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A Deterministic Model of a Service Station (Fluid View)

Primitives
Z(0) initial content
α(t) input rate
µ(t) potential service rate

in Delay out

Model: (Think cumulants)
Inflow: A(t) =

∫ t
0 α(u)du, t ≥ 0 ;

Potential Outflow: M(t) =
∫ t
0 µ(u)du, t ≥ 0 .

• We could start with primitives A, M , in which case they need not be continuous;
for example, they could be counting processes.

Netflow: X(t) = Z(0) + A(t)−M(t), t ≥ 0.

Introduce Y (t) = cumulative potential lost during [0, t].

⇒ Outflow: D = M − Y (A arrivals; D departures)

⇒ Balance: Z(t) = Z(0) + A(t)−D(t)

= Z(0) + A(t)− [M(t)− Y (t)]

= X(t) + Y (t), t ≥ 0 .

Model Z = X + Y

Feasible Z ≥ 0, Y ↑ 0 (Y (0) = 0);

Efficient Y least (hence, Y unique);

Existence: Y = (−X)+ (Y = −X, when Z(0) = 0);

X(t) = inf
0≤u≤t

X(u), which is called the lower envelope of X.
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“Proof”

Least Y ↑ 0
s.t. Y ≥ −X

When Z(0) = 0 :

Z = X −X,
X = lower envelope.

Y

X

X

Z

X

Equivalent characterization via complementarity: (LCP/DCP)

Y least <=> ZdY = 0, i.e. Y increases at t
only when Z(t) = 0 .

In words: potential lost due to idleness.

Claim (Skorohod) Given X ∈ RCLL (Right Continuous Left Limit),

there exists a unique (Y, Z) such that

Z = X + Y,

Z ≥ 0, Y ↑ 0,

ZdY = 0 .

Proof Existence by checking Y = (−X)+ (= −X ∧ 0).

Uniqueness by Lyapunov-function argument:

(Note: if minimality is established, then uniqueness is automatic.)

If (Yi, Zi), i = 1, 2, are two solutions, then consider

η =
1

2
(Y1 − Y2)

2.
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Assume, for simplicity, continuous Yi’s, in which case differentiate:

dη = (Y1 − Y2)(dY1 − dY2) = (Z1 − Z2)(dY1 − dY2)

= −Z1dY2 − Z2dY1 ≤ 0 .

Deduce that η decreases, but also

η(0) = 0 ⇒ η ≡ 0

⇒ Y1 ≡ Y2.

Outflow D(t) = M(t)− Y (t) =
∫ t

0
δ(u)du, where δ(u) = outflow rate,

⇒ Y (t) =
∫ t

0
[µ(u)− δ(u)]du .

In terms of rates: dY ≥ 0 implies δ ≤ µ.

Now, either

δ = µ or

δ < µ ⇔ dY > 0,

⇒ Z = 0 (since ZdY = 0),

⇒ d(X + Y ) = 0 (consider a neighbourhood and differentiate),

⇒ (α− µ) + (µ− δ) = α− δ = 0.

Thus (Hall, pg. 190, Def. 6.6),

δ(t) =





µ(t) when Z(t) > 0,

α(t) when Z(t) = 0 .

Note that the above is not a direct definition of δ, since it uses Z, which is defined in
terms of δ.
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How to calculate Delay?

Define

W (t) = work-load at time t

(= time to process all that is present at time t)

= under FCFS, virtual waiting time.

Defining relation for W :

D(t + W (t)) = Z(0) + A(t) W(t)

time

Z(t)

Z(0) + A(t)

Z(0)

t t+W(t)

D(t)

Hence, Z(t + W (t)) = Z(0) + A(t + W (t))− A(t).

MOP’s over a finite horizon T :

Averages Inflow: ᾱ = 1
T

∫ T
0 α(t)dt;

Outflow: δ̄ = 1
T

∫ T
0 δ(t)dt;

Throughput: λ, defined when ᾱ = δ̄ as their common value.

A(t)

D(t)

T

eg. λ = 1
T
A(T ) = 1

T
D(T ).

Queue length (Inventory): Z̄ = 1
T

∫ T
0 Z(t)dt = 1

T
× Area.

Delay: W̄ = 1
A(T )

∫ T
0 W (t)dA(t)

(
=

∫ T

0
W (t)α(t)dt∫ T

0
α(t)dt

)
.

↑
Rieman-Stiltjes
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Intuition:

– Discrete arrivals ⇒ W̄ = 1
A(T )

∑A(T )
n=1 Wn (as in Hall, Chap. 2);

– Absolutely continuous: α(t)dt arrivals during (t, t + dt), each suffering
a delay of W (t).

Little’s Conservation Law: Z̄ = λ · W̄ .

Cumulative lost potential Y (T ).

Efficiency ε(T ) = 1− Y (T )
M(T )

=

actual ↘
=

D(T )

M(T )

(
=

∫ T
0 δ(t)dt

∫ T
0 µ(t)dt

, when applicable

)
.

potential ↗

Example constant rates α(t) ≡ α , µ(t) ≡ µ.
(linear model)

overloaded (ρ > 1)
(supercritical)

critically loaded (ρ = 1)
(critical)

underloaded (ρ < 1)
(subcritical)

Z(0)

α < µ

α = µ

α > µ

Definition: ρ = α/µ traffic (flow) intensity.

Natural extension: piecewise constant rates, as in National Cranberry (HBS case).

Example periodic rates e.g.

α

µ

(t)

(t)

t

= µ

(If α has a period Tα = 8, µ has a period Tµ = 3, take period T = Tα · Tµ = 24.)
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Long-run: ᾱ = 1
T

∫ T
0 α(t)dt; µ̄ = 1

T

∫ T
0 µ(t)dt;

ρ = ᾱ/µ̄ (Heyman-Whitt).

Short-run: Phase-transitions (different from Hall, pg. 189–190, that has
stagnant → growth → decline → stagnant).

Short-Run Phase Transitions

Overloaded at t : Z(t) > 0;

Underloaded : Z(t) = 0 and δ(t) < µ(t) (excess capacity, dY (t) > 0);

Critically loaded : Z(t) = 0 and δ(t) = µ(t) (balanced capacity, dY (t) = 0).

�� ��

��
�

��
�

α (t)

µ

underloaded

t

overloaded

here overloaded
α (t)
µ (t)

but < 1

Q(t)

length
queue

discontinuity:

after the storm
the calmness"

"

δ=αδ=µδ=µδ=α

(t) = µ

(t)

outflow
actual

δ

The analogue of ρ, traffic intensity, is here (assume Z(0) = 0):

ρ(t) = sup
0≤s≤t

∫ t
s α(u)du∫ t
s µ(u)du





> 1 overloaded
= 1 critically loaded
< 1 underloaded
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For finer approximations, we must acknowledge more phases, as depicted in the fol-
lowing figure.

Middle of
Critical
Loading

OverloadedUnderloaded

End of
Overloading

End of
Critical
Loading

Onset of
Critical
Loading

Phase transition diagram for the asymptotic regions.
(Massey & Mandelbaum.)
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Mathematical Framework

Reflection Mapping X → X −X ∧ 0
(Regulator)

(X → X −X , when X(0) = 0) .

Fundamental:

• Flow analysis (Fluid Models);

• Economics;

• Stochastic Processes;

– Skorohod (needed cumulant Y !);

– Queueing Models (later);

• Approximations.

Idea of Approximations: Z = f(X), f continuous (Lipshitz).

Hence, X ≈ X̃ implies Z ≈ Z̃ = f(X̃)

X ≈ X̄ fluid ⇒ Z̄ = f(X̄) fluid approximations.

X ≈ X̄ + X̂ diffusion ⇒ Ẑ = f(X̄ + X̂) diffusion refinements.

Reference: Harrison, Chapter 2 (which covers also finite buffers, and two-node networks).
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