' chapter 3

The Arrival Process

Chapter 2 describes the first step in evaluating a queueing system: observation and
measurement. Observation is a key part of the formulation stage of systems analysis. It
answers the questions; What is the unknown? What are the data? What is the condition?
The second stage of systems analysis is modeling. Whereas observation determines what
happened, modeling explains what happened. It should reveal the underlying process that
created the data. Thomas Kuhn, writing on the discovery of oxygen, staies:

Though undoubtedly correct, the sentence, ‘Oxygen was discovered,”” misleads by suggest-
ing that discovering something is a single simple act assimilable to our usual (and also
questionable) concept of seeing . . . discovering a new sort of phenomenon is necessarily a
complex event, one which involves recognizing that something is and what it is.'

Recognizing what it is—the act of explanation—is the role of modeling.

Modeling is the subject of this chapter, as well as Chaps. 4 to 6. This chapter
" concentrates on the customer arrival process, with emphasis on a particular model known
as the Poisson process. As early as 1910, with Erlang’s paper ‘‘The Theory of Proba-
bilities and Telephone Conversations,”” the Poisson process had been used as a model for
customer arrivals. However, it was developed much earlier, in the early nineteenth
century, by the French mathematician Denis Poisson. In addition to being a good
representation of arrival processes, it tums out that the Poisson process is also a good
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representation of many physical systems, such as the position of molecules within gases.
(See Haight 1967 for more examples.) The Poisson process is a rare example of a model
that fulfills the dual objectives of realism and simplicity.

This chapter begins with a description of the conditions that create the Poisson
process. Next, it covers the relationship between the Poisson process and the Poisson
probability distribution. It then discusses the properties of the Poisson process. The
chapter concludes with an examination of some of the ways to determine whether or not
an arrival process is Poisson. One should understand random variables, probability
distributions, and basic statistics before beginning this chapter.

3.1 CREATION OF THE POISSON PROCESS

The Poisson process is an example of a broader class of stochastic (that is, random)
processes known as counting processes. Suppose that events occur at various times, in
some random fashion. A counting process is the function representing the cumulative
number of events that have occurred up to any point in time. We have already seen three
examples of counting processes—A(z), D (1), and D).

The Poisson process is a type of counting process that applies to customer arrivals,
A(2). The definition of the Poisson process will depend on the following:

Definitions 3.1

A counting process has independent increments if the numbers of events in any pair of
disjoint time intervals are statistically independent.

A counting process has stationary increments if the distribution of the number of events
in any time interval depends only on the length of the time interval. It does not depend on
when the interval occurred.

Formally, the Poisson process is defined as follows:

Definitions 3.2
A counting process N(¢) is a Poisson process with rate X if

A. The process has independent increments.
B. The process has stationary increments. And

C. =0] =1 - Adr
Pr{INGt + dpy — NOT{ = 1} = \gt
' >1] =90

where dt is a differential (that is, very small) sized time interval.
The rate \ represents the expected number of customers to arrive per unit time. If A
= 10 customers per hour, then the expected number of customers to arrive in a 60-minute
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period is 10 and the expected number to arrive in a 30-minute period is 5. The number of
customers that actually arrive in any 60-minute period can be very different from 10, and
the spacing between customer arrivals does not have to be constant. The significance of
condition C is that customers arrive one at a time, and the probability that an arrival occurs
in a very short (differential length) time interval equals the arrival rate multiplied by the
size of the interval. For example, if A = 10 customers per hour, then the probability of
one customer arriving within any I-second interval is approximately 10/3600 = .00278.
In words, the Poisson process can be summarized as follows:

A. The probability that a customer arrives at any time does not depend on when other
customers arrived.

B. The probability that a customer arrives at any fime does not depend on the time.
C. Customers arrive one at a time.

The word description suggests why the Poisson process is important. Consider a
queue for tellers at a bank. Is there any reason to believe that past arrivals influence future
arrivals? Does the probability of an arrival vary over time? Do customers arrive in groups?
For most customers, the answer to the first and third questions is almost certainly no.
Customers do tend to arrive independently of each other, one at a time. There may be

“exceptions—two people who decide to go to the bank together—but that is what they are,
exceptions. The model does not have to be perfect to be useful.

With regard to the second question, the answer is more of a maybe. The arrivals
may be fairly constant over short time intervals, but most likely vary over the day and
week. For the moment, think of the standard Poisson process as representing what
happens over time intervals when the arrival rate is nearly constant. Later on, in Chap. 6,
a nonstationary version of the Poisson process is presented that accounts for this variation.

The Poisson process is sometimes viewed in terms of its calling population the
group of potential customers. If the calling population is large, customers arrive indepen-
dently, and the probability that any particular customer arrives during any small time
interval is small and constant, then the arrival procéss will be Poisson. As the size of the
calling population declines, the arrival process will look less and less like a Poisson
process, in which case an alternative model may be called for (as is discussed in Chap. 3).

3.2 POISSON DISTRIBUTION

The Poisson distribution is a probability distribution that arises from the Poisson process.
1t is a discrete distribution, meaning that its random variable is limited to a set of distinct
values. A Poisson random variable is limited to the set of non-negative integers. The
Poisson distribution gets its name because it is the probability distribution for the number
of arrivals within any time period of a Poisson process.

Deﬁivation. Consider the random variable N(r), representing the number of
arrivals over the interval [0,7]. Suppose that the interval [0,] is divided into [ segments,
where [ is a very large number. Consider just one of these segments. From condition C of
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Definition 3.2 of the Poisson process, either one customer arrives during the segment or
no customers arrive, but never more than one. The probability that exactly one customer
arrives is A (/7). The total number of arrivals over the entire interval equals the sum of /
Bernoulli (0,1) random variables, each representing whether or not a customer arrived
during a segment. Thus N(?) is a binomial random variable with parameters / and \(#/1):

PING = n] = lim (i)p” I-pY ™ n=01...,1 (3.1

Jree

where P[ ] denotes the probability of an event, and p = At/

Through a series of calculations, Eq. 3.1 can be reduced to a very simple expres-
sion. First, by substituting A#// for p, and expanding the permutation, we can rewrite Eq.
3.3 as the following:

I(I—l)'...°(1—n+1)]
ro

k= a2

PIN() m n} = lim {

e

In the limit, as J approaches infinity, the numerator of the first term equals I”. Thus, the
first term approaches one. Also in the limit, the denominator of the third term equals 17,
or just one. This leaves the following:

PIN(G) = n] = lim —%?: (1 = ny (3.3)

Jer

From the definition of the number e, the last term in Eq. 3.3 is e ™™, Making this
substitution allows Eq. 3.1 to be expressed in final form:

()\I)" - A&

PIN(t) = n] = v e n=20,1,... | (3.4)

For a discrete random variable, the probability function, f(x), specifies the proba-
bility that the random variable equals a set value x. Equation 3.4 is the probability
function for a Poisson random variable with mean At. Hence, the probability distribution
for the number of evenis in any time interval is Poisson.

.Definition 3.3: Poisson Probability Function, Mean \#

h X
= Bl c=o2. (3.5)

The probability distribution Sunction, F(x), specifies the probability that a random

variable occurs at or below a set value x.
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Definition 3.4: Poisson Probability Distribution Function, Mean M

Fo) = 3 fin) = 20 ("?" e x=0,1,2 ... (3.6)

n

Example

From past experience, customers are known to arfive at a service station at the rate of A = 15
customers/hour. The owner would like to know the probability that more than one customer
will arrive during an employee’s 5-minute coffee break.
Solution The expected number of customers to arrive during 5 minutes is A, or 15
customers/hour X (5/60) hours = 1.25 customers. The probabilities of zero customers
arriving and 1 customer arriving are calculated from Eq.(3.4):

1.25°

f(O) = o e—1.25 _ e-l.25 — 29

1.25°
1!

f(1) = el B = 1257 = 36

The probability that one or less customers arrive, F(1), equals fl0) + f(1) = .65. Therefore,
the probability that more than one arrives equals 1 — F(1) = J35.

Given that the number of arrivals in a time interval has a Poisson distribution, the
Poisson process can be defined in the following alternative form:

Definition 3.5
The Poisson process is a counting process with the properties:

A. The process has indepéndent increments.
B. Number of events in any time interval of length 7 has & Poisson distribution with
mean Af.

Condition B substitutes for both conditions B and C in Definition 3.2. Therefore, 1t '
implies stationarity.

3.3 PROPERTIES OF THE POISSON PROCESS

The Poisson process has a number of important properties. So far, we have seen the
following: '

Proi}erty 1. The distribution for the number of events in any time interval of
length ¢ has the Poisson distribution with mean Al
Here are some of the important characteristics of the Poisson distribution:
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Characteristics of Poisson Distribution

1. The Poisson distribution is discrete and defined over the set of non-negative
integers.

2. EINOl = Mt
3. VING] = M
4. PIN®) = 0] = e™¥

ET ] represents the expectation of the enclosed random variable, and V[ ] represents the
variance of the enclosed random variable. _

The Poisson distribution has the distinguishing characteristic that its variance equals
its mean (thus, its standard deviation equals the square root of its mean).

Example

Residents of a small city are known to place telephone calls by a Poisson process with rate
1000 per hour. The expected number of phone calls made after a time ¢ is 1000¢, and the
standard deviation of the number of phone calls made after a time 7 is /1000t. The coefficient
of variation (ratio of standard deviation to mean) of the number of calls is /10002/1000; =
1//1000¢, which declines as 7 increases.

3.3.1 Interarrival Time

The Poisson process is closely related to the exponential probability distribution. The
exponential distribution is a continuous distribution, meaning that exponential random
variables are not limited to a set of discrete values. Instead of having a probability
function, a continuous random variable has a probability density function. The density
function, f(x), does not equal the probability that the random variable equals x. Rather,
f(x), multiplied by the differential dx, equals the probability that the random variable is
contained in an interval of width dx centered around the point x.

~In the following characteristics of the exponential distribution, X represents the
outcome of a random variable.

Characteristics of the Exponential Distribution

1. The exponential distribution is continuous and defined over the set of non-
negative real numbers.

2. The probability density function, f(x), is
fy = xe™™  x20
3. The probability distribution function, F(x), is
Foy= [he™da=1-¢> x20

4, EX) = U\
5 VX)) = I\ = EXX)
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Example

Calculate the probability that an exponential random variable, mean .5, is contained in [.95,

1.05].
Approximate Solution A = 1/.5 =2, and dx = 1.05 — .95 = 1. The desired probability

is approximately f{l)dx = 2¢72*! (1) = .027.

Exact Solution The approximate result is confirmed from the probability distribution

function. The probability that X < 1.05 equals F(1.05) = .878 and the probability that X =

.95 equals F(.95) = .850. The difference rounds off to .027.

The exponential distribution function is a special case of the gamma distribution,
which is discussed in greater detail later. In Fig. 3.1b, the exponential distribution is the
gamma distribution with a coefficient of variation of 1. Unlike the Poisson distribution
function (Fig. 3.1d), the exponential distribution function is smooth, reflecting the fact
that an exponential random variable is not restricted to a discrete set of values. Put another
way, time (the exponential variable) is continuous, but counts (the Poisson variable) are
discrete.

The relationship between the Poisson process and the exponential distribution is
revealed by the third characteristic of the exponential distribution:

PX=pn=1-F@= e~V = PN() = 0] .(3.7)

Thus, the probability that the random variable X is greater than or equal to some value 718
identical to the probability that no events occur over an interval of length ¢. It should be
apparent that these are two ways of stating the same thing. Furthermore, the independent
increments property guarantees that interarrival times are mutually independent. Hence,
we have another property of the Poisson process:

Property 2. The interarrival times for a Poisson process with rate A are indepen-
dent exponential random variables with mean I/A.

Example

Customers are known to arrive at a medical clinic at the rate of 8 per hour. The receptionist is
called away from his desk at 10:00, immediately after a customer arrived. How long can he
stay away from his desk if he is willing to take a 50 percent chance of being away when the

next customer arrives?
Solution The time until the next arrival has an exponential distribution with mean 1/8 hour.

The receptionist would like to determine the value of x for which:
F)=1-¢™™ =35

Inverting F(x), this is equivalent to finding the value of x for which
-1
x = —8“ m(.5) = .087 hr = 5.2 min

Thus, if the receptionist is gone for 5.2 minutes, there is & 50 percent chance that a customer
will arrive before he retums.
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Figure 3.1 Comparison of probability distribution functions: {a) uniform, {b) gamma,

‘ :(c} normal, and (d) Poisson.
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3.3.2 Memoryless Property

A random variable is said to be memoryless if the time until the next event does not
depend on how much time has already elapsed since the Jast event:

Definition 3.6

A random variable is memoryless if:
P{X>s+rlX>t}-—~=P{X>s} foralls, t =0

In the context of the Poisson process, the memoryless property applies to the
interarrival time. Surely this is a logical consequence of independent increments and
stationarity. What consequence should past arrivals have on future arrivals?

The memoryless property is easily proved for the exponential distribution (the
distribution governing the time until the next arrival), From the law of conditional
probabulity.

stradX>4 PX>s5+ 4 38
PX > 1 T PX >4 (3:8)

- >
PX>s +1]X>4 = il

If the random variable X is greater than s plus 4, it must also be greater than 1. Substituting
the exponential distribution function in Eq. (3.8), we obtain the following:

e ~Ah(s+1)

PA>s+1]X>8 = ——— =M =px>y (3.9)
€

as required. Thus

Property 3.  The time until the next event does not depend on the elapsed time
since the last event. ‘

Example

Suppose that the receptionist in the previous example left his desk at 10:05, 5 minutes after
the last arrival. Then, if he leaves his desk for 5.2 minutes, the probability that no one arrives
is still .5, the same as if he had left at 10:00,

3.3.3 Time Until nth Event

So far, we know the probability distribution for the number of events within a set time
interval, and we know the probability distribution for the length of time until the next
event. What about the probability distribution for the.time until the second, third, fourth,
... event?
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Definitions 3.7

X, = the time between the n — lst event and the nth event
y, = the time of the nth event
=X+ X+ X
Derivation. The probability that ¥, occurs before some time 7 equals the proba-

bility that X, + X, is less than . Suppose that X, equals 5, where s is some non-negative
number less than z. Then ¥, occurs before 7 if X is less than 7 — s. Considering all the

possible values of s between 0 and
Py = JPOG, + X< 1] X = PO = 9 (3.10)
Gr[l — "M he™™ ds
= 0_[ e~ ds - Ofr)\e”" ds
= (1 - ™ - (ne™)

Equation (3.10) gives the probability distribution function for ¥,. The probability density
function, fy,(1), is the derivative of Eq. (3.10), Fy(0), with respect to 7, and equals

) = dpz(t) =M™ 120 (3.11)

i

i

Equation (3.11) is recognized as the density function of the gamma distribution with
parameters (2,\). In general, the distribution for the sum of n successive interarrival times
has the following property.

Property 4. The sum of n independent exponential random variables, each with
mean I/\, has the gamma distribution with parameters (n,A).
The probability density function for the gamma distribution is the following:

Gamma Probability Density Function

"

frl) = Fh(n) rle™ 120 (3.12)

where I'(n) is the gamma function (the gamma function is not a probability distribution
function). When # is an integer (as will be the case in queueing analysis), the gamma
function is defined as

T(n) = (n — ! n = | and integer (3.13)

The gamma distribution is continuous and defined over the domain ¢ = 0. The mean and
variance of the gamma distribution are
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n
= — Vi 3.14
ET) X T = )\2 (3.14)
The gamma distribution function is found by integrating Eq. (3.12):
Gamma Probability Distribution Function
o ™™ (Y .
Fy(t) = 1 _20 ———L n = | and integer (3.15)
j= J!

For noninteger values of », the integration must be performed numericaily. Fy (¢) is shown
in Fig. 3.1b, for E(T) = 1, and coefficients of variation of .2, .5, and | (the last also
being an exponential distribution). Note that the distribution loses symmetry as the
coefficient of variation increases.

Although the gamma distribution may appear complicated, it is a natural conse-
quence of the conditions underlying the Poisson process—conditions that are quite
plausible.

3.3.4 Event Times Within a Time Interval

The Poisson process has one more property that deserves mention. Suppose that n events
are known to have occurred within a time interval. What is the probability distribution for
the time of each event?

First, suppose that just one event occurred over the interval {0,£], and let the time of
this event be represented by the random variable ¥,. Then the following two statements,
representing probabilities of joint events, are equivalent:

P{[Y, < s] and [N() = 11} = P{[I event € [0,s)]
and [0 events ¢ [5,1]1} (3.16)

From the law of conditional probability, the first statement can also be expressed as
P{Y, <sland [N = 1]} = P[Y, < s {N(@) = 1] PIN(5) = 1] 3.17)

Combining the expressions and substituting the Poisson probability distribution yield the
following:

— A5 ~A({—5) — At
PIY, < s | N@ = 1] = {Ase™) (e ) se—)u _ % (3.18)

Me™ N te

Equation (3.18) is the uniform [0,r] probability distribution function, meaning that
the event is equally likely to occur at any time during the interval. This should come as no
surprise, given the memoryless property of the Poisson process. More generally,
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Property 5. IfN() = n, the unordered event times are defined by N(f) indepen-

dent uniform [0,7] random variables.
The uniform distribution has the following characteristics:

Characteristics of Uniform Distribution Defined over [a,b]

1. The uniform distribution is continuous. Depending on a and b, uniform random
variables can be either negative or positive.

b — a) xela b]

2. fix) =
0 elsewhere
0, x<a
3. F() = {(x — a)i(b — a) x ¢ [a, b}
1, x>b
_ b+ a
4, EX) =
X) 5
b — a)
5 VX)) = -
X o

Example distribution functions are shown in Fig. 3.1a. As with the gamma figure,
the functions have a mean of 1 and coefficient of variations of .2, .5, and 1. Note that the
uniform distribution is always symmetric about its mean and that the slope of the
distribution function is constant over [a,b].

Example

Three events are known to have oceurred over a 2-hour period of a Poisson process. The
probability that any one event occurred in the first half hour is (1/2)/2 = .25. The probability
that all three events occurred in the first half hour is 25" = 1/64. The probability that none of
the events occurred in the first half hour is - 25y = 27/64.

3.3.5 Summary

In this section we have seen that a few plausible assumptions (independence, stationarity,
and arriving one at a time) lead to 2 number of important consequences:

1. The number of events within an interval of length ¢ has a Poisson distribution with
mean Al ‘

2. The time until the next event has the exponential distribution.

3. The time until the next event is independent of the elapsed time since the last event
(memoryless property). _

4. The time until the nth event has a gamma distribution with parameters (n,A).
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8. If N(t) = n, the unordered event times within the interval [0,f] are defined by n
independent uniform [0,t] random variables.

These properties are used in the next section to check whether an observed process is
indeed Poisson, and in Chap. 4 as the basis for simulating a queue.

3.4 GOODNESS OF FIT

“*Goodness of fit"” is a term that describes how well a model fits the behavior of a system.
Occasionally, a model precisely matches the behavior of a system, as in the binomial
distribution matching flipped coins. But, more commonly, there are some differences.
Differences are acceptable if the model does not differ appreciably from reality. The
amount of difference that is acceptable is a matter of judgment and varies from situation to
situation, depending on the needs for accuracy and simplicity.

Above all else, and independent of whatever data are recorded, goodness of fit
should be judged according to whether or not the model’s assumptions are plausible for
the system studied. This standard is best appreciated by considering situations that do not
conform to the Poisson process.

Example 1

An observer is stationed at the end of the runway at Newark International Airport. Over the
1-hour period from 35:00 to 6:00 p.Mm., the observer records the time that the front wheels of
each airplane touch the runway.

Airplanes certainly land one at a time. And the probability that an airplane arrives at any
particular time does not vary appreciably over the hour. But arrivals are not independent
of each other. Safety dictates a minimum spacing between planes. If a plane landed at
3:00, the next plane would not land until at least 90 seconds later. The process does not
possess independent increments and it is not Poisson.

Example 2

Job candidates are scheduled for interviews with a personnel department. One candidate is
scheduled for each hour of the day, beginning at 8:00. An observer records the time that each
candidate arrives. :

The job candidates most likely arrive independently of each other, one at a time. But the .
- process is not stationary. Arrival times depend on appointment times. The likelihood that
a candidate arrives at 7:55 is much greater than the likelihood that a candidate arrives at
8:15. Again, the process is not Poisson. (If the spacing between appointments is small,
and arrival times are somewhat random, the process would behave [ocally like a Poisson
process.. That is, the interarrival times would be approximately exponential, but the
number of arrivals over long time intervals would not be Poisson. See Newell 1982.)
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Example 3

An observer records the time that visitors arrive at the San Francisco zoo during the period
10:00 to 11:00 on a weekday morning. Most of the visitors are members of school groups.

If it takes no longer to serve a group of visitors than an individual visitor, then the group
would be considered the customer and the arrival process might be Poisson. However, if
visitors are served individually, the arrival process would not be Poisson because visitors
do not arrive one at a time.

Example 4

An observer records the arrivals of bank patrons at an automated teller machine over a |-hour
period from 10:00 to 11:00 on a weekday morning.

Bank patrons tend to arrive one at a time, and arrivais tend to be mutually independent.
The rate at which they arrive may vary over the day. However, the arrival rate may be
fairly constant over a 1-hour period from 10:00 to 11:00. The Poisson process is plausible.

The bank is the only one of the four examples for which the Poisson process is
plausible. But plausibility does not imply that the process is definitely Poisson. It only
means that the process seems to be Poisson. If there is any doubt, final verdict should not
be passed until quantitative tests are performed on the data, as discussed in the following
section.

If the Poisson process is not plausible, all is not lost. There are many other models
for the arrival process, any of which might be appropriate for a given situation. Some of
these are described in Chap. 6. The Poisson process is emphasized here because it is a
reasonable model for many systems and because its simplicity facilitates evaluation of
queueing system performance.

3.5 QUANTITATIVE GOODNESS OF FIT TESTS

Suppose that the Poisson process is a plausible model for customer arrivals, but you are
not positive that it is the right model. Your next step is to test the arrival data to see how
well they conform to the Poisson process. Quantitative testing seeks to answer two key
questions: ’

1. Whether or not the model is correct, and
2. If the model is not correct, why is it not correct?

The answer to the latter question provides guidance in creating an alternative model that
more closely matches the data.

‘Tests can be performed for any of the properties of the Poisson process. However,
because some of the properties are implied by others, there is no need to test them all. For
example, if the interarrival times are found to be independent exponential random
variables, pairs of interarrival times do not have to be tested to see if they are gamma
random variables.
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The tests are divided into two categories: graphical tests and statistical tests.
Graphical tests are less rigorous than statistical tests. Yet they are very effective at
identifying patterns in the data. Statistical tests impose standards for whether or not the
data conform to the properties of the Poisson process. In both cases, the tests merely
check to see whether the data conform with the properties of the Poisson process. Whether
the conditions will recur in the future is a matter of inference.

3.5.1 Graphical Tests

Perhaps the best way to determine whether or not the arrival process is Poisson is to plot
and examine the data for patterns. For the graphs described here, absence of pattern
generally is an indication that the process is Poisson; presence of pattern generally
indicates that the process is not Poisson. If a pattern is found, a cause should be sought. If
the process is not stationary, why is it not stationary? If the interarrival times are not
exponential, why are they not exponential? If the interarrival times are not independent,
why are they not independent? Understanding the process creating the data is by far the
most effective means for deciding whether the model is correct or whether to design an
alternative model.

Stationarity: Cumulative. Plot the cumulative arrival curve. Draw a straight
line connecting the points A(0) and A(T), where T is the end of the time interval observed.
There should be no visible pattern to the deviations of A(T) around the straight line, and
the difference between A(T) and the straight line should be small for all values of ¢.

Stationarity/Independence: Interarrival Times. Plot the interarrival times
in serial order on an (x,y) graph. The points should be scattered randomly about the line y
= X, where X is the average interarrival time. There should be no cyclic patterns.

Independence. Plot the Points {(X,, X,_ ), n = 2,3,...}on graph paper',
where X, represents the nth interarrival time. It should be impossible to approximate the
data by a straight line or any other regular curve.

Exponential Interarrival Distribution. Plot the empirical probability distri-
bution for the interarrival times. On the same piece of paper, plot the exponential
distribution with A = A(T)T, where T is the length of the time interval observed. There
should be no visible pattern of the deviations between the distributions.

- Demonstration. The date in Table 3.1 were collected at the automatic teller
machine for a large bank branch in Berkeley, California. The cumulative arrival curve is
shown in Fig. 3.2. The arrival curve varies above and below the straight line, in a fairly
random fashion. The interarrival times in Fig. 3.3 also show no time varying pattern.
Figure 3.4 plots (XX, ) for 97 data points (number of arrivals minus 1,. The downward
slope of the boundary of the data points makes the data appear to have a negative
correlation. However, the data points themselves do not slope downward, and again there
is no visible pattern. Finally, the empirical probability distribution for the interarrival time



TABLE’ 3.1 ARRIVAL, DEPARTURE, AND WAITING TIMES AT AUTOMATIC TELLER
MACHINE (MINUTES, TIME 0 = 9:30})
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n A7) St D) D) W () W (n)

i 0.61 0.73 0.61 1.34 0.00 0.73
pi 0.86 0,85 1.34 2.19 (.48 1.33
3 1.09 175 2.19 3.94 1,10 2.85
4 5.61 0.95 5.61 6.56 (.00 0.95
3 6.59 0.77 6.59 7.36 , 0.60 0.77
6 6.90 0.82 7.36 8.17 0.46 [.27
7 7.71 0.70 8.17 8.87 (.46 1.16
g 7.93 0.72 8.87 9.59 (.94 1.66
9 7.93 0.73 9.59 - 10.32 1.66 2.39
10 8.39 0.87 10.32 11.19 1.93 2.80
i1 9.22 0.73 119 11.92 1.97 2.70
12 9.2% 0.60 11.92 12.52 2.63 3.23
13 12.92 0.63 12.92 13.55 0.00 0.63
14 14,57 0.53 14.57 15.10 0.00 0.53
15 17.67 0.95 17.67 18.62 0.00 0.95
16 20.15 0.8G 20,15 20.95 0.00 0.80
17 20.39 0.87 20.95 21.82 0.56 1.43
8 20.83 0.75 21.82 22.57 0.9 1.74
19 20.99 12 . 22.57 23.68 1.58 2.69
20 21.31 1.88 2368 25.57 2.37 4.26
21 21.39 6.88 25.57 26 45 4.18 5.06
22 22.96 0.78 26.45 27.23 3.49 4.27
23 24.03 0.68 27.23 27.92 3.20 3.86
24 24.15 0.48 27.92 28.40 3.77 4.25
25 24.32 0.82 28.40 29.22 4.08 4.9
26 25.40 0.90 29.22 30.12 3.82 472
27 25.77 0.72 30.12 30.83 4,35 5.06
28 30.39 0.52 30.83 31.35 0.44 0.96
29 30.91 1.30 31.35 32.65 0.44 174
30 34.43 0.73 34.43 35.16 0.00 0.73
31 34.54 1.15 35.16 36.31 0.62 177
32 35.27 0.62 36.31 36.93 1.04 t.66
33 35.3% 0.47 36.93 37.40 1.54 2.01
34 36.38 0.77 37.40 38.16 1.02 1.78
35 40.39 0.73 4G.3% 41,12 0.00 0.73
36 41.61 0.83 41.61 42 .44 0.00 (.83
37 44.77 0.53 4477 45.30 0.00 0.53
38 46.09 0.62 46.09 46.71 0.00 0.62
39 48.85 0.67 48.85 49,52 0.00 0.67
44} 51.40 1.45 51.40 32.85 0.00 1.45
4] 52.87 0.63 52.87 53.50 0.00 0.63
42 53.84 0.77 53.84 54.61 0.00 0.77
43 55.09 1.08 55.09 56.17 0.00 1.08
44 55.64 0.92 56.17 57.09 0.53 1.45
45 55.83 6.57 57.09 57.66 1.26 1.83
46 57.56 0.85 57.66 58.51 0.10 0.95
47 58.65 0.63 58.65 59.28 0.00 0.63
48 59.83 0.72 59.83 60.55 0.00 0.72
49 61.91 61.91 62.48 0.00 0.57




TABLE 3.1 ({continued)

P A™ () S(n) D] n) D ) W, (n) W.(n)
50 64.71 0.57 64.71 65.28 0.00 0.57
51 64.95 0.95 65.28 66.23 0.33 1.28
52 70.20 1.37 70.20 71.57 .00 1.37
33 71.18 1.48 71.57 73.05 0.39 1.87
54 72.15 0.68 73.05 73.73 0.90 1.58
55 .72 0.72 73.73 74.45 1.0 1.73
56 72.94 0.65 74.45 73.10 1.51 2.16
57 74.74 0.63 75.10 75.73 0.36 0.99
58 75.12 0.58 75.73 76.32 0.6 1.20
59 75.64 0.65 76.32 76.97 0.68 £.33
60 75.77 0.68 76.97 77.65 1.20 £.88
61 76.95 0.72 77.65 78.37 0.70 1.42
62 78.36 0.85 78.37 79.22 0.01 0.86
63 79.98 0.80 79.98 80.78 0.00 0.80
64 80.21 0.87 80.78 81.65 0.57 [.44
65 81.93 0.67 81.93 82.60 0.00 0.67
66 82.75 0.73 82.75 83.48 0.00 0.73
67 82.95 0.60 83.48 84.08 0.53 1.13
68 83.35 0.65 $4.08 84.73 0.73 1.38
69 84.55 (.68 84.73 85.42 0.18 0.87
70 84.72 0.70 85.42 86.12 0.70 1.40
71 85.28 1.00 86.12 87.12 0.84 1.84
72 86.17 0.60 87.12 87.72 0.95 1.55
73 87.58 0.87 87.72 88.58 0.14 1.00
74 87.85 1.25 88.58 89.83 0.73 1.98
75 88.33 0.45 89.83 90.28 1.50 £.95
76 88.42 1.00 90.28 91.28 1.86 2.86
77 92.17 0.67 92.17 92.84 0.00 0.67
78 92.97 0.85 92.97 93.82 0.00 0.85
7% 93.63 0.83 93.82 94.65 0.19 1.02
80 96.34 0.58 9%6.34 96.92 0.00 0.58
81 96.53 1.85 96.92 98.77 0.39 2.24
82 97.39 1.00 98.77 99.77 1.38 2.38
83 97.88 0.77 99.77 100.54 1.89 2.66
84 99.64 0.90 100.54 101.44 0.90 1.80
85 103.82 0.77 103.82 104.59 0.00 .77
86 104.88 0.65 104.88 105.53 0.00 0.65
87 105.12 1.35 105.53 106.88 0.41 1.76
88 105.66 0.67 106.88 107.55 1.22 1.89
. 89 106.92 0.93 107.55 108.48 0.63 1.56
90 107.55 1.00 108.48 109.48 0.93 1.93
9] 110.02 0.90 110.02 110.92 0.00 0.90
97 113.14 2.35 113.14 115.49 0.00 2.35
93 114.12 0.73 115.49 116.22 1.37 2.10
94 115.01 0.48 116.22 116.71 121 170
95 116.32 0.58 116.71 117.29 0.39 0.97
96 117.50 0.55 117,50 118.05 .00 0.55
97 119.18 0.55 119.18 119.73 0.00 0.55
98 119.71 0.85 119.73 120.58 0.02 0.87

69
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Figure 3.2 Cumuiative arrivals recorded at automated teller machine. If arrivals are
stationary, the deviation from the diagonal line should be small {see Kolmogorov-
Smimov test), as shown,

is shown in Fig. 3.5. The deviations are small and again show no pattern. Based on these
four graphs, there is no reason to believe that the process is not Poisson.

Consider a second example, which is not Poisson. Table 3.2 provides data on
arrival times of elevators at the lobby of a high-rise building on the University of
California campus. The plot of the interarrival time distribution in Fig. 3.6 appears to be
exponential. Though not shown, the cumulative arrival plot also appears to be stationary.
However, the plot of paired interarrival times (Fig. 3.7) reveals a subtle dependency. It
appears that short interarrival times tend to be followed by long interarrival times, and
vice versa (note that fewer points are concentrated near the origin and more points are
further out near the axes). There is a negative correlation between (XX, _)).

Careful observation of the arrival process should reveal the cause of the pattern.
There is a common phenomenon in many modes of transportation (buses and elevators,
for example) known as ‘‘bunching.”” The number of people who board a vehicle depends
on how much time has elapsed since the previous vehicle arrived (the longer the time, the
more people). If this separation happens to decline, fewer people will board the second
vehicle, and the vehicle will begin to travel faster, further reducing the separation.
Eventually, the second vehicle will catch up with the first vehicle, and from then on the
two will travel in a pair, perhaps *‘leap frogging”” from stop to stop. Bunching is common
in elevators and explains why the interarrival times are not independent. Hence, the
arrival process is not Poisson, and a different mode! is called for.
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Figure 3.3 Interarrival times at automated teller machine. If arrival process possesses independent
increments, there should be no cyclic pattern to the data, as shown.

The point to recognize is that an unexpected pattern is reason for further investiga-
tion. The system should be observed to identify what factors are causing the pattern. If the
factors are significant, they should be incorporated into the model.

3.5.2 Statistical Tests

Graphs alone may leave doubt as to whether the process is Poisson. Perhaps a small
deviation was found, but you have no idea what caused it. You may wonder how much
deviation is acceptable. Where is the line drawn between what is a Poisson process and
‘what is not? Statistical tests help in these situations.

Definition 3.8

A statistic is a function of the data. Like the data, a statistic is itself a random variable.
The sample average, sample standard deviation, and maximum and minimum are all
examples of statistics.
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Figure 3.4 Paired successive interarrival times at automated teller machine. If arrival
process possesses independent increments, the data cannot be approximated by a straight
line, as shown.

Statistical tests are phrased in the form of a hypothesis (denoted by the letter /). For
example, suppose that you have made a bet with a friend. Each time she flips a coin and it
turns up heads, she wins a dollar. Each time it turns up tails, you win a dollar. Now
suppose that after ten flips the coin has turned up heads nine times. You may then wonder
whether the coin she flipped is fair. That is, you may wonder whether the following
hypothesis, H, is true:

H: Probability of heads = .5
or whether antihypothesis, A, is true instead;
A: Probability of heads > .5

The statistical test only suggests whether or not the hypothesis is true; it does not provide
conclusive evidence. It does this by calculating the probability of obtaining the observed
data, given that the hypothesis is true. In the case of the coin flip, you would be interested
in the probability of obtaining one or fewer heads in ten trials, given the probability of .5.
From the binomial distribution, this probability can be expressed as follows:
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Figure 3.5 Interarrival time distribution at automated teller machine, For Poisson
process, deviation from the exponential distribution should be small, as shown.

i

P(data | H is true) = P(1 or fewer heads in 10 trials | p = .5)

(18) S - 50+ (‘?) 51 = 5

= 011

1

The probability of seeing one or fewer heads is only .011, so there is reason to be
suspicious that the coin (and perhaps your friend) is unfair. Nevertheless, because the
probability is greater than zero, one cannot say unequivocally that the coin is unfair.

In statistics, the P(data | H is true) is expressed as a significance level, which is
merely a way of rounding off the probability. In the example, the probability would be
rounded up to .02, and one would say that ‘‘the hypothesis is rejected at the 2%
significance level.”” This statement does not imply that the hypothesis is absolutely

TABLE 3.2 ARRIVAL TIMES OF ELEVATORS {MINUTES) -

.8 1.2 2.8 32 4.1 7.5 8.7 9.7 10.2 111 13.5
15.0 16,2 16.2 19.1 21.9 22.1 235 241 260 27.0 27.1
219 207 3.0 3t4 333 338 36.2 36.3 40.0 40.2 401
426 - 4.8 45.1 45.6 45.8 49.0 51.2 5.8 53.5 53.8 54.5
350 - 56.5 56.3
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Figure 3.6 Interarrival time distribution for elevators appears to be exponential.

rejected. It only means that the data have a likelihood of less than 2%. As a matter of
custom, P(data | H is true) is compared to a significance level of 1%, 2%, or 5%. If the
probability falls below .03, then it is rounded up to the next highest significance level and
the hypothesis is rejected at that level. If the probability falls above .03, then we would
say that ‘‘the hypothesis is not rejected at the 5% significance level.” Ordinarily, one
never states that a hypothesis is accepted, because one can never be completely sure.
~ Statistical tests are effective at identifying when something is amiss but not at
finding solutions. They offer little guidance as to what is right. Therefore, they are no
substitute for plotting the data and checking to see how the data actually behave.
Statistical tests are provided for the following hypotheses, all of which must be true
if the arrival process is Poisson:

H,: The interarrival times have an exponential probability distribution.
~ Hy The interarrival times are independent.

‘Hy The unordered arrival times have a uniform distribution over the period of
observation. :

If none of the three hypothesis is rejected and the graphical tests show no abnormal pattern
and the assumptions of the Poisson process are plausible, then it is safe to assume that the
observed arrival process was indeed Poisson. However, just because a data set does not
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Figure 3.7 Paired successive interarrival times of elevators. Negative correlation re-
vealed by points along axes.

conform exactly to the assumptions of the Poisson process does not imply that the Poisson
process is not a reasonable model. The simplicity of the Poisson model may outweigh any
gain in accuracy from using a more complicated model.

3.5.2.1 H;: Interarrival Time Distribution. The two most common tests
for whether a data set conforms to a theoretical probability distribution are the
Kolmogorov-Smirnov (K-S) test and the chi-squared test. The K-S test is based on
deviations between the empirical probability distribution function and the theoretical
distribution function. The chi-squared test is based on deviations between a data histo-
gram and the theoretical density function. Because the K-S test is the more powerful of the
two (and also the simpler), it will be the only test presented here. Books listed at the end
of this chapter provide further information on the chi-squared and other distribution tests.
- The Kolmogorov-Smirnov test can be applied to any set of continuous, indepen-
- dent, random variables. It is based on the maximum deviation between the empirical
distribution function and a theoretical distribution function. If the theoretical distribution
is correct, this deviation should be small. The K-S test is an example of a one-tail test
because a'large deviation suggests that the model is incorrect and a small deviation
suggests that the model is correct—in contrast to a two-tail zest in which either a small or
large value would cause concern.
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Let

Fp(x) be the empirical probability distribution function.
Fr(x) be the theoretical probability distribution function.

The specific shape of the theoretical distribution function is defined by parameters, which
may be derived from the data. For the exponential distribution function, the parameter A
can set equal to A(T)T, which is to say, the observed arrival rate (this is discussed in
greater detail in a section 3.6). The K-S statistic, D, is the maximum deviation between
the two distribution functions:

D = max | Fplx) — Fr(x) | (3.19)

The maximum must be computed over the entire range of values for x, including x = 0.
Also, because Fp(x) 1s a step curve, Fp(x) — Fr{x) must be computed at both the top and
the bottom of each step. The K-S statistic has the distribution provided in Table A.4 in the
appendix to this book. Reading from the table, if there are 20 points in a data set, and the
hypothesis is true, there is a .01 probability that D is greater than .356. This is to say, if D
is greater than .356 the hypothesis would be rejected at the 1% significance level. Also
from Table A.4, if D is less than .294 for a sample of 20 points, the hypothesis would not
be rejected at the 5% significance level.

Example

The maximum deviation between the empirical distribution function and the theoretical
distribution function in Fig. 3.5 is .046 (whenx = 1.3}. There are 97 interarrival times in the
data set. From Table A.4 in the appendix, .046 is below the critical value .138 (1.36/ \;’[97)
and the hypothesis is not rejected at the 5% significance level. The data are not unusual for a

Poisson process.

3.5.2.2 H,: Interarrival Time independence. Independence is one of the
most difficult characteristics o test because it has such broad implications. It is possible,
for an interarrival time, X,, to be independent of X, ; but not independent of X, _,,
X,_3, . ... Thus, each statement X, is independent of X,_, (n = 2,3, ...), X, 1
independent of X,,_, (n = 3,4, . . .), and so on, might require a separate test. There is
really no limit to the types of interdependencies that might be checked. However, unless
there is some reason to believe that a complicated form of dependency exists, the test for
independence is usually lmited to checking whether X, is independent of X, _.
© Just as there is a chi-squared test for distributions, there is a chi-squared test for
.independence. The test is based on categorizing the data into a contingency table and
comparing the number of observations in each category to the expected number of
observations. The numbers should be similar if the hypothesis is correct. The unfortunate
part of this approach is that diffusing the data into categories necessitates that a large data
set be collected for the test to be powerful. - ' _
An alternative to the chi-squared test for independence is the #-fest. This checks the
following weaker hypothesis: the correlation coefficient between X, and X, - | equal%@




Sec. 3.5 Quantitative Goodness of Fit Tests 77

zero. Independent random variables must have a correlation coefficient of zero, but the
reverse is not necessarily true. Figure 3.8 plots data points that are not independent, yet
still have zero correlation, However, such a pattern would be most unusual in observing
queues, and even if it did materialize, it would be easily identified by plotting the data.
Hence, if it can be shown that the correlation coefficient is zero between pairs of
successive interarrival times, then the data are likely independent.

The correlation coefficient between two data sets, {X,, X5, . . ., Xy} and {Y,, Y,
+ ., Yy}, is the ratio of the covariance to the product of the standard deviations.

Definition 3.9

I 18 the sample correlation coefficient

N

DY) A (X A2
N = Dsgs,

where X and ¥ are sample averages, and s, and Sy are sample standard deviations:

(3.20)

N
— "2
= | 25 (3.212)
N
- 2
s= | H0-D (3.21b)
N -1

N — 1 is used instead of N in the denominator to obtain an unbiased estimate of the
standard deviation. That s, the expectation of s, and 5, equals o, and o, The correlation
coeffficent can be any value between — 1 and - L.

The statistical test for correlation is not performed directly on ry- Rather, it is
performed on the transformation of Yy into the £ statistic, as shown below (Note: this value
of 7 has nothing to do with the value of used in Sec. 3.3);

4
e ° o
s ®
5 ® ®
L @
LA

Figure 3.8 Dependeﬁt random variables
Ko - might not be correlated, as shown here.
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N -2
Iny¥ = 2 - (3.22)
\f I =y

If the random variables X and Y are independent and have normal distributions, then the
statistic ¢ should have the ¢ probability distribution with N — 2 degrees of freedom (see
Table A.3 in the appendix to this book). In the case of the Poisson process, X and ¥ have
the exponential distribution, so the t-test is only approximate.

The -test is a two-tail test because either positive correlation (r,, close to 1) or
negative correlation (r,, close to —1) is cause for concern. The significance level is
defined by the probability that | ¢ | is greater than or equal to the observed value of 7, given
that the hypothesis is true.

tm

Example

The correlation coefficient (X,, X,_ ) for the teller data set was calculated as —.032. There
are 96 pairs of interarrival times in the data set (one less than the number of interarrival
times), so N = 96. Substitution of ~.032 for r,, and 96 for N in Eq. (3.22) gives t = — 31,

Rounding N to 120 in Table A.3, P(r < 1.98) equals .975. Because the r distribution is
symmetric, the P(/¢| > 1.98) equals .05. Because | —.31| is well below 1.98, the
hypothesis that the correlation coefficient equals zero cannot be rejected at the 5% signifi-
cance level.

When the data set has 50 or more data points, the normal distribution (Table A.2) can be
used in place of the ¢ distribution. The normal distribution is identical to the last line of
Table A.3 for the ¢ distribution (N = «).

3.5.2.3 Arrival Time Uniformity. If the arrival | process is stationary, the
unordered arrival times should conform to the uniform distriBution. That is, the empirical
probability distribution should be approximately a straight line passing through the ponts
(0,0) and (T,1), where T is the length of the time period observed. Though it was not
introduced as such, the empirical probability distribution for arrival times is simply the
cumulative arrival diagram (Fig. 3.2), with the vertical axis rescaled from 0 to 1.

The Kolmogorov-Smirnov test can be used again. The K-S statistic, D, is calculated
as follows: -

_ AQ
D max AT r/Tl (3.23)

A lérge value of D would suggest that the arrival process is not stationary.

Example

Fo;'the sample teller data, D = .061, which occurs at time 0:55. There are 98 arrival times in
the data set. Because .061 is less than the critical value, .137 (1. 36/\/98) the hypothesis
cannot be rejected at the 5% significance level.
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3.5.24 A Quick Test. As mentioned earlier, the coefficient of variation (ratio
of standard deviation to mean) for the exponential distribution is 1. One of the easiest
checks for whether an arrival process is Poisson is to calculate this value and compare it
to 1.

Example

The standard deviation of the interarrival times is 1.18 and the average is I.22. Therefore, the
coefficient of variation is .97, which is nearly 1.

3.5.2.5 Interpretation of Statistical Tests. Models are rarely perfect repre-
sentations of reality. Occasional disturbances might disrupt the usual arrival pattern—
some customers might arrive in pairs or the arrival rate might fluctuate slightly. Small
imperfections such as these are difficult to detect in small data samples, yet will certainly
arise if the sample is large enough. This means that a sligﬁ?ly imperfect model will
invariably be statistically rejected if the data sample is sufficiently large.

For practical purposes, one should not discard slightly imperfect models, only
grossly imperfect models. Just because a model is statistically rejected does not mean it
should not be used, particularly if the data sample is large. It does mean though, that the
cause of the imperfection should be identified and considered for inclusion in the model.
If the gain in accuracy does not justify the added complexity, then the cause should not be
included. Like many aspects of modeling, this is a matter of judgment.

3.6 PARAMETER ESTIMATION

Section 3.5 discusses how to determine whether the Poisson process is a good model for
an observed arrival process. Suppose that the arrival process passes the test of plausibility,
passes the graphical tests, and passes the statistical tests, as do the teller data. There is still
one more task to undertake before the model is complete: parameter estimation. The
Poisson process is not a single model but actually a family of models, defined by different
values of the parameter A. The model is complete when the value of X is estimated.
Parameter estimation is somewhat different from assessing goodness of fit because
it is not a matter of answering a simple yes or no question. A can be any real positive
number, and there usually is no a priori reason to believe that A should be any particular
value. So parameter estimation normally does not appeal to one’s knowledge of the
underlying arrival process. Rather, it depends almost exclusively on analysis of the data.
Along these lines, the accuracy of a parameter estimate is a matter of degree rather than
stmply true or false. If the parameter estimate is 10, the true value (the value of A that
created the data) might be 10.1, 9.5, or even 13.6. This is because the parameter estimate,
or the esfimator, is itself a random vanable.
- Parameter estimation is the process of determining the best estimate of a distribu-
tion’s parameter or parameters, given the observed data. Usually, this means that the
parameter estimate should be precise (that is, the standard deviation of the estimator is
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small) and the parameter estimate is unbiased (that is, the expected value of the estimator
equals the true vale of the parameter).

The simplest estimation technique is called the method of moments (MOM), which
amounts to equating sample moments to population moments, such as £(X) or E(X?). The
method of moments was used in the previous section to estimate A, the arrival rate. An
estimator is denoted by the caret symbol. Thus, X is the estimate for the true value of \.
For the method of moments

L. AD

A= 7 (3.24)

For the teller data, \ equals 98/120 = .817. This estimator is the guess for the true value
of A, the value of A that actually created the data.

A more rigorous technique for estimating parameters is the maximum likelihood
method. This approach determines the parameter values that are most likely to generate
the observed data sample. The maximum likelihood estimator (MLE) tends to be more
precise than the method of moments estimator. However, determining the MLE may be
more difficult, partly because it depends on the probability distribution for the random
variable.

There are two ways to determine the MLE for A. The first is based on the Poisson
distribution for the number of events, and the second is based on the exponential
distribution for the interarrival times.

Definition 3.10

The likelihood functfon, L(data | \), specifies the probability density function for the
observed data, given that the parameter equals A.

Suppose that N = A(T) arrivals are observed over a time interval of length 7. Then
the likelihood of observing these data is defined by the Poisson probability function as
follows:

0T

L(N amivals | \) = N

(3.25)

- The MLE is the value of \ that maximizes the likelihood function in Eq. (3.25). For the
particular expression above, the MLE is found by determining the point where the
derivative with respect to the parameter A equals 0:

oL Y S Yy
ENR T T
NTYY
NN = T] (N, e =0
A= o AD)
T T (3.26)
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For the Poisson process, the method of moments estimator and the Poisson distribution
MLE estimator happen to be the same. This will not be the case for all estimators, such as
the estimator for the standard deviation of a normal distribution.

The second likelihood function, based on the exponential distribution, requires
more data than the first, because it depends on the interarrival times, not just the number
of events. It also differs because X, is a continuous, rather than a discrete, random
variable. Because the likelihood function is a probability density function, it is not a true
probability for a continuous random variable. As before, let X, represent the nth interar-
rival time. Then

: N :
I:(Xia Ve ey Xn ’h) = l:!;[’ )\e”"x“} E-MT._EX") (327)

The first term is the likelihood associated with the first N interarrival times. The second
term is the likelihood associated with the last interval, length T — 2X,, during which no
arrival occurred. Equation (3.27) can be simplified to

LKy, oo Xy ) = ANV (3.28)

Surprisingly, the likelihood reduces to a function of just two observations, N and 7', not
the entire set of interarrival times. As before, the estimator is found by taking the
derivative with respect to the parameter ). It should come as no surprise that the MLE
estimator is the same as the Poisson distribution MLE: N/T.

Both the method of moments and the maximum likelihood method are general
techniques for estimating distribution parameters from a data set and can be used for
virtually any probability distribution (not just Poisson or exponential). For the Poisson
process, the two techniques happen to yield the same result. In general, the MLE is
guaranteed to be the more precise estimator for large data sets. However, in choosing an
estimator, the added precision (which tends to be small) must be weighed against the
effort needed to determine the estimator.

3.6."1 Confidence Intervals

The accuracy of a parameter estimate can be measured by way of a confidence interval.
While the parameter estimate is the best guess for X, the confidence interval specifies a
range of plausible values for \. If this range is large, then one has little confidence that the
estimate is correct. This situation can only be corrected by collecting more data and/or
changing the method for collecting the data.

The confidence interval is based on the standard error of the parameter being
estimated, which is just another name for the standard deviation of the estimator. The
standard error for the mean of a sample of N independent random variables (X) equals

0 = — (3.29)

I

where o is the standard deviation of the random variable.
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The standard error for the statistic X is smaller than the sgandard deviation for the
random variable, X, because averaging reduces fluctuations. As N becomes large, fluctua-
tions in the average become smaller and o approaches zero.

Just as the sample mean has an estimator, so does the standard deviation. Usually
this is defined by the following:

N
g2
2 X, - %) (3.30)

N -1
To provide an unbiased estimate of o, N — 1, not N, appears in the denominator (note that
this in not a MOM estimator).

Recall that a property of the exponential distribution is that the mean equals the
standard deviation. For the exponential distribution, it turns out that the best estimator
(that is, the MLE) for o is not the sample standard deviation; the best estimator for o is the
sample mean (T/N).

g =

Exponential Random Variable

V
- IN oy (3.31)

6.- — :
x =
\/N IN

The confidence interval is always specified for a given level of confidence. For
example, a 95% confidence interval means that there is a 95% probability that the true
value of the parameter falls inside the confidence interval. To determine the confidence
interval, one usually refers to the normal probability distribution. From the central limit
theorem, we know that probability distribution for a sum of » independent, identically
distributed random variables will approach the normal distribution s n becomes large.
And because the limiting distribution for the sum is normal, the limiting distribution for
the sample mean (that is, average) must also be normai. ‘

In terms of the arrival process, the confidence interval for 1I/A (mean of exponential
distribution) can be derived from tables of the normal distribution (see Table A.2 in the
appendix to this book) if the sample is large (greater than 50 data points). The normal
distribution does not apply to A directly because it is not a sample mean.

PN - 1.9665 < I < TN + 1.9665) = .95 (3.32)
P(I% ~ 25865 < 1h < TR + 2.5863) = .99 (3.33)

The symbol 1/A represents the true mean of the random variable; 1% and & represent the
estimators for the mean and mean standard error, based on the observed data.
The first line gives the 95% confidence region and the second gives the 99%
'conﬁciehce region. Both regions are symmetric around 1/\, indicating that 1/\ could be
either be larger or smaller than the true value. More specifically, the confidence region for
/N in’a Poisson process can be derived from the exponential distribution:
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PITIN — 196(T-N"') < /NS TIN + 1.96(T - N~ = .95 (3.34)
PITIN — 258 - N~ 'y < /N < TIN + 2.58(T - NP3 = 99 (3.35)
Example

For the automatic teller machine data in Table 3.1, T/N = 120/98 = 1.22 minutes and N =
98. Thus, the confidence intervals are:

95% confidence 1.2 — 1.96 (1.22/98) < IA < 1.22 + 1.96 (1.22//98)
98 < I < 146

99% confidence 1.22 — 2.58 (. 22fj_ 98) < I < 1.22 + 2.58 (1.22//98)
= /A s 1.54

Based on the data sample, there is a 95% probability that the true value of 1/A (the value
that created the data) is between .98 and 1.46 and a 99% probability that the true value of
/X is between .90 and 1.54. The 95% and 99% confidence intervals for A are found by
inverting these bounds, (1.02, .68) and (1.11, .65), respectively. These confidence
intervals are not particularly small, which suggests that more data need to be collected to
obtain a more precise estimate.

3.6.2 Sample Size

One final issue needs to be addressed: sample size. The sample should be sufficiently
large to provide a precise estimate of the model parameters. But data collection is
expensive, and no more data should be collected than necessary.

A reasonable approach for selecting the sample size is to begin by specifying a
desired level of accuracy and then calculate how long the process must be observed in
order to obtain the desired level of accuracy. For the teller example, one might specify
that the 95% confidence interval should have a width of no more than .2 minute. This
means that

POTX — IN<.1) = 95 (3.36)
The width of the 95% confidence interval is 2 X 1.96 multiplied by the standard error for

X (the number 2 accounts for the two tails of the distribution), This quantity must be less
than or equal to the desired width, .2 minute,

2 [1.96 VA < 2 (3.37)

Simplifying the equation leads to

2+1.96 7 384
ve |25 = 2% | (3.38)

From the teller data in Table 3. I, I/A s estimated to be 1.22 minutes. Substituting this
value in Eq. (3.38) yields 572 arrivals (11.6 hours). This is approximately how many
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observations would be needed to obtain a 95% confidence interval of width .2. For-
tunately, the arrival rate is very easy to measure, and only involves counting arrivals. So
observing the process for 11.6 hours may not be difficult. In general, if

w = desired width of confidence interval (in time units)

the desired accuracy requires a sample size of

95% Confidence 99% Confidence
_ 2 16 1
NB[MSQZ} wa S 6} (3.39)
WA WA

Of course, A is not known unti] the sample is taken. But one usually can roughly guess the
arrival rate beforehand. This prior guess can be the basis for the sample size calculation.
The calculation might also be based on a *‘presample”—a sample over a short time
interval used to obtain a preliminary guess for the parameter. In either case, determining
the sample size does not require absolute precision.

Example

Twelve arrivals are observed over a 1-hour period. The sample size that would produce a
99% confidence interval of width .05 hour is desired.
Solution  Substituting the value .05 hour for w and 12/hour for A, we get a sample size of 74
arrivals, This translates into 6.2 hours of observation.

There is no right way to set the width of the confidence interval or the confidence
level. Both the cost of collecting the data and the need for precision affect the answer.

One final comment: The sample size calculations presume that it is possible to
observe the arrival process for the required length of time. But what if the process is short-
lived, lasting only one or two hours? It would then be impossible to observe the process
long enough to obtain the desired precision. But if the process is observed over its entire
lifetime, then there is no need to collect more data. The data already collected should
accurately depict what happened, and since the process has ended, there is no need to infer
what will happen in the future.

3.7 CHAPTER SUMMARY \
A model 15 a way to explain the underlying process creating the data. Sometimes the
model is a perfect representation of the underlying process, as in the binomial distribution
representing flipped coins. More often, the model is a plausible representation that closely
matches observations.

The Poisson process represents the customer arrival process of systems for which

1. The probability of a customer arriving at any time does not depend on when other
customers arrived. :
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2. The probability that a customer arrives at any time does not depend on the time.
3. Customers arrive one at a time.

The Poisson process is a particularly important model because it accurately represents
many real arrival processes and because it is fairly simple to analyze. The Poisson process
possesses a number of unique properties summarized at the end of Sec. 3.3.

Determining whether or not an arrival process is Poisson always begins with an
assessment of plausibility. The most important question is whether the conditions under-
lying the Poisson process accurately represent the situation. If they do, then further
quantitative tests—graphical and statistical—can be performed to see whether the data
displays the properties of the model. In the case of the Poisson process, those properties
included stationarity, exponential interarrival times, and independent interarrival times.
However, only a few of the many possible statistical tests were provided. For a more
complete survey, consult Bhat (1978), Green and Kolesar (1989), or one of the statistics
texts cited at the end of this chapter.

If the model passes the plausibility test and quantitative tests, then the next step is to
determine the exact shape of the model through parameter estimation. Once this is done, a
confidence interval can be calculated to estimate the precision of the parameter estimator.
If the precision is not sufficiently accurate, further data should be collected. The exact
amount of data to collect can be calculated with the method provided for determining
sample size in Sec. 3.6.2.

Keep in mind that just because a process is Poisson with rate X today does not mean
that it will be Poisson with rate A tomorrow, or at any other time. Predicting the future
must always rely on inference-—inference as to whether the conditions that created the
historical data will recur in the future. The subject of prediction is addressed in the
following chapter.

Although this chapter focuses on the Poisson process, the general steps of

1. Assessing the conditions creating the data

2. Gauging model plausibility

3. Testing data for goodness of fit

4. Estimating parameters and confidence intervals

apply to most any situation. The model does not have to be Poisson, but it does have to be
a reasonable representation of reality. Just what this representation should be varies from
situation to situation.
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PROBLEMS

Probability Distributions

1. In each of 10 minutes, the probability of exactly one arrival equals . | and the probability of no

arrivals equals .9.

(a) Using the binomial distribution, calculate the probability of 0 arrivals over 10 minutes.
Repeat for 1, 2, 3, and 4 arrivals.

(b) Now assume that arrivals occur by a Poisson process at the rate of .1 per minute. Repeat
your calculations for part a, based on the Poisson distribution. Why are your results
similar, or different?

*2, Suppose that an arrival comprises either a pair of customers or a single customer. The
probability that any arrival has 2 customers equals .5 and the probability that any arrival has 1
customer equals .5. In each of 10 minutes, the probability of exactly one arrival equals 0667
and the probability of no arrivals equals .9333.

(a) Calculate the probability that 0 customers arrive over 10 minutes. Repeat for 1, 2, and 3
customers. (Hint: For any number of customers #, sum the probabilities of n customers
given 1 arrival, n customers given 2 arrivals, . .. .)

(b) Why are your results similar, or different, from those in part b of Prob. 1?7

* 3. Telephone calls are known to arrive by a Poisson process with rate 20 per hour between 1:00
and 3:00 p.m. Determine the following:

{a) - The probability function for the number of arrivals in a 5-minute interval (for up to 5
“arrivals).

*Difficult problem
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*6.

10.

11,

(b) Probability that no customer arrives over a 10-minute interval.

{c} Probability that the second arrival after 1:00 occurs before 1:10.

(d} Given that three arrivals occurred between 1:00 and 1:30. the probability that the second
arrival occurred after 1:15.

. The chancellor of a university has determined that student complaints arrive by a Poisson

process, with a rate of 25 per year. Determine the following:

(a) Probability that one month passes with no more than one complaint received (assume that
a month is 1/12 of a year),

(b) The probability that the first complaint of the year occurs during the second month.

{c) The probability that the third complaint of the year occurs during March (use the gamma
distribution).

Based on Definition 3.2 for the Poisson process, prove that the variance for the Poisson
distribution equals Ar. (Hint: Derive the result from the variance of a binomial random
variable.)

Individual customers arrive by a Poisson process with rate of .0333 per minute, and pairs of
customers also arrive by a Poisson process, with the same rate. Determine the probability
function for the number of customers arriving during a 10-minute period, for 0to 3 customers.
Compare your result to the calculations in Prob. 2. Explain why your answer is the same, or
different.

- The Poisson distribution is discrete, but the gamma and exponential distributions are continu-

ous. Is this inconsistent, given that all three define properties of the Poisson process? Explain.

. A desperate gambler has flown to Lake Tahoe to win his fortune. He has chosen a $1 slot

machine, which will pay a prize of $1 million, with a probability of 1/2,000,000 (success is

independent among tries).

(a) Assuming that there is only one possible prize, what is the probability of winning before
500,000 tries? (Approximate from Poisson process.)

(b) Explain why your answer to part a is nor 500,000/2,000,000.

(c) Suppose that the gambler knows that the machine has not paid out in the last 2 million
tries. Will this information affect your answer to part a7 Explain.

From any familiar application, give examples of three continuous random variables and three
discrete random variables. Based on your intuition alone, plot the probability distribution
function for each example. Which, if any, of your examples conforms to a familiar theoretical
distribution?

Collect ten observations of any continuous random, then ten observations of any discrete
random variable. Plot the empirical distribution function for each. By examining these
distribution functions, can you tell which random variable was discrete and which was
continuous? (If possible, show these functions to a classmate, and see whether he or she can

~tell which is discrete and which is continuous.)

Goodness of Fit

The data below represent the times that people stopped to deliver letters at a mailbox over a
255-minute period. '

31 486 1170 1775
62 508 1233 1830
6.5 - 722 1288 1950

*Difficult problem
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*12.

13.

The Arrival Process  Chap. 3

10.1 76.0 131.1 200.0
[3.9 78.2 1457  204.2
29.3 90.3 147.7  207.6
34.4 915  150.7 207.9
35.2 104.2 156.2 2397
39.2 i13.1 162.3 2402
45.0 114.4 169.1 251.6

(a) Is it plausible that the arrival process of peopic is Poisson?

{b) Is it plausible that the arrival process of letters is Poisson?

(c) Derive an MOM estimate for the arrival rate of people. Calculate a 95% confidence
interval for your estimate. Is your estimate also a maximum likelihood estimator? Briefly
discuss.

{d) Plot the empirical probability distribution function for the interarrival times. On the same
graph, plot the distribution function for an exponential distribution with mean defined by
part ¢. Perform the K-S goodness of fit test. Do you believe the interarrival times are
exponential random variables?

{e) Plot successive interarrival times, as in Fig. 3.4. Then perform the #-test for correlation.
Do you believe that the interarrival times are independent?

(f) Plot the cumulative arrival curve. On the same graph, plot a straight line connecting A(T)
and A(0). Next, perform the K-S test for goodness of fit. Do you believe that the arrival
process is stationary? _

(g) Based on all the evidence collected, do you believe the arrival process is Poisson?

The data below are the arrival times of westbound BART trains at the Montgomery Street

station in San Francisco, between time 6.85 A.M. and time 8.85 A.M. (in hours).

6.86] -6.926 7.063 7.159 7.208 7.271 7.336 7.415 7.4 7.532 7.613
7665 7739 7.793 7.860 7.905 7.965 8.060 8.110 8.155 8.237 8.296
8359 §.403 8.489 8.569 8.640 8.732 8.818

(a) Is it plausible that the arrival of trains is a Poisson process?

(b) Is it plausible that the arrival of people is a Poisson process?

(c~g) Repeat parts c~g from Prob. 11 for the new data set.

BART trains are scheduled to arrive every 3.75 minutes at the Montgomery Street Station,
beginning at time 7.35 hours and ending at time 8.48 hours. Based on this information and the

data given in Prob. 12, develop a new model for the arrival process {other than the Poisson
process). That is, define a probability distribution function for the arrival time of the nth train.

14

18.

For each of the three examples in Sec. 3.4 that do not conform to the Poisson process, describe
a mathematical model that represents the arrival process. _
Using the data from Prob. 11, estimate the minimum time that the systein would have to be

cbserved to obtain a 95% confidence interval for 1/A of width no more than 30 seconds.

*Difficult problem
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EXERCISE: GOODNESS OF FIT

The purpose of this exercise is to test the data recorded in Chap. 2 to see whether a Poisson process
was observed,

1“

Discuss whether the arrival process matches the conditions underlying the Poisson process,
referring to the three properties:

{a) Stationarity

(b) Independent increments

(¢) Customers arrive one at a time.

If the process does not precisely match the Poisson process, discuss whether the differences are
appreciable.

As a quick check, calculate the coefficient of variation for the interarrival times. Does the
arrival process seem to be Poisson?

On a graph of cumulative arrivals, draw a straight line connecting A(T) to A(0). Is there any
pattern in the difference between the two curves? Discuss whether the process appears to be
stationaty.

On a graph for the empirical probability distribution for interarrival times, drawn an exponen-
tial distribution function with identical mean. Is there any pattern in the difference between the
two curves? Discuss whether the interarrival times appear to be exponential.

Plot the paired intervals (X,, X,.,) on graph paper. Is there any pattern to the data? Discuss
whether the data appear to be independent.

Perform the following statistical tests at the 5% significance level:

(a) Kolmogorov-Smirnov test for stationarity of arrivals

(b} Kolmogorov-Smimov test for an exponential interarrival distribution
(e} Correlation rtest between X, and X, _| '

Can you conclude that the arrival process was Poisson?

Calculate 95% and 99% confidence intervals for 1/. Convert these intervals into 95% and 99%
confidence intervals for A.

Determine how long (in minutes) the process would have to be observed to obtain a 95%

confidence interval for 1/x of width (1/A)/20. (Remember that the confidence interval extends
on both sides of 1/A).



