.9).
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As p(p) increases, from a value much less than 1 to a value much greater than 1, the
expected queue length will pass through three stages:

Stage 1: p() << 1: In this stage, the quasi-steady-state model is valid, and provides a
good prediction for queue length.

Stage 2: p(H < 1, (1 — p(H) is small: In this stage, queue lengths are difficult to
predict. The quasi-steady-state model is not valid. Neither is the deterministic approxima-
tion, for it predicts zero queue lengths.

Stage 3: p() > 1: In this state, the growsh in expected queue length is accurately
predicted by the deterministic approximation.

In stage 2, two ways to predict queue length are diffusion models (see Newell,
1982, and the appendix to this chapter) and simularion. Neither approach is simple. In
stage 3, queue length can be predicted from the dezerministic approximation, provided
that an estimate is made of the queue length when () = 1. Newell provides the following
approximation for nonstationary Poisson arrivals and independent service times:

aug [ et ) (1) (B2 e
where
C(S) = the coefficient of variation in the service times
I = the time when M) = ¢
Example:

_For the arrival curve in Fig. 6.7, dp(t'yidt = (d\(t)/di)ic, evaluated at 6:20, which is
approximately 4/60 per minute (¢ = 60 customers/minute). If, for example, the coefficient of
variation in the service times is .5, then

1

—~1/3
EILD 4 a+ 257 60 _6—0—} = 112

Thus, we would expect to have about 11 vehicles in the queue at time foad Lo, t =1,
would be shifted upward accordingly.

By comparison to the maximum queue length predicted by the deterministic model,
E[L,(¢")] appears to be small. The correction would have been much larger if the arrival
rate changed slowly, which would have allowed the number of customets in the queue to
approach the equilibrium steady-state distribution prior to ¢ (note that E[L(t")] grows
without bound as di(t')/dt approaches zero). Keep in mind that even though 11 vehicles is
a relatively small number, its impact persists throughout the queueing period. It shifts the
entire curve L(f) upward by 11, not just a small portion. Thus, even a relatively small
increase in queue length at or near ' can lead to large delays later on.
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6.7 QUEUEING TO MEET A SCHEDULE

A good queueing model should not only replicate the behavior of a queueing system; it
also should be capable of predicting the future behavior of the system should some change
be made. If the service capacity is improved by adding servers, it should be able to predict
the reduction in the waiting time. So far, we have assumed that the arrival pattern is a
“given.” This assumption deserves further examination.

For the sake of simplicity, it is worthwhile to consider two types of customers. The
first customer will be labeled the arrive when ready customer. Take a post office queue as
an example. To the postal customer, arrival time may not be influenced by queue lengths
at various times of the day, because he or she arrives whenever he or she is ready to
conduct business. The arrival pattern is fixed. Now consider a second type of customer.
The depart on schedule customer can arrive at any time, but must make sure that he or she
departs prior to a scheduled deadline. Take a commuter as an example. Commuters do not
leave home *‘when ready’’; commuters leave home at times that guarantee that they will
arrive in time for work. Thus, the arrival time /s influenced by the queue lengths
encountered on the trip to work, for if queues become long, he or she will have to leave
home earlier to guarantee that he or she *‘departs on schedule’ (arrives at work on time).

By no means is this the only example of a customer that aims to depart on schedule.
Perhaps the most pervasive example is in manufacturing, where companies place orders
with their suppliers months in advance to ensure that components arrive when needed (that
is, depart from the supplier’s queue on schedule). Other examples include arrivals at
sporting events and for airline flights.

A way to visualize the two customer types is that the **arrive when ready” customer
is constrained to arrive at a certain time, and the ‘‘depart on schedule™ customer is
constrained to depart from the system at a certain time. The impact of a system improve-
ment depends on which type (or types) of customer is using the system. In the former
case, a change in service capacity will have no impact on customer arrival times. In the
later case, a change in service capacity may encourage customers to change their arrival
times.

Modeling customer behavior is a difficult thing. But, hypothetically, consider the
consequences if the queue operator were to schedule “‘depart on schedule™ customer
arrivals with the objective of minimizing total waiting time. Then the cumulative arrival
pattern would resemble Fig. 6.11. The operator would schedule arrivals at a constant rate,
at times prior to the desired departure times. Although this pattern requires customers to
depart from the system before desired, queues are eliminated (there is no way to serve all
customers on time without having some depart from the system early).

Unfortunately, the optimal schedule is not how customers would actually arrive.
Note in Fig. 6.11 that if any customer were to change unilaterally its arrival time, other
customers would be forced to arrive late. Yet, one cannot deny that there is a strong
incentive to do just that. A customer who arrives at 7:00 departs 30 minutes earlier than
desired. Because the arrival pattern eliminates queues, this customer could easily change
its arrival time to 7:30 and still depart on time. Therefore, if customers act individually in
their own self-interest, then the operator’s arrival pattern would be unstable. That is, the
pattern could not be sustained because customers will change their departure times.
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Figare 6.11 Customers must arrive early when they are required to depart from the
queue on schedule. Tdeally, customers should arrive at a constant rate and queues should
not materialize.

A stable arrival pattern would be more like Fig. 6.12 (see Daganzo 1985;
Hendrickson and Kocur 1981; and Newell 1987). Customers may at first choose to arrive
later than the operator’s schedule. But, with many customers changing their arrival times,
queues will materialize and customers will be late. To compensate, the next time that
customers arrive at the queue they will have to arrive earlier—even earlier than the
original scheduled arrivals—and the end result: Customers will not only depart from the
queue ‘earlier than desired, but they will also incir queueing delay.

This is but one example of how queues are created by customers acting in their own
self-interest, rather than working together for their common benefit. In Chap. §, methods
are presented for resolving such problems.

6.8 CHAPTER SUMMARY

The most severe queueing problems do not result from random variations in arrival times
but, rather, from predictable variations in arrival rates. These predictable variations can be
represented by the nonstationary Poisson process. Like the standard Poisson process, the
nonstationary Poisson process possesses independent increments, and the probability of
an arrival in a differential time increment equals M(f)dt. Unlike the standard Poisson
process, A(f) does not have to stay constant over time.

The arrival rate represents the expected number of arrivals to occur per unit time.
The integral of A(7) from 0 to ¢, A(f), equals the expected number of arrivals to occur by
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Figure 6.12 In actuality, when customers must “‘depart on schedule,” customers will
arrive earlier than necessary and queues will materialize.

time 7. The actual number of arrivals to occur is a random variable, which can be more or
less than A(f). Like the standard Poisson process, this random variable has a Poisson
distribution with mean A(r). Nevertheless, the nonstationary Poisson process does nc?t
have exponential interarrival times and it is not memoryless. Among other things, this
makes it difficult to determine whether a dafa set was or was not producefl by a
nonstationary Poisson process. Goodness of fit is primarily judged by plausibih.ty.

A nonstationary Poisson process can be simulated in any of three ways: by mmu%at—
ing a stationary Poisson process and accepting arrivals with probability ?\(i)/)\max; by fxrst
generating a Poisson random variable representing the number of arrivals over a time
interval and then simulating the arrival times; or by simulating Bernoulli random vari-
ables, representing whether or not arrivals occur in small time increqlents. If A() 1.s
piecewise linear, arrivals can also be simulated by generating exponential random vari-
ables within each piece of the piecewise linear curve (see Sec. 6.3.3).

If the arrival rate is nonstationary, and much less than the service capacity,
queueing behavior can be modeled with quasi-steady-state equations. When the function
p(¢) is substituted for p/m, these equations provide an estimate for the queue’s perfor-
mance at any time f.

In most cases, the deterministic fluid model is the best way to visualize a nonsta-
tionary queueing system. The customer is represented by a fluid, which enters from a
faucet (the arrival process) into a tub (the queue) and later empties from a drain (Fhe
service process). The queue grows whenever the arrival rate exceeds the service capacity,
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reaches a maximum when the arrival rate equals the service capacity, and declines when
the arrival rate falls below the service capacity.

The fluid model does not account for random fluctuations in the arrival and service

_ processes, just predictable fluctuations. These predictable fluctuations tend to overwhelm

random fluctuations in arrjval times. In Sec. 6.6, an adjustment factor was provided to
estimate the size of the queue created by random fluctuations prior to the time j(¢) first
exceeds 1. This adjustment factor is negligible when the rate of change in p(¢) is large.

Quenes are most difficult to analyze when the arrival rate hovers at or near the
service capacity, occasionally falling below or occasionally rising above. Neither steady-
state analysis nor fluid approximations provide adequate predictions, the first overestimat-
ing queue lengths and the latter underestimating queue lengths. The most robust way to
analyze such systems is through simulation.
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PROBLEMS

1. Customers arrive at a cafeteria by a nonstationary Poisson process, with rates:

Sthr - 8:00-12:00
Ap) = $20/hr  12:00-1:00
10/hr  1:00-3:00
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(a) Write the function A(f).

(b) What is the probability that exactly 30 customers arrived between 12:00 and 3:00?.

(c) Suppose that 20 customers are known to have arrived between 8:00 and 1:00. What is
the probability that no one arrived before 12:007 What is the probability that two

customers arrived before 12:00? .
(d) Suppose that the last customer to arrive before 12:00 arrived at 11:57. What is the
probability that no customer arrived between 12:00 and 12:077

The arrival rate in Prob. 1 is now defined by the function
M) = §sin(mT)  0sts7T

where t = 0 is equivalent to 8:00, time is measured in hours, and the angle is measured in
radians. Repeat parts a—c from Prob. 1.

. Figure 6.13 provides a cumulative arrival curve. From this curve, draw (approximately) A(r)

on a piece of graph paper. At what time is the arrival rate the largest, and what is the largest
arrival rate?

. Figure 6.14 provides an arrival rate curve. From this curve, draw (approximately) A(f) on a

piece of graph paper.

The service time distribution at a single server queue is normal, with mean 5 minutes and
variance 4 minutes®. The arrival process is nonstationary Poisson, with the following arrival
rate:

MO = 50e"/(100 + ™Y M) in custimin, f in min.

14,000
12,000

10,000

8000

Cumulative Arrivals

6000 —

4000

2000

T

6:00 7:00 8:00 9:00 10:00
Time (t)

Figure 6.13 Example cumulative arrival curve.
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Figure 6.14 Example arrival rate curve.

(a) Use the quasi-steady-state approximation to write the function L (r).
#(b) Using a computer, plot the function L (#) over the interval from ¢ = 0 to 200 minutes.
At what time is L(r) the largest, and what is the largest value of L(1)?

For Prob. 5, determine whether the quasi-steady-state approximation is valid at all times (a
computer may be helpful on this problem). If not, describe how the tru¢ performance would
differ from the predicted performance.

Repeat Prob. 5, using the arrival rate function in Prob. 1 (over 8:00 to 3:00 interval) and two
servers, each with exponential service time distribution and mean service time of 5 minutes.
In words, discuss whether you believe your approximation is valid.

Suppose that the function given in Prob. 1 is based on the average number of arrivals over 20
days. Give 95% confidence intervals for the arrival rate in each interval.

Using a computer, simulate the arrival process in Prob. 1 by each of the following means:
(a) By generating a Poisson random variable, then generating the individual arrival times
(b) By generating exponential random variables
{¢) By simulating a stationary Poisson process and randomly accepting or rejecting arrivals

Using a computer, simulate the queueing system described in Prob. S, for one 200-minute
period. Plot queue length as a function of time and compare your result to L (). Are your
results reasonable?

*Difficult problem
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11. Figure 6.14 gives a cumulative arrival curve. Copy the figure ona piece of graph paper. Using
a deterministic fluid approximation, with service rate of 4800 customers/hour and short
service time, do the following:

(a) Draw the cumulative departure curve.

(b) Indicate when the queue is largest, and the largest queue size.

(¢) Indicate when the queue is growing at the fastest rate. Estimate the maximum rate of
growth.

(d) Indicate when the queue begins and vanishes.

(e) On a scparate graph, show queue length as a function of time.

(f) Estimate total waiting time among all customers.

_#12. A forms processing center has a constant service time of 15 minutes, and 12 servers operate.

Copy Fig. 6.14 on a piece of graph paper, and rescale the vertical axis by dividing by 100.
Based on the service process and the arrival curve, repeat parts a-f from Prob. 11.
#13. For Prob. 11, suppose that the coefficient of variation in the service time is 5.
(a) Using the adjustment factor in Sec. 6.6, estimate the queue size at the time M(#) = c.
Assume that d\(n/dr = 20,000 customers/hour” at the time A(f) = c.
(b) Draw a graph representing L,(#) for the period after A1) first equals ¢. Compare and
contrast your result to Prob. 11.
(¢} Identify (approximately) the time period over which a quasi-steady-state model would
be valid.
¢d) Using the quasi-steady-state model, and assuming an M/G/ 1L/ queue, plot L (1) over the
period over which it is valid.
{e) Discuss how your answers to parts b and d might be used to estimate L0 over the
entire time range.
#14, In Prob. 11, suppose that on one out of ten days the server malfunctions and can only process
customers at the rate of 3600/hour. Estimate the total waiting time among all customers.
15. Figure 6.14 represents the cumulative number of jobs thata printer must deliver by time ¢. The
company would like to begin processing jobs as late as possible, yet still deliver them on time.
Jobs can be processed at the rate of 5500 per hour.
(a) On a piece of graph paper, draw the curve representing cumulative job completions.
{b) At what time is the number of jobs that have been completed, but not delivered, the
largest?
16. Customers at a convenience market have a tendency to renege if their wait in line is
sufficiently long.

. - 130 0 < t < 30 minutes
P(renege if wait is f or less) = | ¢ > 30 minutes

Put another way, for each minute the customer waits (up to 30), there is a 1/30 chance of
reneging. To take an example, if a customer has to wait 10 minutes, there is a one-third

chance of reneging.
Describe in words how your simulation in Prob. 10 could be modified to account for

this behavior.

QUEUE EXPERIMENT: FOR IN-CLASS DISCUSSION

The queue experiment can be completed in the privacy of your own home in about 20 minutes. You
will need an ordinary bathroom sink (preferably with a screw-type water valve), a ruler, and a

*Difficult problem
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timing device. Record your observations, but do not hand them in. Read the entire description
before beginning.

Setup.  Open the cold water valve to maximum flow, counting the number of revolutions
of the handle. Record this number.

Push the drain control to its lowest height (open drain). Open the cold water valve to one-half
the maximum flow. Now raise the drain control until you begin to see the water level rising in the
sink. Leave the drain control at a level that maintains a constant water level. Place the ruler in the
sink in a way that allows you to measure the depth of the water.

‘Experiment. Throughout the following, record the height of the water at 10-
second intervals.

Time {sec) Action

0 Open the cold-water valve to 3/4 maximum flow
10 Open the cold-water valve to maximum flow

20 Reduce the cold-water flow to 3/4 maximum flow
30 Reduce the cold-water flow to 1/2 maximum flow
40 Reduce the cold-water flow to 1/4 maximum flow
50 Turn the water off

Continue recording the water level until no water is left in the sink. (Absolute accuracy is
not essential in this experiment.)

Questions

Based on the flow only, plot A(r) and D,(f) on a piece of graph paper.

Based on the water height recordings only, plot L,(f) on a separate piece of graph
paper.

When is L,(1) the largest?

When does the queue vanish?

Describe the function (r).

Are your data consistent? Explain why or why not.

EXERCISE: NONSTATIONARY MODELING

The purpose of this exercise is to learn how to simulate a nonstationary Poisson process and to use
deterministic fluid approximations.
1. One of the local restaurants has been collecting data over the last year on the arrival pattern of

customers during lunchtime. The data below provide the number of arrivals from the opening
time (11:30) until 2:00.
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Time period Average number of arrivals
11:30-11:45 5
11:45-12:00 30
12:00-12:15 30
12:15-12:30 15
12:30-12:45 5
12:45-1:00 20
1:00-1:15 10
1:15-1:30 5
1:30-1:45 6
1:45-2:00 4
Total 130

Each arrival represents a “‘party”” of customers. The restaurant has 35 tables. The service
time (the time from when a party is seated at its table until the table is available to seat the next
party) has an exponential distribution, with mean of 30 minutes.

1. Simulate the arrival pattern for one lunchtime (11:30~2:00), based on a nonstationary Poisson
process. Plot A(f) on a piece of graph paper.
2. Simulate the departure pattern for one lunchtime, based on the exponential distribution. Plot

D) and D(?) on the same paper as A(D).

3. Determine the average number of customers in the system and the average time in system.

Answer the following:

(a) At what time is the queue the longest?

(b) At what time does queueing begin?

(¢) At what time does the queue vanish?

(d) At what time is the wait (not counting service time) the longest?

(e) What is the longest waiting time?

4. Now assume that the arrival pattern is deterministic, as defined by the average arrival rates.

Also assume that all customers are served in exactly 30 minutes.

(a) Draw A(r), D,(6), and D,{#) on a single piece of graph paper. (Be careful. D (1) and D (1)
are not easy to draw because of the long service time. Make sure that D,(f) — D (f) <35
for all £.) ‘

(b) Answer all the questions from part 3 for these new curves.

(c) Explain why, or why not, your answers to part 4b are different from your answers to
part 3. .

(d) Under what conditions would the deterministic approximation be more accurate? Explain.

APPENDIX: DIFFUSION MODELS

The term diffuse means *‘to cause to spread or disperse, as a gas or a liquid.”” The term
diffusion means the process of diffusing. Diffusion models are used in physics o represent
the molecular diffusion of fluids. But diffusion models are also applicable to queues,
particularly in the analysis of the stochastic behavior of nonstationary queueing systems.
Exact analysis of these systems is extremely difficult, and diffusion models provide both
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simple and robust results. As already seen in the chapter text, deterministic fluid models
can be used to approximate queue behavior..Stochastic diffusion models can too: The rate
at which a fluid diffuses across a region boundary is analogous to the transition rate across
a cordon line in a transition rate diagram (see Chap. 5).

The following will refer to two types of diffusion models. The diffusion equation is
a differential equation, first developed for molecular diffusion, but also applicable to
queueing systems. A diffusion process (also called Brownian motion) is a stochastic
process in which the interevent times are independent normal random variables. As
applied to queueing, the fundamental assumption of the diffusion equation is that the
number of arrivals and number of departures behave like diffusion processes and are
mutually independent, whenever the queue size is positive. However, just because the
arrival and departure processes behave like a diffusion process does not mean that they are
diffusion processes. As we will see, other stochastic processes, including the Poisson
process, can be approximated by the diffusion process.

The derivation of the diffusion equation, and its role in developing nonstationary
results, are beyond the scope of this book. Interested readers are referred to Newell
(1982). However, basic concepts can be illustrated with the following example, based on
the diffusion process. In the example, it will be assumed that the probability of the queue
being size zero is negligible. This might represent a situation where the queue size is
initially large and the arrival rate exceeds the service rate. The following analysis is
similar to that in Newell (1982).

First, consider the arrival process. Assume that at time 0, no arrivals have yet
occurred. Then the time of the nth arrival, A™'(n), must equal the sum of n interarrival
times, A;

n

ATl = XA ~ (6.A1)

i=1

From the central limit theorem, we know that if n is large and A; are independent
identically distributed, A ™ '(») must (approximately) have a normal distribution. For large
values of k, this implies that A~ '(ki) — A™'(k(i — 1)] must also be approximately
normally distributed. Because dependencies should be weak (at most) for large k, A~ L(ki)
should behave like a diffusion process. (This does not mean that A~ () behaves like a
diffusion process.) A similar argument can be made for the departure process, Dy '(ki),
based on the assumption that the queue does not vanish. D, '(n) is the sum of n service
times. If the service times are identically distributed, D;” (ki) will behave like a diffusion
process. For an FCFS queue, the fict that D; (1) and A™'(n) are approximately normal
means that confidence intervals can be obtained for the waiting time of the nth customer.

Of greater interest than the processes D, (ki) and A~ '(ki) are the processes D (1)
and A(?). The latter are related to the former. In fact, it is possible to describe events in
either of two ways:

ATl < to AR = (6.A2)

The left side states that the arrival curve intersects the horizontal line, passing thrdugh the
point u, at or to the left of time 7 in Fig. 6.15. The right side states that the arrival curve
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Alr)

A////A‘1 m<r

T Figure 6.15 The event that a~ ) <nis
Time (¢) ' equivalent to the event A(7) = n.

intersects the vertical line, passing through the time 7, at or above the point #. As can be

seen in Fig. 6.13, the statements are equivalent.
There is also an important relationship between the two points of intersection,

A~} (n) and A(1). Specifically, if A = n:
Mr — A7 )] + n=A2r — A7) = (6.A3)

One can conclude (for large n) that if A~ Y(n) is approximately normally distributed, A1)
must also be approximately normally distributed, with mean and variance defined by

EA(D] = M VIA(D] = ATVIAT! (WD)
= N\OHV(A) (independent interarrival fimes)
=~ MCHA) (6.A4)

where V(A) is the variance of the interarrival time and C(A) is the coefficient of variation
of the interarrival time. If the arrival process is Poisson, V(A) is just 122, and VIA(D]
equals At, the variance of a Poisson distribution with mean \z. Similar relationships hold
for D,(1), which is also approximately normally distributed:

E[D/n] = « VID,(] =~ ¢*VID; (ch]
AeHV(S) (independent service times)

= c1CX(S) (6.A5)

U

where V() is the variance of the service time distribution and C(S) is the coefficient of
variation.

It is now possible to derive the probability distribution for the number of customers
in the system, L(f). Because L(r) is the difference between two (approximately) normal
random variables, A(f) and D {f), it must also be normally distributed. Assuming service
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times are independent, that customers arrive by a Poisson process, and that arrival and
departure processes are independent:

Poisson Arrivals, Independent Service Times

E[L0} = [A(0) — DO + (A — o (6.A63)
VIL()] = f\ + C¥(S)) (6.A6b)

Equation (6.A6) can be used both to predict L,(#) and to obtain a confidence interval for
L1, b.a.sed on the normal distribution. It is valid for large values of ¢, provided that the
probability that the queue vanishes is negligible. This is to say

Approximation Valid When

EL(0] - 2 VL@ >0 120 (6.A7)

I.n reality, a queue will not instantaneously attain a large queue size, as assumed; it
must first make the *‘transition through saturation.” At or below saturation, the depam;re
and. arrival processes are certainly not independent, From time to time, t’he queue will
vanish, and service must stop. Equation (6.A6a) will then underestimate queue size
Fortunately, there is an alternative model: the diffusion equation. Through the use of
b.oun‘dary conditions, the diffusion equation can be used to approximate the queue size
dxstnbgtion, even when the queue vanishes from time to time. The diffusion equation was
the basis for Eq. (6.25), which gives an estimate for the queue size at the time when the
queue makes the transition through saturation (that is, A = ¢).




