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1 Predictable Variability in Time-Varying Services

Time-varying demand and time-varying capacity are common-place in service operations. Some-
times, predictable variability (eg. peak demand of about 1250 calls on Mondays between 10:00-
10:30, on a regular basis) dominates stochastic variability (i.e. random fluctuations around the
1250 demand level). In such cases, it is useful to model the service system as a deterministic fluid
model, which transportation engineers standardly practice. We shall study such fluid models, which
will provide us with our first mathematical model of a service-station.

A common practice in many service operations, notably call centers and hospitals, is to time-
vary staffing in response to time-varying demand. We shall be using fluid-models to help determine
time-varying staffing levels that adhere to some pre-determined criterion. One such criterion is
“minimize costs of staffing plus the cost of poor service-quality”, as will be described in our fluid-
classes.

Another criterion, which is more subtle, strives for time-stable performance in the face of time-
varying demand. We shall accommodate this criterion in the future (in the context of what will
be called “the square-root rule” for staffing). For now, let me just say that the analysis of this
criterion helped me also understand a phenomenon that has frustrated me over many years, which
I summarize as “The Right Answer for the Wrong Reasons”, namely: how come so many call
centers enjoy a rather acceptable and often good performance, despite the fact that their managers
noticeably lack any “stochastic” understanding (in other words, they are using a “Fluid-View” of
their systems).

2 Fluid/Flow Models of Service Networks

We have discussed why it is natural to view a service network as a queueing network. Prevalent
models of the latter are stochastic (random), in that they acknowledge uncertainty as being a central
characteristic. It turned out, however, that viewing a queueing network through a “deterministic
eye”, animating it as a fluid network, is often appropriate and useful. For example, the Fluid View
often suffices for bottleneck (capacity) analysis (the “Can we do it?” step, which is the first step
in analyzing a dynamic stochastic network); for motivating congestion laws (eg. Little’s Law, or
”Why peak congestion lags behind peak load”); and for devising (first-cut) staffing levels (which
are sometime last-cut as well).
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Some illuminating “Fluid” quotes:

• ”Reducing letter delays in post-offices”: ”Variation in mail flow are not so much due to random
fluctuations about a known mean as they are time-variations in the mean itself . . . Major con-
tributor to letter delay within a postoffice is the shape of the input flow rate: about 70% of all
letter mail enters a post office within 4-hour period”. (From Oliver and Samuel, a classical 1962
OR paper).

• ” . . . a busy freeway toll plaza may have 8000 arrivals per hour, which would provide a coefficient
of variation of just 0.011 for 1 hour. This means that a non-stationary Poisson arrivals pattern
can be accurately approximated with a deterministic model”. (Hall’s textbook, pages 187-8).
Note: the statement is based on a Poisson model, in which mean = variance.

There is a rich body of literature on Fluid Models. It originates in many sources, it takes many
forms, and it is powerful when used properly. For example, the classical EOQ model takes a fluid
view of an inventory system, and physicists have been analyzing macroscopic models for decades.
Not surprisingly, however, the first explicit and influential advocate of the Fluid View to queueing
systems is a Transportation Engineer (Gordon Newell, mentioned previously). To understand why
this view was natural to Newell, just envision an airplane that is landing in an airport of a large
city, at night - the view, in rush-hour, of the network of highways that surrounds the airport, as
seen from the airplane, is precisely this fluid-view. (The influence of Newel1 is clear in Hall’s book.)

Some main advantages of fluid-models, as I perceive them, are:

• They are simple (intuitive) to formulate, fit (empirically) and analyze (elementary). (See the
Homework on Empirical Models.)

• They cover a broad spectrum of features, relatively effortlessly.

• Often, they are all that is needed, for example in analyzing capacity, bottlenecks or utilization
profiles (as in National Cranberries Cooperative and HW2).

• They provide useful approximations that support both performance analysis and control. (The
approximations are formalized as first-order deterministic fluid limits, via Functional (Strong)
Laws of Large Numbers.)

Fluid models are intimately related to Empirical Models, which are created directly from mea-
surements. As such, they constitute a natural first step in modeling a service network. Indeed,
refining a fluid model of a service-station with the outcomes of Work (Time and Motion) Studies
(classical Industrial Engineering), captured in terms of say histograms, gives rise to a (stochastic)
model of that service station.
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3 Some More Details on Fluid Models

The main roles that fluid models play in the world of Service Engineering, as my experience suggests,
are as follows: fluid models are interesting and useful in their own right, they provide simple
approximations to complicated systems, and they constitute powerful technical tools in the analysis
of stochastic systems. Elaborating on these roles:

1. Legitimate models for real systems, with prevalent predictable variability that dominates stochas-
tic variability (verified, for example, by small CV, or by averaging). Examples include (Newell; Hall;
Bassamboo, Harrison and Zeevi; EOQ-like models, ...):

• Inventory buildup diagrams (See the Trucks in National Cranberries).

• Mean-value analysis (in Computer Science)

• Transportation engineers often “think fluid” (see Newell’s book).

• Airport traffic (planes and people).

• Vandergraft, Hall on staffing.

• Service factories, for example mail-sorting.

2. Useful approximations: first-order deterministic fluid approximations, via Functional (Strong)
Laws of Large Numbers (FLLN), to support both performance analysis and control.

• Long-run, detects trends. (See Chen and M.)

• Identify bottlenecks (eg. National Cranberries.)

• Traffic equations, for example in Jackson networks.

• Short-run, captures instantaneous (predictable) variability (Massey, Pats; Bassamboo, Harrison,
Zeevi).

• Identify phases in evolution (see Hall, pg. 189-191: starting stagnant, then overloading with
queues increasing, and then decreasing, back to stagnant.)

3. Technical Tools for characterizing stability and instability of stochastic networks. (Seminal
article by Jim Dai, 1996; currently a very active research venue).

• Lyapounov functions: It is sometimes that case that sample paths of a stochastic system is
attracted to Fluid sample-paths. This helps establish stability/instability, weak convergence or
asymptotic-control optimality in a stochastic environment, but via a deterministic analysis.

• Mathematical framework for analysis and approximations (reflection), which is amenable to the
use of the continuous mapping theorem.

Additional references on the Fluid View are provided in the reading packets within the syllabus.
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