
Service Engineering

Class 5

Fluid/Flow Models;

Models/Apparoximations, Empirical/Deterministic

• Introduction

• Scenario Analysis: Empirical Models + Simulation.

• Transportation: Predictable Variability.

• Fluid/Empirical models of Predictable Queues.

• Four “pictures”: rates, queues, outflows, cumulative graphs.

• Phases of Congestion.

• Examples: Peak load vs. peak congestion; EOQ; Aggregate

Planning.

• From Data to Models; Scales.

• Queueing Science.

• A fluid model of call centers with abandonment and retrials.

• Bottleneck Analysis, via National Cranberry Cooperative.

• Summary of the Fluid Paradigm.
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Keywords: Blackboard Lecture

• Classes 1-4 = Introduction to Introduction:

On Services, Measurements, Models: Empirical, Stochastic.

Today, our first model of a Service Stations: Fluid Models.

• Fluid Model vs. Approximation

• Model: Fluid/Flow, Deterministic/Empirical; eg. EOQ.

• Conceptualize: busy highway around a large airport at night.

• Types of queues: Perpetural, Predictable, Stochastic.

• On Variability: Predictable vs. Stochastic (Natural/Artificial).

• Scenario Analysis vs. Averaging, Steady-State.

• Descriptive Model (Inside the Black Box), via 4 “pictures”:

rates, queues, outflows, cummulants.

• Mathematical Model (Black Box), via differential equations.

• Resolution/Units (Scales).

• Applications:

– Phenomena:

Peaks (load vs. congestion); Calmness after a storm;

– Managerial Support:

Staffing (Recitation); Bottlenecks (Cranberries)

• Bottlenecks.
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Types of Queues

• Perpetual Queues: every customers waits.

– Examples: public services (courts), field-services, oper-

ating rooms, . . .

– How to cope: reduce arrival (rates), increase service ca-

pacity, reservations (if feasible), . . .

– Models: fluid models.

• Predictable Queues: arrival rate exceeds service capacity

during predictable time-periods.

– Examples: Traffic jams, restaurants during peak hours,

accountants at year’s end, popular concerts, airports (se-

curity checks, check-in, customs) . . .

– How to cope: capacity (staffing) allocation, overlapping

shifts during peak hours, flexible working hours, . . .

– Models: fluid models, stochastic models.

• Stochastic Queues: number-arrivals exceeds servers’ ca-

pacity during stochastic (random) periods.

– Examples: supermarkets, telephone services, bank-branches,

emergency-departments, . . .

– How to cope: dynamic staffing, information (e.g. reallo-

cate servers), standardization (reducing std.: in arrivals,

via reservations; in services, via TQM) ,. . .

– Models: stochastic queueing models.

3



Economist.com

Crowded airports  
 
Landing flap 
Apr 4th 2007  
From The Economist print edition
 
 

Rex

 
A tussle over Heathrow threatens a longstanding monopoly 

TO DEATH and taxes, one can now add jostling queues of frustrated travellers at 
Heathrow as one of life's unhappy certainties. Stephen Nelson, the chief executive of 
BAA, which owns the airport, does little to inspire confidence that those passing 
through his domain this Easter weekend will avoid the fate of the thousands stranded 
in tents by fog before Christmas or trapped in twisting lines by a security scare in the 
summer. In the Financial Times on April 2nd he wrote of the difficulties of managing 
“huge passenger demand on our creaking transport infrastructure”, and gave warning 
that “the elements can upset the best laid plans”.

Blaming the heavens for chaos that has yet to ensue may be good public relations but 
Mr Nelson's real worries have a more earthly origin. On March 30th two regulators 
released reports on his firm, one threatening to cut its profits and the other to break it 
up. First the Civil Aviation Authority (CAA), which oversees airport fees, said it was 
thinking of reducing the returns that BAA is allowed to earn from Heathrow and 
Gatwick airports. Separately the Office of Fair Trading (OFT) asked the Competition 
Commission to investigate BAA's market dominance. As well as Heathrow, Europe's 
main gateway on the transatlantic air route, BAA owns its two principal London 
competitors, Gatwick and Stansted, and several other airports. 

http://www.economist.com/world/britain/PrinterFriendly.cfm?story_id=8966398
 (1 of 3)4/9/2007 5:30:10 PM
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The “Fluid View”

or Flow Models of Service Networks

Service Engineering (Science, Management)

December, 2006

1 Predictable Variability in Time-Varying Services

Time-varying demand and time-varying capacity are common-place in service operations. Some-
times, predictable variability (eg. peak demand of about 1250 calls on Mondays between 10:00-
10:30, on a regular basis) dominates stochastic variability (i.e. random fluctuations around the
1250 demand level). In such cases, it is useful to model the service system as a deterministic fluid
model, which transportation engineers standardly practice. We shall study such fluid models, which
will provide us with our first mathematical model of a service-station.

A common practice in many service operations, notably call centers and hospitals, is to time-
vary staffing in response to time-varying demand. We shall be using fluid-models to help determine
time-varying staffing levels that adhere to some pre-determined criterion. One such criterion is
“minimize costs of staffing plus the cost of poor service-quality”, as will be described in our fluid-
classes.

Another criterion, which is more subtle, strives for time-stable performance in the face of time-
varying demand. We shall accommodate this criterion in the future (in the context of what will
be called “the square-root rule” for staffing). For now, let me just say that the analysis of this
criterion helped me also understand a phenomenon that has frustrated me over many years, which
I summarize as “The Right Answer for the Wrong Reasons”, namely: how come so many call
centers enjoy a rather acceptable and often good performance, despite the fact that their managers
noticeably lack any “stochastic” understanding (in other words, they are using a “Fluid-View” of
their systems).

2 Fluid/Flow Models of Service Networks

We have discussed why it is natural to view a service network as a queueing network. Prevalent
models of the latter are stochastic (random), in that they acknowledge uncertainty as being a central
characteristic. It turned out, however, that viewing a queueing network through a “deterministic
eye”, animating it as a fluid network, is often appropriate and useful. For example, the Fluid View
often suffices for bottleneck (capacity) analysis (the “Can we do it?” step, which is the first step
in analyzing a dynamic stochastic network); for motivating congestion laws (eg. Little’s Law, or
”Why peak congestion lags behind peak load”); and for devising (first-cut) staffing levels (which
are sometime last-cut as well).
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Some illuminating “Fluid” quotes:

• ”Reducing letter delays in post-offices”: ”Variation in mail flow are not so much due to random
fluctuations about a known mean as they are time-variations in the mean itself . . . Major con-
tributor to letter delay within a postoffice is the shape of the input flow rate: about 70% of all
letter mail enters a post office within 4-hour period”. (From Oliver and Samuel, a classical 1962
OR paper).

• ” . . . a busy freeway toll plaza may have 8000 arrivals per hour, which would provide a coefficient
of variation of just 0.011 for 1 hour. This means that a non-stationary Poisson arrivals pattern
can be accurately approximated with a deterministic model”. (Hall’s textbook, pages 187-8).
Note: the statement is based on a Poisson model, in which mean = variance.

There is a rich body of literature on Fluid Models. It originates in many sources, it takes many
forms, and it is powerful when used properly. For example, the classical EOQ model takes a fluid
view of an inventory system, and physicists have been analyzing macroscopic models for decades.
Not surprisingly, however, the first explicit and influential advocate of the Fluid View to queueing
systems is a Transportation Engineer (Gordon Newell, mentioned previously). To understand why
this view was natural to Newell, just envision an airplane that is landing in an airport of a large
city, at night - the view, in rush-hour, of the network of highways that surrounds the airport, as
seen from the airplane, is precisely this fluid-view. (The influence of Newel1 is clear in Hall’s book.)

Some main advantages of fluid-models, as I perceive them, are:

• They are simple (intuitive) to formulate, fit (empirically) and analyze (elementary). (See the
Homework on Empirical Models.)

• They cover a broad spectrum of features, relatively effortlessly.

• Often, they are all that is needed, for example in analyzing capacity, bottlenecks or utilization
profiles (as in National Cranberries Cooperative and HW2).

• They provide useful approximations that support both performance analysis and control. (The
approximations are formalized as first-order deterministic fluid limits, via Functional (Strong)
Laws of Large Numbers.)

Fluid models are intimately related to Empirical Models, which are created directly from mea-
surements. As such, they constitute a natural first step in modeling a service network. Indeed,
refining a fluid model of a service-station with the outcomes of Work (Time and Motion) Studies
(classical Industrial Engineering), captured in terms of say histograms, gives rise to a (stochastic)
model of that service station.
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Contents

• Scenario Analysis: Empirical Models + Simulation.

• Transportation: Predictable Variability.

• Fluid/Empirical models of Predictable Queues.

• Four “pictures”: rates, queues, outflows, cumulative

graphs.

• Phases of Congestion.

• Examples: Peak load vs. peak congestion; EOQ;

Aggregate Planning.

• From Data to Models; Scales.

• Queueing Science.

• A fluid model of call centers with abandonment and

retrials.

• Bottleneck Analysis, via National Cranberry Coop-

erative.

• Summary of the Fluid Paradigm.
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Conceptual Fluid Model

Customers/units are modeled by fluid (continuous) flow.

Labor-day Queueing at Niagara Falls

Labor-Day Queueing in Niagara Falls
Three-station Tandem Network:
Elevators, Coats, Boats

Total wait of 15 minutes
from upper-right corner to boat  

How? “Deterministic” constant motion

• Appropriate when predictable variability prevalent;

• Useful first-order models/approximations, often suffice;

• Rigorously justifiable via Functional Strong Laws of Large

Numbers.
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Empirical Fluid Model: Queue-Length at a Bank Queue
Catastrophic/Heavy/Regular Day(s)
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Daily Queues
Israeli Call Center, November 1999
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Average Monthly Queues
Israeli Call Center, November 1999
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Arrivals to queue
 September 2001
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Arrivals to queue
 September 2001
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97

decision to discharge a patient from the ED or maybe to transfer a patient when,

under normal circumstances, the patient would be admitted.Thus, a hospital

underutilizes its resources on one day, and the next day these resources are put

under stress with resultant consequences for access to and quality of care.

One may conclude that hospital capacity in its current form is not sufficient 

to guarantee quality care. Does the health care delivery system need additional

resources? The typical answer is “yes.”Then, the next logical question is What

additional resources are needed to guarantee quality care? For example,What kind

of beds does a particular hospital need? Does it need more ICU beds? more

maternity beds? more telemetry beds? If yes, how many? 

Surprisingly, not many hospitals, if any, can justify their answers to those questions.

They cannot specifically demonstrate how many of which types of beds will

guarantee quality of care. But consider an individual going to the bank under

similar circumstances to borrow money. In response, the bank, asks two basic

Optimizing Patient Flow by Managing Its Variability     C H A P T E R  4

This graph represents typical hospital census for weekdays (each point represents a
day). The peaks and valleys represent residuals from the mean census identified by
the dashed line. 

FIGURE 4.1

Tracking Patient Census
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Predicting Emergency Department Status
Houyuan Jiang‡, Lam Phuong Lam†, Bowie Owens†, David Sier† and Mark Westcott†

† CSIRO Mathematical and Information Sciences, Private Bag 10,
South Clayton MDC, Victoria 3169, Australia

‡ The Judge Institute of Management, University of Cambridge,
Trumpington Street, Cambridge CB2 1AG, UK

Abstract
Many acute hospitals in Australia experience frequent episodes of ambulance bypass.
An important part of managing bypass is the ability to determine the likelihood of it
occurring in the near future.

We describe the implementation of a computer program designed to forecast the
likelihood of bypass. The forecasting system is designed to be used in an Emergency
Department. In such an operational environment, the focus of the clinicians is on
treating patients, there is no time carry out any analysis of the historical data to be used
for forecasting, or to determine and apply an appropriate smoothing method.

The method is designed to automate the short term prediction of patient arrivals. It
uses a multi-stage data aggregation scheme to deal with problems that may arise from
limited arrival observations, an analysis phase to determine the existence of trends and
seasonality, and an optimisation phase to determine the most appropriate smoothing
method and the optimal parameters for this method.

The arrival forecasts for future time periods are used in conjunction with a simple
demand modelling method based on a revised stationary independent period by period
approximation queueing algorithm to determine the staff levels needed to service the
likely arrivals and then determines a probability of bypass based on a comparison of
required and available resources.

1 Introduction
This paper describes a system designed to be part of the process for managing Emergency Depart-
ment (ED) bypass. An ED is on bypass when it has to turn away ambulances, typically because all
cubicles are full and there is no opportunity to move patients to other beds in the hospital, or because
the clinicians on duty are fully occupied dealing with critical patients who require individual care.

Bypass management is part of the more general bed management and admission–discharge
procedures in a hospital. However, a very important part of determining the likelihood of bypass
occurring in the near future, typically the next 1, 4 or 8 hours, is the ability to predict the probable
patient arrivals, and then, given the current workload and staff levels, the probability that there will
be sufficient resources to deal with these arrivals.

Here, we consider the implementation of a multi-stage forecasting method [1] to predict patient
arrivals, and a demand management queueing method [2], to assess the likelihood of ED bypass.

The prototype computer program implementing the method has been designed to run on a hospital
intranet and to extract patient arrival data from hospital patient admission and ED databases.
The program incorporates a range of exponential smoothing procedures. A user can specify the
particular smoothing procedure for a data set or to configure the program to automatically determine
the best procedure from those available and then use that method.

For the results presented here, we configured the program to automatically find the best smoothing
method since this is the way it is likely to be used in an ED where the staff are more concerned
with treating patients than configuring forecast smoothing parameters.
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(c) Average weekly

Figure 1: Hourly patient arrivals, June 2001 to July 2002

For the optimisation we assume no a priori knowledge of the patient arrival patterns. The process
involves simply fitting each of the nine different methods listed in Table 1 to the data, using the mean
square fitting error, calculated using (3), as the objective function. The smoothing parameters for
each method are all in (0, 1) and the parameter solution space is defined by a set of values obtained
from an appropriately fine uniform discretization of this interval. The optimal values for each
method are then obtained from a search of all possible combinations of the parameter values.



From the data aggregated at a daily level, repeat the procedure to extract data for each
hour of the day to form 24 time series (12am–1am, 1am–2am, . . ., 11pm–12am). Apply the
selected smoothing method, or the optimisation algorithm, to each time series and generate
forecasting data for those future times of day within the requested forecast horizon. The
forecast data generated for each time of day are scaled uniformly in each day in order to
match the forecasts generated from the previously scaled daily data.

Output: Display the historical and forecasted data for each of the sets of aggregated observations
constructed during the initialisation phase.

The generalisation of these stages is straightforward. For example, if the data was aggregated to a
four-weekly (monthly) level, then the first scaling step would be to extract the observations from
the weekly data to form four time series, corresponding to the first, second, third and fourth week
of each month. Historical data at timescales of less than one day are scaled to the daily forecasts.
For example, observations at a half-hourly timescale are used to form 48 time series for scaling to
the day forecasts.

4.3 Output from the multi-stage method
Figures 2 and 3 show some of the results obtained from using the multi-stage forecasting method to
predict ED arrivals using the 60 weeks of patient arrival data described in Section3. The forecasted
data were generated from an optimisation that used the multi-stage forecasting method to minimise
the residuals of (3) across all the smoothing methods in Table 1.
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Figure 2: Hourly historical and forecasted data 25/7/2002–31/7/2002

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

31/07/200230/07/200229/07/200228/07/200227/07/200226/07/200225/07/2002

P
at

ie
nt

s 
pe

r 
4 

H
ou

rs

Historical data: Mon 4/06/2001 to Sun 28/07/2002, 420 days

Historical
Forecasted

Figure 3: Four-hourly historical and forecasted data 25/7/2002–31/7/2002



















105

ED overcrowding is so pervasive that sometimes we have the attitude that it

affects everyone the same way. But according to Brad Prenney, deputy director 

of Boston University’s Program for Management of Variability, more than 70% 

of admissions through the ED in Massachusetts hospitals are of patients who are

insured by Medicare or Medicaid or who are uninsured, whereas private payers

cover most of the scheduled admissions.8 Thus, the patients most likely to suffer

the consequences of variability in admissions and the resultant ED overcrowding

are the elderly, disabled, poor, and uninsured.

Besides ED overcrowding, now the focus of much public attention, there is a

silent epidemic of ICU overcrowding. ICU patients also suffer from artificial

variability.A study at a leading pediatric hospital demonstrated that more than

70% of diversions from the ICU have been correlated with artificial peaks in

scheduled surgical demand.9

Optimizing Patient Flow by Managing Its Variability     C H A P T E R  4

This diagram represents patient flow within a hospital. Natural and artificial variability
are represented by emergency department admissions and scheduled demand.

Identifying Paths of Patient Flow in the Hospital

FIGURE 4.3
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Q-Science: Predictable Variability

Q-Science 
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Service Times: The Human Factor, or
Why Longest During Peak Loads?

Mean-Service-Time (Regular) vs. Time-of-Day (95% CI)

(n=42613)
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Figure 12: Mean Service Time (Regular) vs. Time-of-day (95% CI) (n =

42613)
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Figure 1: Arrivals (to queue or service) – “Regular” Calls
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From Data to Models: (Predictable vs. Stochastic Queues)

Fix a day of given category (say Monday = M , as distinguished from Sat.)

Consider data of many M ’s.

What do we see ?

• Unusual M ’s, that are outliers.

Examples: Transportation : storms,...

Hospital: : military operation, season,...)

Such M ’s are accommodated by emergency procedures:

redirect drivers, outlaw driving; recruit help.

⇒ Support via scenario analysis, but carefully.

• Usual M ’s, that are “average”.

In such M ’s, queues can be classified into:

– Predictable:

queues form systematically at nearly the same time of most M ’s

+ avg. queue similar over days + wiggles around avg. are small

relative to queue size.

e.g., rush-hour (overloaded / oversaturated)

Model: hypothetical avg. arrival process served by an avg. server

Fluid approx / Deterministic queue :macroscopic

Diffusion approx = refinements :mesoscopic

– Unpredictable:

queues of moderate size, from possibly at all times, due to (un-

predictable) mismatch between demand/supply

⇒ Stochastic models :microscopic

Newell says, and I agree:

Most Queueing theory devoted to unpredictable queues,

but most (significant) queues can be classified as predictable.
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Scales (Fig. 2.1 in Newell’s book: Transportation)

Horizon Max. count/queue Phenom

(a) 5 min 100 cars/5–10 (stochastic) instantaneous queues

(b) 1 hr 1000 cars/200 rush-hour queues

(c) 1 day = 24 hr 10,000 / ? identify rush hours

(d) 1 week 60,000 / – daily variation (add histogram)

(e) 1 year seasonal variation

(f) 1 decade ↑ trend

Scales in Tele-service

Horizon Decision e.g.

year strategic add centers / permanent workforce

month tactical temporary workforce

day operational staffing (Q-theory)

hour regulatory shop-floor decisions
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Arrivals to Service

Arrivals to a Call Center (1999): Time Scale

Strategic Tactical
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Arrival Process, in 1999 
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Arrivals Process, in 1976
 

Arrival Process, in 1976 
 
 
 (E. S. Buffa, M. J. Cosgrove, and B. J. Luce,  

 “An Integrated Work Shift Scheduling System”) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Yearly Monthly 

Daily Hourly 
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Custom Inspections at an Airport 

 
Number of Checks Made During 1993:        

 
 

Number of Checks Made in November 1993:  

 

Average Number of Checks During the Day: 

 
Source: Ben-Gurion Airport Custom Inspectors Division 
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Fluid Models and Empirical Models

Recall Empirical Models, cumulative arrivals and

departure functions.

Service Engineering November 23, 2005

Recitation 4 - Fluid Models. Staffing

The Cumulative Arrivals and Departures functions are step functions.
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When the number of arrivals is large, the functions look smooth(er).
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This suggests that our empirical model can be well approximated by a

deterministic fluid model.

2
9

For large systems (bird’s eye) the functions look smoother.
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Empirical Models: Fluid, Flow

Derived directly from event-based (call-by-call) measurements. For

example, an isolated service-station:

• A(t) = cumulative # arrivals from time 0 to time t;

• D(t) = cumulative # departures from system during [0, t];

• L(t) = A(T )−D(t) = # customers in system at t.

Arrivals and Departures from a Bank Branch

Face-to-Face Service
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When is it possible to calculate waiting time in this way?

32

Administrator
Highlight

Administrator
Highlight









Fluid Models: General Setup

• A(t) – cumulative arrivals function.

• D(t) – cumulative departures function.

• λ(t) = Ȧ(t) – arrival rate.

• δ(t) = Ḋ(t) – processing (departure) rate.

• c(t) – maximal potential processing rate.

• Q(t) – total amount in the system.

Queueing System as a Tub (Hall, p.188)

Service Engineering November 23, 2005

Recitation 4 - Fluid Models. Staffing

The Cumulative Arrivals and Departures functions are step functions.
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When the number of arrivals is large, the functions look smooth(er).
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This suggests that our empirical model can be well approximated by a

deterministic fluid model.
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Mathematical Fluid Models

Differential Equations:

• λ(t) – arrival rate at time t ∈ [0, T ].

• c(t) – maximal potential processing rate.

• δ(t) – effective processing (departure) rate.

• Q(t) – total amount in the system.

Then Q(t) is a solution of

Q̇(t) = λ(t)− δ(t); Q(0) = q0, t ∈ [0, T ] .

In a Call Center Setting (no abandonment)

N(t) statistically-identical servers, each with service rate µ.

c(t) = µN(t): maximal potential processing rate.

δ(t) = µ ·min(N(t), Q(t)): processing rate.

Q̇(t) = λ(t)− µ ·min(N(t), Q(t)), Q(0) = q0, t ∈ [0, T ] .

How to actually solve? Mathematics (theory, numerical),

or simply: Start with t0 = 0, Q(t0) = q0.

Then, for tn = tn−1 + ∆t:

Q(tn) = Q(tn−1) + λ(tn−1) ·∆t− µ min(N(tn−1), Q(tn−1)) ·∆t .
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Predictable Queues

Fluid Models and
Diffusion Approximations

for Time-Varying Queues with

Abandonment and Retrials

with

Bill Massey

Marty Reiman

Brian Rider

Sasha Stolyar

1
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Sudden Rush Hour

n = 50 servers; µ = 1

λt = 110 for 9 ≤ t ≤ 11, λt = 10 otherwise
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Lambda(t) = 110 (on 9 <= t <= 11), 110 (otherwise). n = 50, mu1 = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25

time
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Q2−ode             
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Q2−sim             
variance envelopes
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Time-Varying Queues with
Abandonment and Retrials

Based on a series of papers with Massey, Reiman, Rider

and Stolyar (all at Bell Labs, at the time).

Call Center: a Multiserver Queue with

Abandonment and Retrials

Call Center: A Multiserver Queue with

Abandonment and Retrials

Q1(t)

βt ψt ( Q1(t) − nt )
+

βt (1−ψt) ( Q1(t) − nt )
+

λt 2

Q2(t)

21 8. . .

nt

1

.

.

.

µt Q2(t)2
µt (Q1(t)    nt) 

1

3
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Primitives: Time-Varying
Predictably

λt exogenous arrival rate;
e.g., continuously changing, sudden peak.

µ1
t service rate;

e.g., change in nature of work or fatigue.

nt number of servers;
e.g., in response to predictably varying workload.

Q1(t) number of customers within call center
(queue+service).

βt abandonment rate while waiting;
e.g., in response to IVR discouragement
at predictable overloading.

ψt probability of no retrial.

µ2
t retrial rate;

if constant, 1/µ2 – average time to retry.

Q2(t) number of customers that will retry (in orbit).

In our examples, we vary λt only, while other primitives

are held constant.
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Fluid Model

Replacing random processes by their rates yields

Q(0)(t) = (Q(0)
1 (t), Q(0)

2 (t))

Solution to nonlinear differential balance equations

d

dt
Q(0)

1 (t) = λt − µ1
t (Q(0)

1 (t) ∧ nt)

+µ2
t Q(0)

2 (t)− βt (Q(0)
1 (t)− nt)

+

d

dt
Q(0)

2 (t) = β1(1− ψt)(Q
(0)
1 (t)− nt)

+

− µ2
t Q(0)

2 (t)

Justification: Functional Strong Law of Large Numbers ,

with λt → ηλt, nt → ηnt.

As η ↑ ∞,

1

η
Qη(t) → Q(0)(t) , uniformly on compacts, a.s.

given convergence at t = 0

5



Diffusion Refinement

Qη(t)
d
= η Q(0)(t) +

√
η Q(1)(t) + o (

√
η )

Justification: Functional Central Limit Theorem

√
η

[
1

η
Qη(t)−Q(0)(t)

]
d→ Q(1)(t), in D[0,∞) ,

given convergence at t = 0.

Q(1) solution to stochastic differential equation.

If the set of critical times {t ≥ 0 : Q(0)
1 (t) = nt} has Lebesque

measure zero, then Q(1) is a Gaussian process. In this case, one

can deduce ordinary differential equations for

EQ(1)
i (t) , Var Q(1)

i (t) : confidence envelopes

These ode’s are easily solved numerically (in a spreadsheet, via for-

ward differences).

6



Starting Empty and Approaching Stationarity
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Quadratic Arrival rate

Assume λ(t) = 10 + 20t− t2.

Take P{retrial} = 0.5, β = 0.25 and 1.

7
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Sudden Rush Hour

n = 50 servers; µ = 1

λt = 110 for 9 ≤ t ≤ 11, λt = 10 otherwise
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What if Pr{Retrial } increases to 0.75 from 0.25 ?
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Types of Queues

• Perpetual Queues: every customers waits.

– Examples: public services (courts), field-services, oper-

ating rooms, . . .

– How to cope: reduce arrival (rates), increase service ca-

pacity, reservations (if feasible), . . .

– Models: fluid models.

• Predictable Queues: arrival rate exceeds service capacity

during predictable time-periods.

– Examples: Traffic jams, restaurants during peak hours,

accountants at year’s end, popular concerts, airports (se-

curity checks, check-in, customs) . . .

– How to cope: capacity (staffing) allocation, overlapping

shifts during peak hours, flexible working hours, . . .

– Models: fluid models, stochastic models.

• Stochastic Queues: number-arrivals exceeds servers’ ca-

pacity during stochastic (random) periods.

– Examples: supermarkets, telephone services, bank-branches,

emergency-departments, . . .

– How to cope: dynamic staffing, information (e.g. reallo-

cate servers), standardization (reducing std.: in arrivals,

via reservations; in services, via TQM) ,. . .

– Models: stochastic queueing models.

3



Bottleneck Analysis

Inventory Build-up Diagrams, based on National Cranberry
(Recall EOQ,...) (Recall Burger-King) (in Reading Packet: Fluid Models)

A peak day: • 18,000 bbl’s (barrels of 100 lbs. each)
• 70% wet harvested (requires drying)
• Trucks arrive from 7:00 a.m., over 12 hours
• Processing starts at 11:00 a.m.
• Processing bottleneck: drying, at 600 bbl’s per hour

(Capacity = max. sustainable processing rate)

• Bin capacity for wet: 3200 bbl’s
• 75 bbl’s per truck (avg.)

- Draw inventory build-up diagrams of berries, arriving to RP1.

- Identify berries in bins; where are the rest? analyze it!
Q: Average wait of a truck?

- Process (bottleneck) analysis:

What if buy more bins? buy an additional dryer?

What if start processing at 7:00 a.m.?

Service analogy:

• front-office + back-office (banks, telephones)
↑ ↑

service production

• hospitals (operating rooms, recovery rooms)

• ports (inventory in ships; bottlenecks = unloading crews,router)

• More ?
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Stochastic Model of a
Basic Service Station

Building blocks:

• Arrivals

• Service durations (times)

• Customers’ (im)patience.

First study these building blocks one-by-one:

• Empirical analysis, which motivates

• Theoretical model(s).

Then integrate building blocks, via protocols, into Models.

The models support, for example,

• Staffing Workforce

• Routing Customers

• Scheduling Servers

• Matching Customers-Needs with Servers-Skills (SBR).
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