

A Deterministic Model of a Service Station (Fluid View)

Primitives

$Z(0)$	initial content
$\alpha(t)$	input rate
$\mu(t)$	<i>potential</i> service rate

Model: (Think cumulants)

$$\text{Inflow: } A(t) = \int_0^t \alpha(u) du, \quad t \geq 0;$$

$$\text{Potential Outflow: } M(t) = \int_0^t \mu(u) du, \quad t \geq 0.$$

- We could start with primitives A, M , in which case they need not be continuous; for example, they could be counting processes.

$$\text{Netflow: } X(t) = Z(0) + A(t) - M(t), \quad t \geq 0.$$

Introduce $Y(t) = \text{cumulative potential lost during } [0, t]$.

$$\Rightarrow \text{Outflow: } D = M - Y \quad (\mathbf{A} \text{ arrivals; } \mathbf{D} \text{ departures})$$

$$\begin{aligned} \Rightarrow \text{Balance: } Z(t) &= Z(0) + A(t) - D(t) \\ &= Z(0) + A(t) - [M(t) - Y(t)] \\ &= X(t) + Y(t), \quad t \geq 0. \end{aligned}$$

$$\text{Model} \quad Z = X + Y$$

$$\text{Feasible} \quad Z \geq 0, \quad Y \uparrow 0 \quad (Y(0) = 0);$$

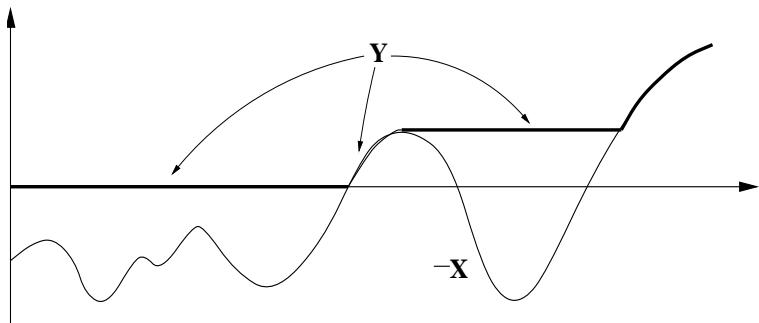
$$\text{Efficient} \quad Y \text{ least} \quad (\text{hence, } Y \text{ unique});$$

$$\text{Existence: } Y = \overline{(-X)^+} \quad (Y = -\underline{X}, \text{ when } Z(0) = 0);$$

$\underline{X}(t) = \inf_{0 \leq u \leq t} X(u)$, which is called the **lower envelope** of X .

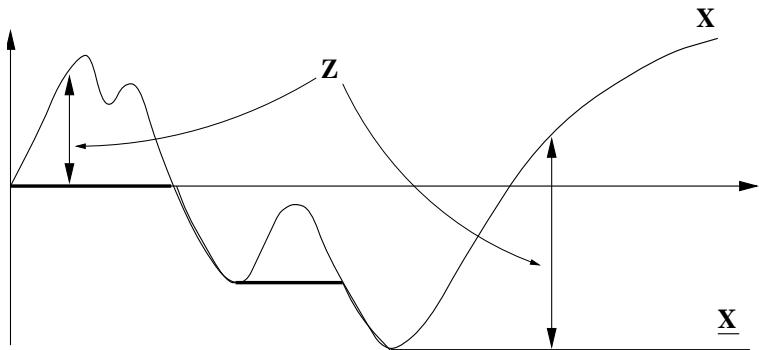
“Proof”

Least $Y \uparrow 0$
s.t. $Y \geq -X$



When $Z(0) = 0$:

$Z = X - \underline{X}$,
 \underline{X} = lower envelope.



Equivalent characterization via complementarity: (LCP/DCP)

Y least $\Leftrightarrow ZdY = 0$, i.e. Y increases at t
only when $Z(t) = 0$.

In words: potential lost due to idleness.

Claim (Skorohod) Given $X \in \text{RCLL}$ (**Right Continuous Left Limit**),

there exists a unique (Y, Z) such that

$$\begin{aligned} Z &= X + Y, \\ Z &\geq 0, \quad Y \uparrow 0, \\ ZdY &= 0. \end{aligned}$$

Proof Existence by checking $Y = \overline{(-X)^+}$ ($= -\underline{X} \wedge 0$).

Uniqueness by Lyapunov-function argument:

(Note: if minimality is established, then uniqueness is automatic.)

If (Y_i, Z_i) , $i = 1, 2$, are two solutions, then consider

$$\eta = \frac{1}{2}(Y_1 - Y_2)^2.$$

Assume, for simplicity, continuous Y_i 's, in which case differentiate:

$$\begin{aligned} d\eta = (Y_1 - Y_2)(dY_1 - dY_2) &= (Z_1 - Z_2)(dY_1 - dY_2) \\ &= -Z_1 dY_2 - Z_2 dY_1 \leq 0. \end{aligned}$$

Deduce that η decreases, but also

$$\begin{aligned} \eta(0) = 0 &\Rightarrow \eta \equiv 0 \\ &\Rightarrow Y_1 \equiv Y_2. \end{aligned}$$

Outflow

$$\begin{aligned} D(t) &= M(t) - Y(t) = \int_0^t \delta(u) du, \quad \text{where } \delta(u) = \text{outflow rate}, \\ \Rightarrow Y(t) &= \int_0^t [\mu(u) - \delta(u)] du. \end{aligned}$$

In terms of rates: $dY \geq 0$ implies $\delta \leq \mu$.

Now, either

$$\begin{aligned} \delta &= \mu \quad \text{or} \\ \delta &< \mu \Leftrightarrow dY > 0, \\ &\Rightarrow Z = 0 \text{ (since } ZdY = 0\text{)}, \\ &\Rightarrow d(X + Y) = 0 \text{ (consider a neighbourhood and differentiate)}, \\ &\Rightarrow (\alpha - \mu) + (\mu - \delta) = \alpha - \delta = 0. \end{aligned}$$

Thus (Hall, pg. 190, Def. 6.6),

$$\delta(t) = \begin{cases} \mu(t) & \text{when } Z(t) > 0, \\ \alpha(t) & \text{when } Z(t) = 0. \end{cases}$$

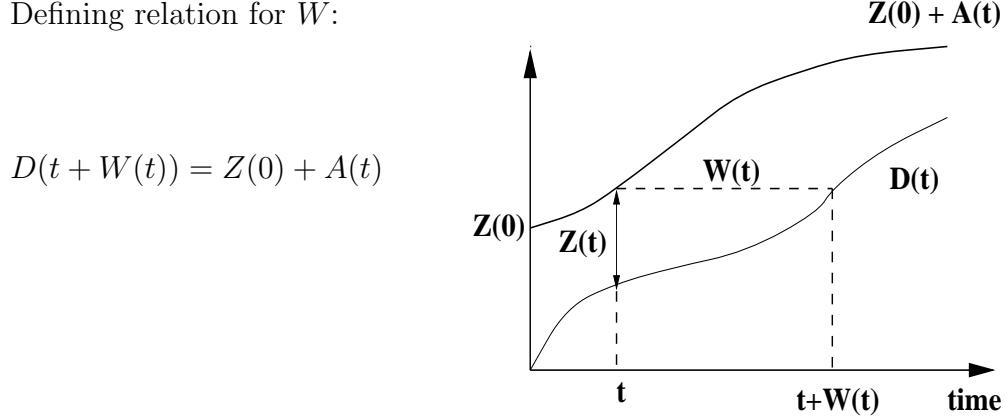
Note that the above is *not* a direct definition of δ , since it uses Z , which is defined in terms of δ .

How to calculate **Delay**?

Define

$W(t)$ = work-load at time t
 $(=$ time to process all that is present at time t)
 $=$ under FCFS, virtual waiting time.

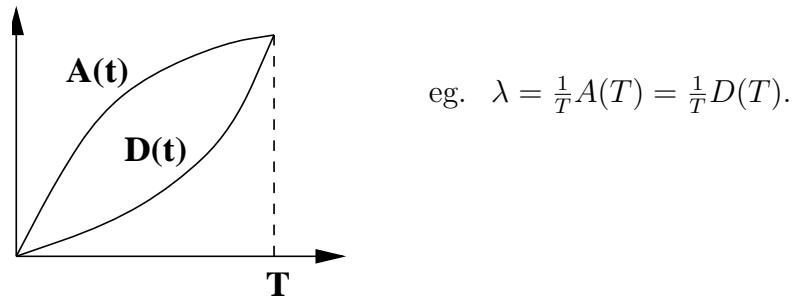
Defining relation for W :



Hence, $Z(t + W(t)) = Z(0) + A(t + W(t)) - A(t)$.

MOP's over a finite horizon T :

Averages **Inflow:** $\bar{\alpha} = \frac{1}{T} \int_0^T \alpha(t) dt;$
Outflow: $\bar{\delta} = \frac{1}{T} \int_0^T \delta(t) dt;$
Throughput: λ , defined when $\bar{\alpha} = \bar{\delta}$ as their common value.



Queue length (Inventory): $\bar{Z} = \frac{1}{T} \int_0^T Z(t) dt = \frac{1}{T} \times \text{Area}$.

Delay: $\bar{W} = \frac{1}{A(T)} \int_0^T W(t) dA(t) \quad \left(= \frac{\int_0^T W(t) \alpha(t) dt}{\int_0^T \alpha(t) dt} \right)$.

↑
Rieman-Stiltjes

Intuition:

- Discrete arrivals $\Rightarrow \bar{W} = \frac{1}{A(T)} \sum_{n=1}^{A(T)} W_n$ (as in Hall, Chap. 2);
- Absolutely continuous: $\alpha(t)dt$ arrivals during $(t, t + dt)$, each suffering a delay of $W(t)$.

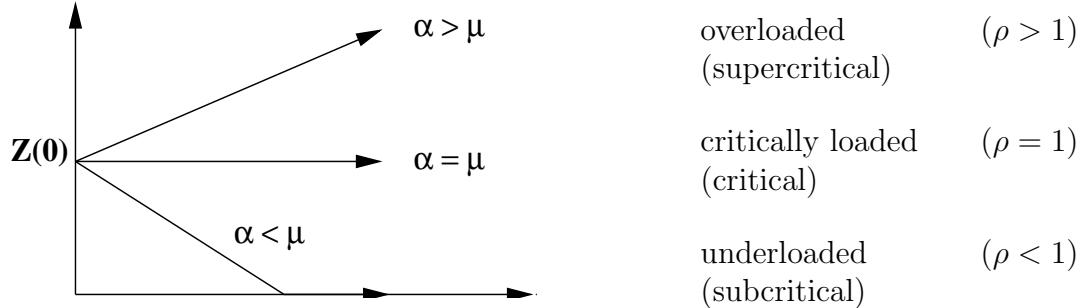
Little's Conservation Law: $\bar{Z} = \lambda \cdot \bar{W}$.

Cumulative lost potential $Y(T)$.

Efficiency $\varepsilon(T) = 1 - \frac{Y(T)}{M(T)} =$

$$\frac{\text{actual}}{\text{potential}} = \frac{D(T)}{M(T)} \quad \left(= \frac{\int_0^T \delta(t)dt}{\int_0^T \mu(t)dt}, \text{ when applicable} \right).$$

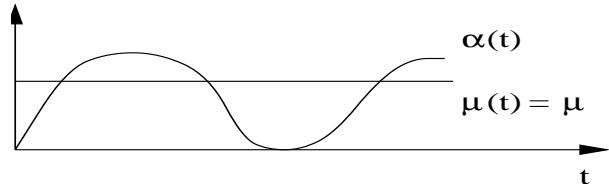
Example *constant rates* $\alpha(t) \equiv \alpha$, $\mu(t) \equiv \mu$.
(linear model)



Definition: $\rho = \alpha/\mu$ **traffic (flow) intensity**.

Natural *extension*: piecewise constant rates, as in National Cranberry (HBS case).

Example *periodic rates* e.g.



(If α has a period $T_\alpha = 8$, μ has a period $T_\mu = 3$, take period $T = T_\alpha \cdot T_\mu = 24$.)

Long-run: $\bar{\alpha} = \frac{1}{T} \int_0^T \alpha(t) dt; \quad \bar{\mu} = \frac{1}{T} \int_0^T \mu(t) dt;$

$\rho = \bar{\alpha}/\bar{\mu}$ (Heyman-Whitt).

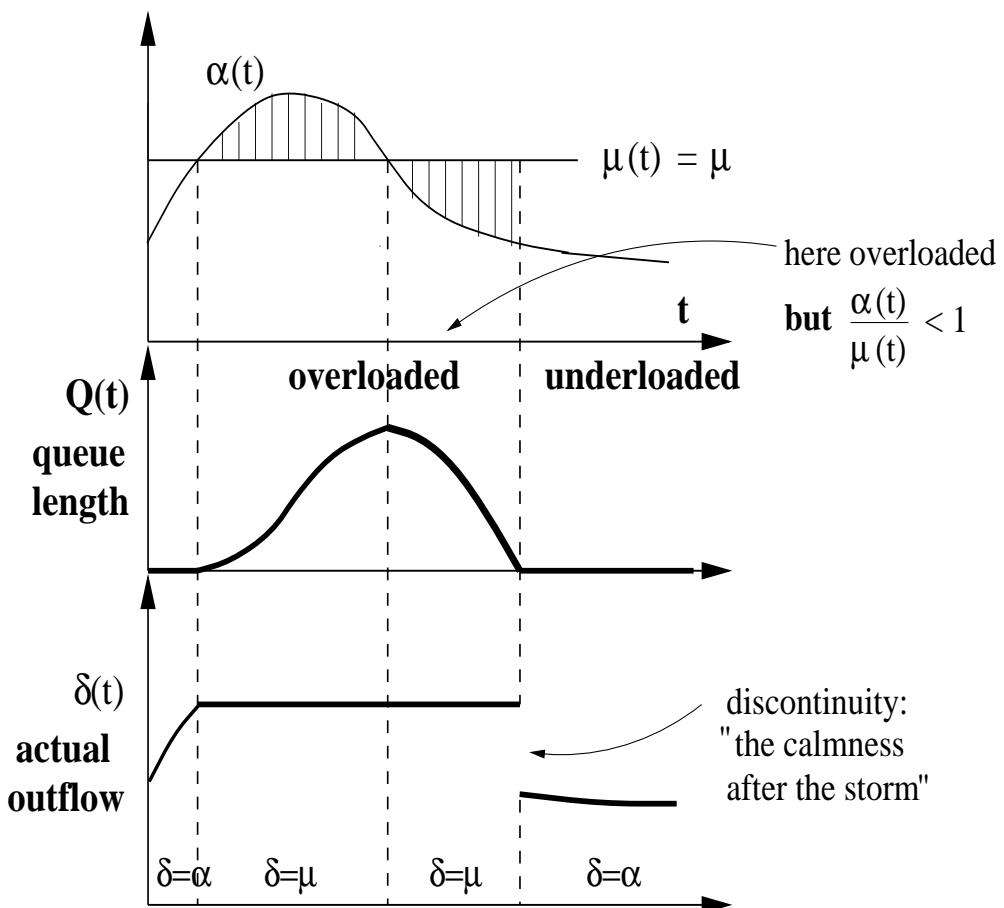
Short-run: Phase-transitions (different from Hall, pg. 189–190, that has stagnant \rightarrow growth \rightarrow decline \rightarrow stagnant).

Short-Run Phase Transitions

Overloaded at t : $Z(t) > 0$;

Underloaded : $Z(t) = 0$ and $\delta(t) < \mu(t)$ (excess capacity, $dY(t) > 0$);

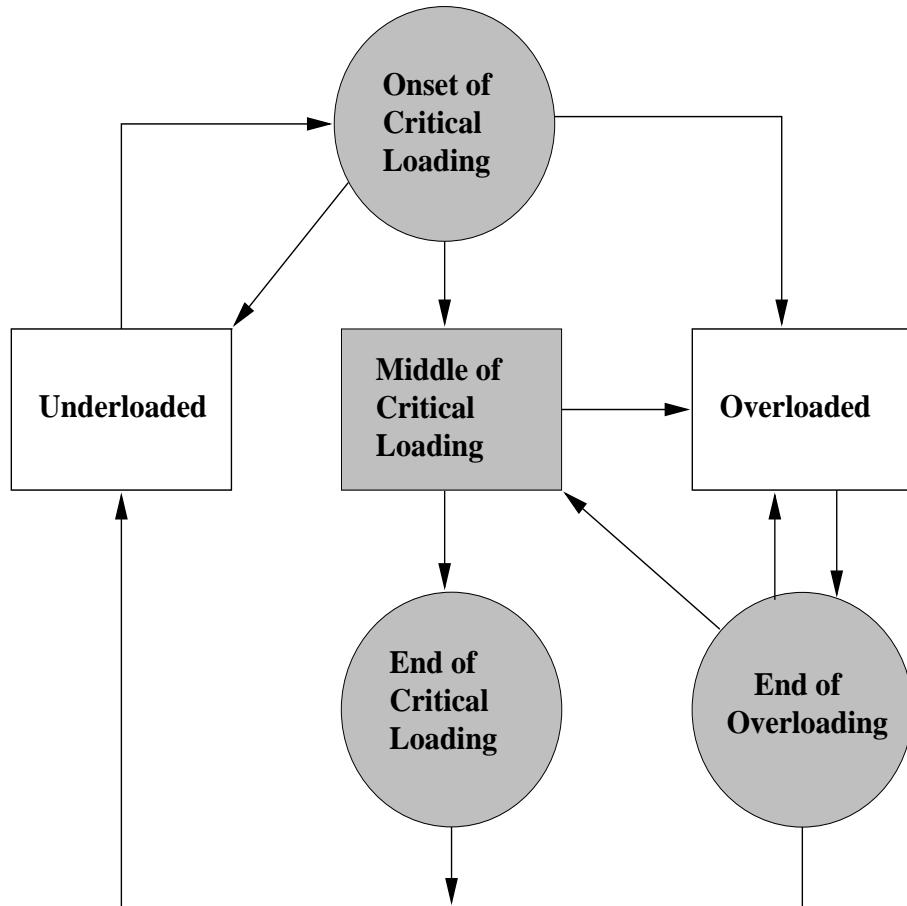
Critically loaded : $Z(t) = 0$ and $\delta(t) = \mu(t)$ (balanced capacity, $dY(t) = 0$).



The analogue of ρ , traffic intensity, is here (assume $Z(0) = 0$):

$$\rho(t) = \sup_{0 \leq s \leq t} \frac{\int_s^t \alpha(u) du}{\int_s^t \mu(u) du} \quad \begin{cases} > 1 & \text{overloaded} \\ = 1 & \text{critically loaded} \\ < 1 & \text{underloaded} \end{cases}$$

For finer approximations, we must acknowledge more phases, as depicted in the following figure.



Phase transition diagram for the asymptotic regions.
(Massey & Mandelbaum.)

References:

- Hall, R.W., “*Queueing Methods for Service and Manufacturing*”, Prentice Hall, 1991.
- Harrison, J.M., “*Brownian Motion and Stochastic Flow Systems*”, Wiley, 1985.
- Mandelbaum, A. and Massey, William, A., “Strong approximations for time-dependent queues”, *Math. of Operations Research*, 20, 33-64, 1995.

Mathematical Framework

$$\begin{array}{ll}
 \text{Reflection Mapping} & X \rightarrow X - \underline{X} \wedge 0 \\
 \text{(Regulator)} & (X \rightarrow X - \underline{X}, \quad \text{when } X(0) = 0).
 \end{array}$$

Fundamental:

- Flow analysis (Fluid Models);
- Economics;
- Stochastic Processes;
 - Skorohod (needed cumulant $Y!$);
 - Queueing Models (later);
- Approximations.

Idea of Approximations: $Z = f(X)$, f continuous (Lipshitz).

Hence, $X \approx \tilde{X}$ implies $Z \approx \tilde{Z} = f(\tilde{X})$

$X \approx \bar{X}$ fluid $\Rightarrow \bar{Z} = f(\bar{X})$ fluid approximations.

$X \approx \bar{X} + \hat{X}$ diffusion $\Rightarrow \hat{Z} = f(\bar{X} + \hat{X})$ diffusion refinements.

Reference: Harrison, Chapter 2 (which covers also finite buffers, and two-node networks).