Service Engineering November 30, 2005

The ”Fluid View”, or Flow Models

e Introduction:

— Legitimate models: Simple, General, Useful
— Approximations (strong)

— Tools
e Scenario analysis

— vs. Simulation, Averaging, Steady-State

— Typical scenario, or very atypical (eg. ”catastrophy”)
e Predictable Variability

— Averaging scenarios, with small “CV”
— A puzzle (the human factor = state dependent parameters)

— Sample size needed increases with CV

Predictable variability could also turn unpredictable

e Hall: Chapter 2 (discrete events);

e 4 Pictures:

— Cummulants

— Rates (= Peak Load)

— Queues (= Congestion)

— Outflows (= end of rush-hour)

e Scales (Transportation, Telephone (1976, 1993, 1999))
e Simple Important Models: EOQ, Aggregate Planning

e Skorohod’s Deterministic Fluid Model (of a service station): teaching note

— Phases of Congestion: under-, over- and critical-loading.
— Rush Hour Analysis: onset, end

— Mathematical Framework in approximations

e Queues with Abandonment and Retrials (=Call Centers; Time- and State-dependent Q’s).
e Bottleneck analysis in a (feed-forward) Fluid Network, via National Cranberry
e Fluid Networks (Generalizing Skorohod): The Traffic Equations

o Addendum
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The “Fluid View”
or Flow Models of Service Networks

There is a rich body of literature on Fluid Models. It originates in many sources, it takes
many forms, and it is very powerful when used properly. For example, the classical EOQ model
takes a fluid view of an inventory system, and physicists have been analyzing macroscopic
models for decades. Not surprisingly, however, the first explicit and influential advocate of the
Fluid View to queueing systems is a Transportation Engineer (Gordon Newell, from Berkeley).
To understand why this view was natural to Newell, just envision an airplane that is landing
in an airport of a large city, at night — the view, in rush-hour, of the network of highways that
surrounds the airport, as seen from the airplane, is precisely this fluid-view. (The influence of
Newell is apparent in Hall’s book, which again is not surprising: Hall graduated from Berkeley
as Newell’s PhD student, I believe.)

INluminating quotes:

Oliver & Samuel, “Reducing letter delays in post-offices”:

“Variation in mail flow are not so much due to random fluctuations about a known mean as
they are time-variations in the mean itself.... Major contributor to letter delay within a post-
office is the shape of the input flow rate: about 70% of all letter mail enters a post office within
4-hour period”.

(Remark: In contrast, random fluctuations around / about a known mean are handled, for
example, within the News-vendor paradigm; see also Yield/Revenue Management.)

Hall, page 187-8: “...a busy freeway toll plaza may have 8000 arrivals per hour, which would
provide a coefficient of variation of just 0.011 for 1 hour. This means that a nonstationary
Poisson arrivals pattern can be accurately approximated with a deterministic model”. (Note:
the calculations are based on a Poisson model, in which mean = variance.)

I shall now list the main (three) roles that fluid models play in the world of Service En-
gineering, as I perceive them: fluid models are interesting and useful in their own right, they
provide simple approximations to complicated systems, and they constitute powerful technical
tools in the analysis of stochastic systems.

1. Legitimate models for real systems, with prevalent predictable variability that dominates
stochastic variability (verified, for example, by small CV, or by averaging).

Examples (Newell, Hall, Harrison and Optional Readings):
Industrial Eng.: Old EOQ-like models and the new BPR paradigm.
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Inventory buildup diagrams (See the Trucks in National Cranberries).
Mean-value analysis (in Computer Science)

Transportation engineers often “think fluid” (see Newell’s book).
Airport traffic (planes and people).

Vandergraft, Hall on staffing.

Service factories, for example mail-sorting.

Advantages of fluid-models:
e Simple to formulate (intuitive), fit (empirically) and analyze (elementary).
(See the Homework on Empirical Models.)
e Cover a broad spectrum of features, relatively effortlessly.

e Often, they are all that is needed (for example, in capacity analysis, bottleneck
identification, or utilization profiles, as in National Cranberries Cooperative and
HW2.)

2. Useful approximations: first-order deterministic fluid approximations, via Functional
(Strong) Laws of Large Numbers (FLLN), to support both performance analysis and
control.

e Long-run, detects trends. (See Chen and M.)

— Identify bottlenecks (covered later, via National Cranberries.)
— Traffic equations, for example in Jackson networks. (M.Sc. HW)
— Stability and instability (currently very active).

e Short-run, captures instantaneous (predictable) variability (Massey, Pats).
— Identify phases in evolution (see Hall, pg. 189-191: stagnant = overloading with
queues increasing then decreasing, back to stagnant.)

3. Technical Tools (articles by Jim Dai, and Sasha Stolyar - see our website).

e Lyapounov functions: It is sometimes that case that sample paths of a stochastic
system is attracted to Fluid sample-paths. This helps establish stability/instability,
weak convergence or asymptotic-control optimality in a stochastic environment, but
via a deterministic analysis.

e Mathematical framework for analysis and approximations (reflection), which is amenable

to the use of the continuous mapping theorem.

Further references on the Fluid View are provided in the reading packets within the syllabus.



Predictable Queues

Fluid Models

Service Engineering
Queueing Science

Eurandom

September 8, 2003

e.mail : avim@tx.technion.ac.il

Website: http://ie.technion.ac.il/serveng



3. Supporting Material (Downloadable)

Gans, Koole, and M.: “Telephone Call Centers: Tutorial, Review
and Research Prospects.” MSOM.

Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis
of a Telephone Call Center: A Queueing-Science Perspective."
Submitted.

Jennings, M., Massey, Whitt: "Server Staffing to Meet Time-
Varying Demand." Management Science, 1996. - PRACTICAL

0. M., Massey, Reiman: "Strong Approximations for Markovian
Service Networks." QUESTA, 1998.

1. M., Massey, Reiman, Rider: ""Time Varying Multi-server
Queues with Abandonment and Retrials", ITC-16, 1999.

2. M., Massey, Reiman, Rider and Stolyar: "'Waiting Time
Asymptotics for Time Varying Multiserver Queues with
Abandonment and Retrials", Allerton Conference, 1999.

3. M., Massey, Reiman, Rider and Stolyar: "Queue Lengths and
Waiting Times for Multiserver Queues with Abandonment and
Retrials", Fifth INFORMS Telecommunications Conference, 2000



Labor-Day Queueing in Niagara Falls
Three-station Tandem Network:
Elevators, Coats, Boats

Total wait of 15 minutes
from upper-right corner to boat

How? “Deterministic” constant motion




Shouldice Hospital: Flow Chart of Patients’ Experience

Day 1: )
Surgeons Admit
Waiting Exam Room Acctg. Nurses Patient’s
Room (6) Office Station Room
—> —>
1:00-3:00 pm 15-20 min 10 min 5-10 min 1-2 hours
[
v
Orient’'n Dining Rec Lounge Patient’s
Room Room Room
—>
_ _ _ _ _ _ 9:30 pm-
5:00-5:30 pm 5:30-6:00 pm 7:00-9:00 pm 5:30 Am
Day 2:
PreOp Operating Post Op Patient’s Dining
Room Room Room Room Room
—> —> —> —>
5:30-7:30 am 45 min _
t0 3:00 pu 60-90 min 9:00 Pu
Day 3: Remove Clips
Patient’s Dining Room Clinic Rec Room Dining
Room Room? Grounds Room
—> —> —>
6:00 am 7:45-8:15 am 9:00 pm
Day 4: Remove_
Rem. Clips
Dining Clinic *External types of abdominal hernias.
Room 08204 1-tj i
820/0 15-timerepair.
A8 50 Stay Longer *18% recurrfence:';.
' ' Go Home *6850 operationsin 1986.

Recurrencerate: 0.8% vs. 10%
| ndustry Std.



Matching Supply and Demand (Wharton)

Efficiency Plots
Showing Load and Staffing

600=
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time

Plot is for Monday 8/05/02

¥ ——Mumberagenls (s}
— inad (5}
= A QueueWaiAll (s)

“Agents” = Estimate of number of agents on-duty at that time.
[In each 150 second interval an agent is estimated to be on-active-
duty for the entire interval if (s)he is on the phone sometime in that

interval.]



Staffing Matters (on Fridays, 7:00 am)

Efficiency Plots, cont

S00-
400
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-
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100

0- Mhﬂ&-b:_m

1 1 ¥ i 1 1 ¥ 1 [ i ¥ 1 ¥ i ¥ 1 ¥ i

10 15 20
time

Plot is for Friday 8/02/02

¥ =MNumberagenis (5]
= load (5)
= AvgueueWaitall ()

Mote increased usage from 7-7:30 am (typical of Fridays).
Mote increased average Queue-Wait during this time.
(Accompanied by a rise in abandonments to about 10%.)

Owverall Utilization: 8/02/02 = 88%
8/05/02 = 89%
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Queue

I-Method

Bank Queue
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Q-Science
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Time-Varying Queues: Predictable Variability
(with Jennings, Massey, Whitt)
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2 : Heasunments, Eupinical Models in fﬁm‘é Dhits

Definitions 2.2

|

Al = cumularive arrivals from time 0 to time ¢ , & An;val;
D (1)

i

cumulative departures from the system from time 0 to time ¢
DJ1) = cumulative departures from the queue from time 0 to time ¢ ' & g&’”w’wﬁr

The starting time, time O, can be set at any time that is convenient to the analysis. For
example, if a store opens at 9:30 A.m., time O would be 9:30 and A(r) would be the
number of customers who arrived between 9:30 and time 1.

Consider the following data:

Departure from Departure from
Customer Arrival time queue system
1 9:36 9:36 9:40
2 9:37 9:40 9:44
3 9:38 9:44 9:48
4 9:40 9:48 9:52
5 9:45 9:52 9:56
51 Alr)
o 4T ]
£ L,(9:43)=2
= gi\¥
£ 8 Sy Le©43=3
© gl ) s\ W, (3) =8 min.
D, i1 W, (3} = 10 min
1 b Figure 2.2 Cumulative arrival and
. L3
departure diagram. Queue lengths are =
i ; ] determined by vertical separation between
9:30 9:40 9:50 10:00 curves. Waiting times are determined by
Time horizontal separation.
Ar L,tt)
£ sl \ e L (8
L
3 2F
S
1 - =
|— ] ! ! ’
9i30 9:40 9:50 "10:00 Figure 2.3 Customers in the system and
Time in the queue versus time.

Definitions 2.3

L,(#) = number of customers in the queue at time ¢

= Al — D, ¢ @MM}'
LJ#) = number of customers in the systerh at time ¢
= A — D,

Definition 2.8
average queue length {customers)

b
af L (dt 2.7
b-— a

h
il

16



2.2.1 Waiting Timeg

When Fig. 2.2 is read vertically, the queue size and number of customers in the system are
identified. Reading Fig. 2.2 horizontally reveals the time in queue and the time in system.

Definitions 2.4

A7 (n)
DS (m)

time of the nth arrival

fi

time of the nth departure from queue
D '(n) = time of the nth departure from system

Whereas A(r), D, (8), and D(#) convert a time into a customer number, A~ (n),
DS '(n) and D; '(n) take a customer number and convert it to a time. They correspond
exactly to the data provided before:

o on A~ (n) D;Y(n) D; ' n)

o 9:36 9:36 9:40

C2 937 9:40 9:44
3 9:38 9:44 9:48
4 9:40 9:48 9:52
5 9:45 9:52 9:56

Definitions 2.5

W, (n) = time in queue, for nth customer to arrive
W(n) = time in system, for nth customer to arrive

When the discipline is FCFS, the waiting times, W, (n) and W(n), are found by
cd?mputing the horizontal distance between the steps in Fig. 2.2:

FCEFS Waiting Time

W) = D7'(n) — A Y(n) (2.1)
Win) = D7) — A™'(n) | |
(2.2)
Sec. 2.2 Cumulative Arrival and Departure Diagrams
Cumulative Arrivals
5 of Customers
Who Renege
4 -
5
B
(&) 2+
Cumulative
1 Reneges
i L
8:30 9:40 9:50 - 10:00 Figure 2.4 Cumulative diagram of
Time ‘ reneges.
Definitions 2.6
W, = average waiting time in queue
g
W (n
= n=| [[( ) (23)
N
W, = average waiting time in system 4 ?L‘"
W.n
_ 2 W o4

N



In Class # 2

Service Engineering Created: April 1997
Last revision: October 2003

LITTLE’S LAW

A conservation law that applies to the following general setting:

input —> system [—" output

Input: Continuous flow or discrete units (examples: granules of powder measured in tons,
tons of paper, number of customers, $1000’s).

System: Boundary is all that is required (very general, abstract).

Output: Same as input, call it throughput.
Two possible scenarios:

e System during a “cycle” (empty — empty, finite horizon);

e System in steady state/in the long run (for example, over many cycles).

Quantities that are related via Little’s law:

e A = long-run average rate at which units arrive
(= long-run average rate at which units depart) = throughput-rate, whose units are
quantity/time-unit or #/time-unit;

e L = long-run average inventory/quantity /number in the system
(eg. WIP: Work-In-Process, customers);

e W = long-run average time a unit spends in the system = throughput time
(eg. hours) = sojourn time.

Little’s Law L =AW

Motivation 1: A customers/hour, each charged $1/hour while remaining in the system.
Then A x W is the rate at which the system generates cash which, in turn, “clearly”
equals L.

%



BRLIET puipy

b2 6130 F:00 1\’ F:30 152 730

PI3A 1agy 17 49
- 00 3% PI¥OING B
AE)-pt) : D(E) -© BE) 2 dle prw = ol f?//c

'pole phow = (FCFs pnp)  appwn s

iG AN M 3B, FCFS 2pY¥
Fo0 2 wlN




DNk pr03n, ¢ ? Dicenete OUuits

[Day -'7'

900N 400
UL O R i
300 10:00-2 D) PID [#S /%//
[ et I e

250 1ot 5515 \\ /J/ J,/// "\
200 }f Pty s
_ o / 126w

prosiiy -0 E R R
o ’ \ /7 /// '
100 S I R
7 {
§
50 =AU T U S SO : ................
0 ‘ j
8 9 9.5 10 105 11 115 12 125 13

1N =pOe PUAAn {3 121 10:30-2

* afﬁﬂ;} = ILF0 é* 068 3 oxits from ’
> W T ‘ queue
§ (nip Hoive) -




4

i
% " g ,fa W% s 1
W W “":;;x § ¥}

@ﬁf@’

a4

P i/ }f}}rﬁ' ‘T

e

Mfgw wh r:afg )

f%’ *fg 7}5”5"’23}7’

eT 4
g

7
v

talf

Sec.

Cumulative Customers

é

6.4 Fluid Approximations: Short Service Time . 189

7200

6400 I~ Area = Total time
in queue

5600

4800

4000

3200

2400

1600

800

Time (t)

Figure 6.6 Cumulative diagram illustrating deterministic fluid model. When a queue
exists, customers depart at a constant rate. Queues increase when the arrival rate exceeds
the service capacity and decrease when the service capacity exceeds the arrival rate.
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Service Engineering 2003

Example: Empirical Models
Analysis of a Face-to-Face Service Operation

Data from 12 days of work (two weeks) in a Face-to-Face service of a bank was collected. Several
servers work simultaneously at a single station, the data for which is described below. The maximum
number of servers is five.

The data from day 6 and day 12 is not considered here. (These days are Fridays and are different
from the others.)

Figure 1 (see page 3) presents average waiting times on the considered days.

Using this figure the working days were divided into three categories.

e Catastrophic day: day 7.
e Heavily loaded days: days 8, 9 and 10.
e Regular days: days 1, 2, 3, 4, 5 and 11.

We now analyze the data according to the following categories: queues, arrivals, waiting times and
stafing levels.

Queues: we see the average queue length for every category in Figure 2. Below we describe the
queue pattern for every category.

Catastrophic day. The queue increases sharply when the working day starts (40 customers in
the queue shortly after 8:30). At 9:30 the queue goes down to 25 customers and then grows rapidly
again. Approximately at 10:10 we get the record queue for all days: more then 50 customers. Then
the queue gradually decreases to zero at the end of the working day.

Heavily loaded days. The average queue sharply grows to 10 customers at the beginning of the
day and then oscillates between 5 and 10 customers until 9:45. Then a growth to the level of 13-18
customers happens. After 11:00 the queue slowly decreases to zero.

Figure 3 shows sample path of queues on heavily loaded days.

Regular days. The average queue jumps almost to 10 at the beginning, decreases close to zero
before 9:30 and then over almost the whole working day, it oscillates in “steady state” near 5.

See Figure 4 for examples of sample paths on regular days.

We observe the following common features for the different categories.

e Sharp growth of the queues at the start of a working day.
e Queue decrease before 9:30.
e Queue growth before 10:00.

e Gradual decrease to zero at the end of a working day.
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Service Engineering ~March 2004

Homework 5 — Staffing Through Fluid Models

iam,is based on the question that was presented in the recitation:
itgyof customer calls to the call center is given by the following graph:

A 4
—

I | l l l
16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 24:00

Assume that an hour work of a service representative costs 37.5 shekels, while a
minute waiting of a customer costs 1 shekel. Also, let us assume that the staffing must
remain fixed during a shift.

@3 Based on the abv

30:40s alowing questions:

e 1 <
%««M wu(@’ﬁ‘ e b) Using the COMTIEEvE aiivals graph solve (using Excel's solver) the
, optimization problem of minimizing waiting and staffing costs. (Hint: You
? Q“itg should use only the cumulative arrivals graph — there is not need to use
differential-equation representations used in class).
o ¢) Using the optimality criterion taught in class (as appears in Hall, pages 215-
é ﬁ mi WZr{ 5 | 218) determine the optimal number of service representatives. Compare your
) result with your answer to (b). Compare the cost of your recommendation with
vy the cost that was obtained in the recitaligasbs=msing a different approach.
“'/ d) Based on your answer to (¢), draw th queue Iengt as a function of time.

i N e) Note that the above question is a specidT*e8 ne one analyzed in the
jgﬁ/w e s j recitation. There we allowed to vary the staffing level every hour. Can the
above "Cummulative Approach"” be adopted to allow varying staffing levels ?

(If so, describe briefly how it can be done - there is no need to do any
calculations).

Yy wml’&% '
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From Data to Models: (Predictable vs. Stochastic Queues)

Fix a day of given category (say Monday = M, as distinguished from Sat.)
Consider data of many M'’s.
What do we see ?

e Unusual M’s, that are outliers.
Examples: Transportation : storms,...

Hospital: : military operation, season,...)

Such M’s are accommodated by emergency procedures:
redirect drivers, outlaw driving; recruit help.

= Support via scenario analysis, but carefully.

e Usual M’s, that are “average”.
In such M’s, queues can be classified into:
— Predictable:
queues form systematically at nearly the same time of most M’s
+ avg. queue similar over days + wiggles around avg. are small

relative to queue size.
e.g., rush-hour (overloaded / oversaturated)

Model: hypothetical avg. arrival process served by an avg. server

Fluid approx / Deterministic queue :macroscopic
Diffusion approx = refinements :mesoscopic
— Unpredictable:

queues of moderate size, from possibly at all times, due to (un-
predictable) mismatch between demand/supply

= Stochastic models :microscopic

Newell says, and I agree:
Most Queueing theory devoted to unpredictable queues,

but most (significant) queues can be classified as predictable.
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Scales (Fig. 2.1 in Newell’s book: Transportation)

Horizon Max. count/queue Phenom

5 min 100 cars/5-10

b) 1hr 1000 cars,/200

1 day = 24 hr 10,000 / ?

d) 1 week 60,000 / —

1 year

1 decade

Scales in Tele-service

Horizon Decision
year strategic
month tactical
day operational
hour regulatory

(stochastic) instantaneous queues

rush-hour queues

identify rush hours

daily variation (add histogram)
seasonal variation

T trend

e.g.
add centers / permanent workforce
temporary workforce

staffing (Q-theory)

shop-floor decisions
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Scales: Arrival Process, 1999
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Scales: Arrival Process, 1999


Number of Calls Originated During Busiest Hour Each Wesk

4,600
4,400
4,200
4,000

3,800
3,400
3,200

2,000

1,000

Arrival Process, in 1976

Mother's Day

0

Calis

Yearly
I I

2 4 B8 B 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 43 50 52
J F ] A M J J A s o N D

Number of Weeks

Figure 1 Typical distribution of calls during the busiest hour for
each week during a year.

1500

1000

500 .
N 111
121 2 3 46 67 BOWI121 2 3 456 7 88101112

AM PM
Time

Figure 3 Typical haif-hourly call distribution (Bundy D A).

Number of Simultaneous Calls

Calls {000s)

24

18
16
14
12

- "
Sonasa®O

(E. S. Buffa, M. J. Cosgrove, and B. J. Luce,
“An Integrated Work Shift Scheduling System”)

N

12 N

n
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1
—

s Monthly
REERNERE
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s [
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Figure 2 Daily call load for Long Beach, January 1972.
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Figure 4 Typical intrahour distribution of calls, 10:00-11:00 A.m.
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Custom Inspections at an Airport

Number of Checks Made During 1993:

| Predictable? » / Strike Holifay
’ ,

g

8

8

# Checks
8 8 8

Q

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 I 41 43 45 47 49
Week inYear

Number of Checks Madein November 1993:

120 1

# Checks

11 13 15 17
Day in Month

Average Number of Checks Duringthe Day:

20 +

 15:00 |

a
08:00 ©05.00 10:00 11:00 12:00 13:00 14:00
Hour

Sour ce: Ben-Gurion Airport Custom Inspector s Division
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A Deterministic Model of a Service Station (Fluid View)

Primitives Z(0) initial content
a(t) input rate )
w(t) potential service rate { ::3 5 ('&ﬁl@
in —| Delay —— out Nyounce

Model: (Think cumulants)
Inflow: A(t) = f§ a(u)du, t>0

Potential Outflow: M(t) = [ u(u)du, t>0.

e We could start with primitives A, M, in which case they need not be continuous;
for example, they could be counting processes.

Netflow:  X(t) = Z(0) + A(t) — M(t), t>0.
Introduce Y (t) = cumulative potential lost during [0, ¢].

= QOutflow: D=M-Y (A arrivals; D departures)

= Balance: Z(t) = Z(0)+ A(t) — D(t)

Model Z=X+Y
Feasible Z20, Y10 (Y(0)=0)
Efficient Y least (hence, Y unique);
Existence: Y =(-X)* (Y = =X, when Z(0) = 0);

X(t) = . inf tX (u), which is called the lower envelope of X.

32



-

“Proof” Y

Least ¥ 10 }é/“\\\ /

st. Y > X
—X

When Z(0) =0:

=X-X

—3

Z
X = lower envelope.

|

Equivalent characterization via complementarity: (LCP/DCP)

Y least <=> ZdY =0, i.e. Y increases at t
only when Z(t) =0.

In words: potential lost due to idleness.

Claim (Skorohod) Given X € RCLL (Right Continuous Left Limit),

there exists a unique (Y, Z) such that

Z = X+Y,
zZ > 0, Y710,
ZdY = 0.

Proof Existence by checking Y =(-X)* (= -XAQ0).

Uniqueness by Lyapunov-function argument:
(Note: if minimality is established, then uniqueness is automatic.)
If (Y3, Z;), i = 1,2, are two solutions, then consider
1 2
=51 - ¥)"

2



Assume, for simplicity, continuous Y;’s, in which case differentiate:
dy = (Vi - Y2)(dY1 — dYa) = (Z — Zo)(dY; — dYa)
= —-ZldYQ - Z2dY1 S O .
Deduce that n decreases, but also

7(0)=0 = =0

= Y=Y,
Outflow Dt)y=Mt)-Y() = /Oté(u)du, where 6(u) = outflow rate,
= YO = [ ) - sl

In terms of rates: dY > 0 implies 6 < p.

Now, either

6 = p or

0 < pu & dY >0,
= Z =0 (since ZdY = 0),
= d(X +Y) = 0 (consider a neighbourhood and differentiate),
= (a—p)+(p—-0)=a—-0=0.

Thus (Hall, pg. 190, Def. 6.6),

5(t) = { w(t)  when Z(t) > 0,

a(t)  when Z(t) =0.

Note that the above is not a direct definition of §, since it uses Z, which is defined in
terms of §.

3H



How to calculate Delay?

Define
W(t) = work-load at time ¢
(= time to process all that is present at time t)
= under FCFS, virtual waiting time.
Defining relation for W: Z(0) + A(t)
A
D(t—{- W(t)) = Z(O) -l-A(t) _____Y_V_(_tl___ D(t)
I
! !
I 1
i I
i ] -
t t+W(t)  time

Hence, Z(t + W () = Z(0) + A(t + W(t)) — A(t).

MOP’s over a finite horizon T

Averages Inflow: a =% [ a(t)dt;
Outflow: 5= % [ 8(t)dt;
Throughput: )\, defined when @ = 6 as their common value.
\
|
Al | eg. A= LA(T) = LD(T)
i
D(t) :
:
I
—
T

Queue length (Inventory): Z = %fé’“ Z(t)dt = %% Area.

- _ fTW(t)a(t)dt
Delay: W = A—(lf)' f(;T W(t)dA(t) (— W .
T

Rieman-Stiltjes

o5



Intuition:

— Discrete arrivals = W = ﬁ AT W, (as in Hall, Chap. 2);

— Absolutely continuous: «(t)dt arrivals during (¢, ¢ + dt), each suffering
a delay of W(t).

Little’s Conservation Law: Z =\ -W.
Cumulative lost potential Y (T').

Efficiency &(T)=1- S5 =

M(T) —
actual ™\
D(T) < JE5(t)dt , )
= , when applicable ].
M(T) o ult)d

potential

Example constant rates o(t) =a, p(t) = p.
(linear model)

A oa>n overloaded (p>1)
(supercritical)
7(0) . o= critically loaded (p=1)
" (critical)
a<u underloaded (p<1)
- . (subcritical)

Definition: p = a/u traffic (flow) intensity.

Natural extension: piecewise constant rates, as in National Cranberry (HBS case): {52”% Ary e

Example periodic rates e.g.

o (t)

\ / H = p

(If « has a period Ty, = 8, u has a period T, = 3, take period T' =T, - T, = 24.)

|

5



Long-run: &= %fép at)dt; =% [ p(t)dt;
p = &/f (Heyman-Whitt).
Short-run:  Phase-transitions (different from Hall, pg. 189-190, that has

stagnant — growth — decline — stagnant).

Short-Run Phase Transitions

Z ?{aa@ iowf

P, » . queue
. %@ﬁ Wuﬁw length

Z Eud of
*nash-Loan "

Overloaded at t Z(t) > 0;
Underloaded Z(t)=0 and (t) < p(t) (excess capacity, dY (t) > 0);
Critically loaded Z(t)y=0 and 4(t) =p(t) (balanced capacity, dY (t) = 0).
A
ou(t)
7 fHHIN u(o =
I
i |
: ! here overloaded
| | ! t» but _Qt_% <1
Q(t) A : overlopded | underloaded *
| |
| i t
| i H
| 1 i
i 1 l
| i i -
A i i
| | 1
1 | |
&0 | ! ! discontinuity:

y:
actual / : <_/ "the calmness
outflow : : s~ aftter the storm"

| 1 I
S=a S=pu 1 &=u , O=u
. Bt

The analogue of p, traffic intensity, is here (assume Z(0) = 0):

|

> 1 overloaded
=1 critically loaded
< 1 underloaded

p(t) = sup

0<s<t

S



¥
For finer approximatioMe must acknowledge more phases, as depicted in the fol-
lowing figure.

Underloaded Overloaded

Phase transition diagram for the asymptotic regions.
(Massey & Mandelbaum.)

References:

— Hall, RW., “Queueing Methods for Service and Manufacturing”’, Prentice Hall,
1991.

~ Harrison, J.M., “Brownian Motion and Stochastic Flow Systems”’, Wiley, 1985.

~ Mandelbaum, A. and Massey, William, A., “Strong approximations for time-dependent
queues”, Math. of Operations Research, 20, 33-64, 1995.
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Mathematical Framework
Reflection Mapping X—->X-XA0

(Regulator)
(X - X—-X, when X(0)=0).

Fundamental:

Flow analysis (Fluid Models);

e Fconomics;

Stochastic Processes;

— Skorohod (needed cumulant Y'1);
— Queueing Models (later);

Approximations.

Idea of Approximations: Z = f(X), f continuous (Lipshitz).

Hence, X ~ X implies Z~ Z = f(X

——

X =~ X fluid = Z=f(X) fluid approximations.

A

X ~ X+ X diffusion = Z = f(X + X) diffusion refinements.

Reference: Harrison, Chapter 2 (which covers also finite buffers, and two-node networks).

% Oine wrore ﬁ

§Q%wéﬁﬁ

1. Rates (o prak Load)

2. Quewes (9 omgestion)

{i < tnd N wrl. ﬁa%ﬂ/

,:»

8
( Totggnals )

29
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Predictable Queues

Fluid Models and
Diffusion Approximations

for Time-Varying Queues with

Abandonment and Retrials

with
Bill Massey
Marty Reiman
Brian Rider

Sasha Stolyar



Sudden Rush Hour

n = 50 servers; p=1

A = 110 foro <t <11, X\ = 10 otherwise

Lambda(t) = 110 (on 9 <=t <= 11), 110 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
90 T T T T T T T T T

—_— Ql-ode
- = — Q2-ode
@] @) Q1-sim
X X Q2-sim
~~~~~~ variance envelopes

80




Call Center: A Multiserver Queue with

Abandonment and Retrials

A
- & QAN
2
4 Qo) Q4(t) -
Bt Wt (Q1() - ng)™
.

b Br (=W (Q1(0 - np)”

Qa(t)

[@@...]




Primitives (Time-Varying Predictably)

At

Uz

Bt

(1oh

1/u?

exogenous arrival rate

e.g., continuously changing, sudden peak

service rate

e.g., change in nature of work or fatigue

number of servers

e.g., in response to predictably varying workload

abandonment rate while waiting
e.g., in response to IVR discouragement
at predictable overloading

probability of no retrial

average time to retry

Large system: 17 T oo scaling parameter. Now define

QU() via )\t — ?7)\75

neg — 1NNt

What do we get, as 7 T o0?



Fluid Model
Replacing random processes by their rates yields

QO (1) = (), Q1))

Solution to nonlinear differential balance equations
d
QW = A= i V(1) An)
+p2 QS (1) — 8 (I (1) — )T

B1(1 — ) QP () — n)t
— 12 QP (%)

d (o)
7t Q7 (1)

Justification: Functional Strong Law of Large Numbers

with At — 77>\t7 ne — MNng.
Asn T oo,

1
ZQ"t) — QW (t), uniformly on compacts, a.s.
n

given convergence att = O



Diffusion Refinement

d
Q") =nQP®) + vn Q@) +o(vn)
Justification: Functional Central Limit Theorem

NG %Q”(t)—Q(‘”(t) 4 0W@), inDIO,o0),

given convergence at t = 0.

Q1) solution to stochastic differential equation.

If the set of critical times {t > O : ng)(t) = n;} has Lebesque
measure zero, then Q1) is a Gaussian process. In this case, one
can deduce ordinary differential equations for

EQW(t), VarQ(t): confidence envelopes

These ode’s are easily solved numerically (in a spreadsheet, via for-

ward differences).



What if P-{Retrial } increases to 0.75 from 0.25 ?

Lambda(t) = 110 (on 9 <=t <= 11), 10 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.75
90

T T T T T T T T T
_— Q1l-ode
- = = Q2-ode
L O O Ql-sim 4
80 X X Q2-sim
variance envelopes
70 b
60 |- b
50 R i
I N
N
A\
a0t x> B
! \
1 N
N | [N
L I . XN 4
30 s BV SN
I X N
X N
1 XN
20 IR KN i
X XL
0F !: XX
/-
| J % * o I I I I
0 2 4 6 8 10 12 14 16 18 20
time

Lambda(t) = 110 (on 9 <=t <= 11), 110 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
90

T T T T T T T T T

e Q1-ode
80 - - = Q2-ode B

O O Q1-sim

X X Q2-sim

variance envelopes .
70 -\ i
60 - b
50 - B
40 b
30 b
20 b
/AN .
X X
/ X~
10 e g
& ' o xR >?‘><3<
Y X X xxx X x
e N) e N vl 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
time



Starting Empty and Approaching Stationarity

Lambda(t) = 110, n = 50, mul = 1.0, mu2 = 0.2, beta = 2.0, P(retrial) = 0.2
100 T T T T T T T T T

X
/% E— Q1l-ode
X - - = Q2-ode
20 R o O  Ql-sim B
RV X X Q2-sim
. Vel variance envelopes
lO . />< -
N
52( I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20
time
Lambda(t) = 110, n = 50, mul = 1.0, mu2 = 0.2, beta = 2.0, P(retrial) = 0.8
700 T T T T T T T T T
_— Q1-ode .
600 - - == Q2-ode : =4
o O  Ql-sim L PR
X X Q2-sim 7 xX
variance envelopes - oxX x
LT X L
500 - : L i
L - X
- X E
o oxX
- X
X x
e ><)( B
e X -
400 X h
7%
e x X B
<X
/>< X B
L3 o
/x X
300 - /x;x : i
X
£ X )
X
Q)(
200 - L i
R
. ;X
a5
Nl
100 L ¢ b
=R
.'i(‘X/X
X
X)( 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time



3. Numerical Examples

Our numerical examples cover the case of time-varying behavior only for the external
arrival rate \;.-We make p! = 1, p? = 0.2, and Q1(0) = Q2(0) = 0 but let n, 3, and ¥

range over a variety of different constants.

The first two examples, see Figure 2, that we consider actually have the arrival rate A
equal to a constant 110 with n = 50, 8 = 2.0, and ¥ = 0.2 and 0.8. This is an overloaded
system, see [8], i.e. Ql ( ) > n for large enough ¢, and equations (1) and (2) indicate that
ng)(t) — ¢; and QU ( ) = g2 as t — oo. Setting & (O)( t) = %?ng)(t) =0ast— oo,
then ¢; and ¢ solve the linear equations

At pPqp —p'n—Blg—n) =0 (12)
and
Bl =) (g —n) — puq, = 0. (13)
These equations can be easily solved to yield
A—p B(1—) ) = u'n
=n+ and = . 14
“ N e )

Substituting in ¢ = 0.2 and the other parameters indicated above yields ¢; = 200,
g2 = 1200. This case corresponds to the graph of the left in Figure 2 and indicates
that this system is still far from equilibrium at time 20. With ¢ = 0.8 (so the probability
of retrials is equal to 0.2) we obtain ¢ = 87.5 and ¢; = 75. This case corresponds to
the graph on the right in Figure 2. Here it appears that Q % has essentially reached
equilibrium by the time ¢ = 20, while Q2 has a bit more to go.

In general, the accuracy for the computation of the fluid approximation can be checked
by a simple test that only requlres a v1sua1 inspection of the graphs.



Sample Mean vs. Fluid Approximation

Queue Lengths ( A+ = 20 or 100)

queue length means

queue length means

80

70

60

a
o

N
o

w
o

20

10

70

n=50, mul=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 20 (t in [0,2), [4,6), [8,10) etc) else 100

T T T T T T T

— gl-ode
—%— gl-sim
— - g2-ode
—5- g2-sim

o)

time

n=50, mul=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 40 (t in [0,2), [4,6), [8,10) etc) else 80

20

T T T T T T T ! T

time



Variances and Covariances

queue length covariance matrix entries

queue length covariance matrix entries

140

120

100

140

120

100

80

60

20

Queue Lengths

n=50, mul=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 20 (t in [0,2), [4,6), [8,10) etc) else 100

T T T

— (gl-variance-ode
—=— gl-variance-sim
— - g2-variance-ode
- g2-variance-sim
+ covariance-ode
/. covariance-sim
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n=50, mul=1, mu2=.2, beta=2, P(retrial)=.5, lambda = 40 (t in [0,2), [4,6), [8,10) etc) else 80

T T T

— gl-variance-ode
—<— gl-variance-sim
— - g2-variance-ode
—5- g2-variance-sim
- covariance-ode
/. covariance-sim

T

T T T T T

10 12 14 16 18 20
time
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Sample Density vs. Gaussian Approximation

Multi-Server Queue

n=50,mul=1mu2=2,beta=.2,P(retrial)=.5,lambda = 20 (t in [0,2),[4,6),[8,10) etc) else 100
T T T T T T T T

"x=" = queue length empirical law

0.07
"=" = queue length limit law

o
o
I

5

g, queue length density
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20 30 40 50 60 70 80 ) 100

n=50,mul=1,mu2=2,beta=.2,P(retrial)=.5,lambda = 40 (t in [0,2),[4,6),[8,10) etc) else 80
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Sample Mean vs. Fluid Approximation

Virtual Waiting Time

n=50,mul=1mu2=2,beta=.2,P(retrial)=.5,lambda = 20 (t in [0,2),[4,6),[8,10) etc) else 100
0.45 T T T T T T T

—— waiting time mean ode
—=— waiting time mean sim

0.35F

0.251

virtual waiting time mean

0.15f

0.051

n=50,mul=1,mu2=2,beta=.2,P(retrial)=.5,lambda = 40 (t in [0,2),[4,6),[8,10) etc) else 80
0.35 T T T T T T T T T

—— waiting time ode
03k —*— waiting time sim

0.251

0.151

virtual waiting time mean

0.05
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Back to the Multiserver Queue with

Abandonment and Retrials

i (Qq () Any)

Q,(t)

ME Qo(1)

Bt Wt (Q1(0) —ng)?

Bt (1-wp) (Q1() - ng)™



Sample Path Construction of a Multiserver

Queue with Abandonment and Retrials

Q1(t) = Q1(0) + A (/o )\Sds)

A3, ( /O Q2<s>u§ds) 4 ( /O (Q1(s) A m)u;ds)

A ( [ @ —nys- ¢3>ds)

— AP (/O (Q1(s) — n8)+/63¢sd3)

and
Q2(t) =

Q2(0) + A%, ( /O (Q1(s) —ns)TBs(1 — ws)d8>

— A5 (/0 Q2(8)H§ds) :

A < Poisson(1), independent.



Fluid Limit for the Multiserver Queue
with Abandonment and Retrials
(2 O.D.E.s)

d

= QP = M+u2 QW - ut (@ ®) Ani)

— Bt (ng)(t) — nt>+

and

Q1) = A1 — ) (QPW) — ) —u? Q).

Can be solved numerically (forward Euler) in a spreadsheet.



Diffusion Moments
for the Multiserver Queue with

Abandonment and Retrials

Let B,(t) = E [ §1>(t)], Fo(t) = E [ g”(t)]
Assume the set {t ‘Q&O)(t) = nt} has Lebesque measure zero.

Then

d

— 1
B0 = — (Wl 010w ) B

+ pui Eo(t)

and

d
— E>(t) = B:(1 — ) Er (t)l{ng(t)znt} — puf Ex(t).



More Diffusion Moments
(A Grand Total of 7 O.D.E.s)

Let Vi(t) = Var [ (t)], Vo(t) = Var [ (t)},

and C(t) = Cov [ (t), (t)]. Then

% ) = -2 (5t1{c2§°><t>>m} + 1{@@(1&)@}) i)
+ 2+ 0 (@@ )"+ it (@O0 Am)
+ 123 (1),
Doty = —252v0) + 41— (@O 1) — i)
+ 12Q57 (1) + 268:(1 — Y)C(D)1 g0 ()5
and
% C®) = — (Bligewzny +Hlge @) C®

+ uE(Va(®) = (1) = Bi(1 = ) (V1) — i)

— 12 (1)



Example: Spiked Arrival Rate:
A(t) = 110, if 9 <t < 11 otherwise \(¢t) = 10,

pu1 =1.0,u2 =0.1, 3 =2.0,n =50,y = 0.25

Lambda(t) = 110 (on 9 <=t <=11), 110 (otherwise). n = 50, mul = 1.0, mu2 = 0.1, beta = 2.0, P(retrial) = 0.25
90 T T T T T T T T T

e Q1-ode
- — = Q2-ode
O O Q1-sim
X X Q2-sim
variance envelopes

80




Theory Generalizes to

Jackson Networks with Abandonment

1t @ (Qi() A ny)

N—— Qi)

| B Qi) — )
B (Qk(® - np)*

Further generalizations: Pre-Emptive Priorities



Bottleneck Analysis

Inventory Build-up Diagrams, based on National Cranberry
(Recall EOQ,...) (Recall Burger-King) (in Reading Packet: Fluid Models)

A peak day: e 18,000 bbl’s (barrels of 100 lbs. each)
e 70% wet harvested (requires drying)
e Trucks arrive from 7:00 a.m., over 12 hours
e Processing starts at 11:00 a.m.
e Processing bottleneck: drying, at 600 bbl’s per hour
(Capacity = max. sustainable processing rate)
e Bin capacity for wet: 3200 bbl’s
e 75 bbl’s per truck (avg.)

- Draw inventory build-up diagrams of berries, arriving to RP1.

- Identify berries in bins; where are the rest? analyze it!

Q: Average wait of a truck?
- Process (bottleneck) analysis:

What if buy more bins? buy an additional dryer?

What if start processing at 7:00 a.m.?

Service analogy:

e front-office + back-office (banks, telephones)
T T
service production

e hospitals (operating rooms, recovery rooms)

e ports (inventory in ships; bottlenecks = unloading crews,router)

e More ?
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AT NATIONAL CRANBERRY COOPERATIVE RP1

CRANBERRY TRUCKS ARRIVE AT RP1 ARRIVALS TO RP1

v v v
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TRUCK QUEUE
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3000
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55 800 2000 667
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Types of Queues

e Perpetual Queues: every customers waits.

— Examples: public services (courts), field-services, oper-
ating rooms, ...

— How to cope: reduce arrival (rates), increase service ca-
pacity, reservations (if feasible), . ..

— Models: fluid models.

e Predictable Queues: arrival rate exceeds service capacity
during predictable time-periods.

— Examples: Traffic jams, restaurants during peak hours,
accountants at year’s end, popular concerts, airports (se-
curity checks, check-in, customs) .. .

— How to cope: capacity (staffing) allocation, overlapping
shifts during peak hours, flexible working hours, .. .

— Models: fluid models, stochastic models.

e Stochastic Queues: number-arrivals exceeds servers’ ca-
pacity during stochastic (random) periods.

— Examples: supermarkets, telephone services, bank-branches,
emergency-departments, . . .

— How to cope: dynamic staffing, information (e.g. reallo-
cate servers), standardization (reducing std.: in arrivals,
via reservations; in services, via TQM) ...

— Models: stochastic queueing models.
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OPT AND Q-CONTROL

Unbalanced Plant

The Ten
Commandments
of Scheduling

Ways to Increase
Qutput at the
Bottleneck

This term refers to the amount of work at each work center in a job shop.
It is impossible to have a “perfectly balanced” job shop running at full

capacity where the output of one work center feeds to the next one just at

the time when it receives a new unit from upstream. This is because of the
statistical distribution in performance times—one workstation completing
a job early may have to wait for its next unit in order to start working.
Thus, the workstation has idle time at that point. On the other hand, the
work center may take more than the average time and delay the next work-
station. The result of this ““unbalance” is that jobs accumulate in various
locations and are not evenly distributed throughout the system.

OPT has 10 rules that are excellent for any job shop. These are shown in
Exhibit 515.2.

Bottleneck Operations

TR RS

A bottleneck is that operation which limits output in the production
sequence. No matter how fast the other operations are, system output can
be no faster than the bottleneck. Bottlenecks can occur because of equip-
ment limitations or a shortage of material, personnel, or facilities.

Once a bottleneck is identified, production can be increased by a variety
of possible actions:

1. Adding more of whatever resource is limited there: personnel, ma-
chines, etc.

2. Using alternate equipment or routing. For example, some of the work
can be routed to other—though perhaps more costly and lesser qual-
ity—equipment.

3. Reducing setup time. If the equipment is already operating at maxi-
murm capadity, then some savings may be realized by adding jigs, han-
dling equipment, redesign of tooling, etc. in order to speed up change-
overs.

4. Running larger lot sizes. Total time at a work center consists of differ-

ent kinds of time: processing time, maintenance time, setup time, and

other wait time such as waiting for parts etc. Qutput can be increased
by making fewer changeovers using larger lots and thus reducing the
total amount of time spent in setups. '

Clearing up area. Often, by doinga relayout, or removing material that

may be obstructing good working conditions, output can be improved.

Working overtime. '

Subcontracting.

Delaying the promised due date of products requiring that facility.

Investing in faster equipment or higher skilled personnel.

»
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The Fhlld Vlew . ?m%&@w#ﬁiﬁ

» Predictable variability is dominant (Std << Mean)

« The value of the fluid-view increases with the
complextity of the system from which it originates

+ Legitimate models of flow systems
— Often simple and sufficient; empirical, predictive
 Capacity analysis
* Inventory build-up diagrams
« Mean-value analysis
»  Approximations
— First-order fluid approx. of stochastic systems
» Strong Laws of Large Numbers
(vs. Second-order diffusion approx., Central Limits)
— Long-run
» Long horizon, smooth-out variability (strategic)
— Short-run
» Short horizon, deterministic (operational)
» Technical tools
— Lyapunov functions to establish stability (Long-run)
— Building blocks for stochastic models (M(t)/M(t)/1)

p
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