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A Deterministic Model of a Service Station (Fluid View)

Primitives Z(0) initial content
a(t) input rate
u(t) potential service rate

in ——»| Delay —» out

Model: (Think cumulants)
Inflow:  A(t) = [3 a(u)du, t>0;

Potential Outflow: M(t) = [i p(u)du, t>0.

e We could start with primitives A, M, in which case they need not be continuous;
for example, they could be counting processes.

Netflow: X(t)=Z(0)+ A(t)— M(t), t>0.

Introduce  Y(t) = cumulative potential lost during [0, ¢].
= Outflow: D=M-Y (A arrivals; D departures)
= Balance: Z(t) = Z(0)+A(t) - D(t)

+A
= Z(0) + A(t) = [M(t) = Y ()]
= X(W)+Y(®t), t>0.

Model =X+Y
Feasible Z2>20,Y7170 (Y(0) =0);
Efficient Y least (hence, Y unique);
Existence: Y =(-X)+ (Y = =X, when Z(0) = 0);

X(t) = inf X(u), which is called the lower envelope of X.

0<u<t



“Proof”

Least Y T 0

st.Y > -X
—X

When Z(0) =0:
Z=X-X,
X = lower envelope.

|><

Equivalent characterization via complementarity: (LCP/DCP)

Y least <=> ZdY =0, i.e.

In words: potential lost due to idleness.

Y increases at t
only when Z(t) =0.

Claim (Skorohod) Given X € RCLL (Right Continuous Left Limit),

there exists a unique (Y, Z) such that

A
A
Zdy

Proof Existence by checking Y = (—X)*

>

X +Y,
0, Y710,
0.

(= —XA0).

Uniqueness by Lyapunov-function argument:

(Note: if minimality is established, then uniqueness is automatic.)

If (Y;, Z;), i = 1,2, are two solutions, then consider

1
n= §(Y1 - Y2)2‘



Assume, for simplicity, continuous Y;’s, in which case differentiate:
dy = (Yi ~2)(dYi —dYy) = (2 — Z,)(dY; — dYy)
= —7Z1dYs — ZydY; <0 .
Deduce that 1 decreases, but also

n0)=0 = n=0

= Y =Y,
Outflow D(t)=M(t)-Y(t) = /Otd(u)du, where d(u) = outflow rate,
= Y0 = [ ) — S

In terms of rates: dY > 0 implies § < pu.

Now, either

0 = u or

0 < p & dY >0,
= Z =0 (since ZdY = 0),
= d(X +Y) =0 (consider a neighbourhood and differentiate),
= (a—p)+p—»0)=a—-0=0.

Thus (Hall, pg. 190, Def. 6.6),
wu(t)  when Z(t) >0,
a(t)  when Z(t) =0.

Note that the above is not a direct definition of ¢, since it uses Z, which is defined in
terms of 9.



How to calculate Delay?

Define
W(t) = work-load at time ¢
(= time to process all that is present at time t)
= under FCFS, virtual waiting time.
Defining relation for W: Z(0) + A(t)

D(t+W(t)) = Z(0) + A(t)

Z(0)

t t+W(t) time
Hence, Z(t + W (t)) = Z(0) + A(t + W (t)) — A(t).
MOP’s over a finite horizon T"
Averages  Inflow: a= %[ a(t)dt;
Outflow: 5= %fOT o(t)dt;
Throughput: A, defined when @ = § as their common value.
A
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Queue length (Inventory): 7 =L [ Z(t)dt = £ Area.

- T W(t)a(t)dt
Delay: W = ﬁ Jo W(t)dA(t) (Z fOfOTa(t)dt '
7

Rieman-Stiltjes



Intuition:

— Discrete arrivals = W = ﬁ ng) W,  (as in Hall, Chap. 2);

— Absolutely continuous: «(t)dt arrivals during (¢,t + dt), each suffering
a delay of W (t).

Little’s Conservation Law: Z =\ -W.
Cumulative lost potential Y (7).
Efficiency ¢(T)=1- Y —
actual N\,
D(T) Jo O(t)dt

= —~= |=>%—-—, when applicable).
M(T) ( Jo n(t)dt
potential

Example constant rates a(t) =« , u(t)=p
(linear model)

A a>p overloaded (p>1)

(supercritical)
Z(0) - a=-p cri’giéally loaded (p=1)

(critical)
<
asH underloaded (p<1)
- - (subcritical)

Definition: p = «/u traffic (flow) intensity.

Natural extension: piecewise constant rates, as in National Cranberry (HBS case).

Example periodic rates e.g.

a(d

(D) = M

|

(If « has a period T, = 8, p has a period T}, = 3, take period T' =T, - T,, = 24.)
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Long-run: a = %fOT a(t)dt; o= %fOT p(t)dt;
p = &/ (Heyman-Whitt).

Short-run:  Phase-transitions (different from Hall, pg. 189-190, that has
stagnant — growth — decline — stagnant).

Short-Run Phase Transitions
Overloaded at t :  Z(t) > 0;
Underloaded : Z(t)=0 and J(t) < u(t) (excess capacity, dY (t) > 0);
Critically loaded : Z(t)=0 and 4(t)

p(t)  (balanced capacity, dY (t) = 0).

A
at)
/ il , u() = u
: : here overl oaded
: : : t» but fl((t) <1
A ' |
Q(t) : over|oaded : underloaded
queue | |
length | ! |
T
) | i : discontinuity:
actual / ! /"thecalmness
outflow | | ! — dfterthestorm’
5= &= 1 &=p  d=u

The analogue of p, traffic intensity, is here (assume Z(0) = 0):

. > 1 overloaded
Js a(w)du { =1 critically loaded

p(t) = sup G-
<t [, p(u)du < 1 underloaded

0<s



For finer approximations, we must acknowledge more phases, as depicted in the fol-
lowing figure.
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Phase transition diagram for the asymptotic regions.
(Massey & Mandelbaum.)
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Mathematical Framework

Reflection Mapping X—-X-XA0
(Regulator)
(X - X —X, when X(0)=0).

FPundamental:

e Flow analysis (Fluid Models);
e Economics;
e Stochastic Processes;

— Skorohod (needed cumulant Y!);
— Queueing Models (later);

e Approximations.

Idea of Approximations: Z = f(X), f continuous (Lipshitz).
Hence, X ~ X implies Z ~ Z = f(X)

A~ —

X ~ X fluid = Z=f(X) fluid approximations.
= Z=f(X+X) diffusion refinements.

X ~ X + X diffusion

Reference: Harrison, Chapter 2 (which covers also finite buffers, and two-node networks).



