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The collection of vehicular tolls at Port Authority tunnels and bridges is
one of the most important operations conducted by the police personnel.
More than 250 traffic officers are utilized, and the payroll costs exceed a mil-
lion dollars annually. In staffing its toll plazas the Port Authority at-
tempts to handle traffic with a minimum number of toll collectors con-
sistent with uniformly good service to the public and properly spaced relief
periods for the toll collectors. This requires finding the level of traffic
delays that gives the best compromise between the conflicting objectives
of economy and service. In the past the number of toll collectors pro-
vided for operating a toll plaza was determined by judgment based on ex-
perience and a rule-of-thumb work standard which had not been related
to service. Judgment was likewise used to allocate manpower and control
the number of toll booths opened at any time. This method resulted in
patron delays observed to vary from 2 to 50 sec. The tools of probability
theory provide methods for dealing with the problem in quantitative
terms. They enable determination of the relations between traffic vol-
umes, number of toll booths, and grade of service. With this knowledge
the optimum grade of service can be established in a logical manner and
the number of toll booths required at any time of day can be specified in
advance. Use of this method permitted savings in toll collection ex-
penses and better service.

HE BUSINESS OF THE PORT OF NEW YORK AUTHORITY

is public service, which it renders by the construction and operation of
various facilities and the promotion and protection of commerce in the Port
district. Its operations involve a variety of things, including at airports
such items as ramp coordination, fire-fighting and other emergency work,
baggage handling, and parking-lot operations; at seaports such items as
dock-space allocation, warehousing, and materials handling; at land ter-
minals such items as truck loading, bus loading and dispatching, and rail
and truck freight distribution; at tunnels and bridges such items as vehicu-
lar-traffic control, accident prevention, and the collection of vehicular tolls,
with which this paper deals. Although the list is incomplete, I believe it
is sufficient to indicate a fertile area for operations research.
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Operations-research methods are being applied to this public service
by the Operations Standards Division of the Operations Department, a
staff department filling the role of consultant on operating problems en-
countered by four line departments, each of which is responsible for the
physical and financial results of one of the four groups of facilities previ-
ously mentioned. OR methods are now being extended to the Comp-
troller’s Department, where sample auditing of various accounts is being
investigated. The division’s introduction to operations research came
about during a comprehensive study of the Port Authority police force—
a group of 1000 men comprising the largest single class of employees in the
Port Authority.

The purpose of the police study was to determine whether the police
staffing of the various facilities was sound and economical. Achieving this
purpose necessitated careful analysis of the numerous operations conducted
by the police and the establishment of standards for these operations.
Good standards are sometimes rather difficult to establish, and the com-
plete police study, which was originally scheduled to take 6 months,
actually required 14. The additional time was largely consumed in opera-
tional analyses—such as the one covered in this paper—which were not
foreseen in the beginning, but which proved to be well worth while. The
annual operating savings effected soon after completion of the study
amounted to more than ten times the cost of the study itself with potential
future savings of more than twenty times the study cost. These are
annual savings, repeated each year. In addition, capital savings were
achieved of nearly ten times the study cost. Operations research can be
credited with important portions of these financial results, and for such
other results as better service to the public and benefits to police personnel.

TOLL COLLECTION

The collection of vehicular tolls is a major part of the Port Authority
police operations —more than one-fourth of the police personnel are utilized
in this function. In the preliminary stages of our analysis, it was observed
that the results obtained from toll operations were not altogether satisfac-
tory. The quality of the service varied appreciably from time to time,
being considerably better than necessary in some instances, thus involving
idle toll collectors; and being unsatisfactory in others, resulting in patron
complaints. The average delay, for instance, was observed to vary from
2 to 50 sec.

Prior to our operational analysis, toll booths were manned almost en-
tirely on the basis of opinion and judgment and the manpower supplied
was first determined by budget procedures. A facility included in its
budget the number of toll collectors it believed was required in the forth-
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coming year. These requirements were then reviewed by management
in the light of the expected annual traffic, past experience, and a rule of
thumb about how much traffic could be handled by a toll collector. The
manpower authorized and provided by this budget procedure was then
allocated by the facility to various days of the week and tours, and was
based on the composite judgment of the toll sergeants, who supervised the
toll operations, and their superiors. This is a typical management process.

On a given tour the actual number of toll booths manned at any par-
ticular time was left to the discretion of the toll sergeant onduty, who made
the best use he could of the manpower at his disposal. Toll sergeants are
rotated around the three tours and alternated between tolls and traffic
duty, making it difficult for a sergeant to become thoroughly familiar with
traffic on any tour. The principal operation required of the toll sergeant
is compromising the frequently conflicting requirements of traffic on the
one hand with personal and meal reliefs for the toll collectors on the
other. Since the toll sergeants have varying experience and different ideas
about how to operate, the results were not consistent. Some exercised good
judgment, and some did not; interviews with toll collectors indicated that
their relief requirements were in too many cases being unsatisfactorily met.
Precedence was generally given to the patron at the expense of the toll col-
lector when conflicts arose, but, since toll collecting is a rather nerve-
wracking job, extended working periods without a relief are very undesir-
able.

From the foregoing discussion, the general objectives of the study can
be seen to be (1) to evaluate the grade of service given to patrons and deter-
mine how it varies with the volume of traffic handled by toll lanes; (2) to
establish the optimum standards of service; and (3) to develop a more
precise method of controlling expenses and service while at the same time
providing for well-spaced reliefs to the toll collector.

OBSERVATIONS

The first type of data recorded was traffic arrivals at the toll plaza.
One observer counted the number of vehicles arriving in 30-sec intervals
and recorded the count along with the time, as shown in the first two col-
umns of Table I. Intervals of 30 sec were found to be about the shortest
that could be used to permit the observer to make recordings without
losing the count.

The second type of data recorded was the extent of the backup in each
open toll lane. These data, recorded by a second observer, were also taken
at 30-sec intervals and in synchronism with the traffic arrival recordings.

The third type of data was the toll transaction count. These data were
recorded at half-hourly intervals and whenever there was a change in the
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number or type of toll lanes. In some cases the number and type of lanes
opened were left to the toll sergeant, but in other cases the number and type
were regulated by the survey group in order to obtain information on spe-
cific arrangements and to create moderate amounts of congestion. These
data provide a check on the arrival count, with which they should agree
when adjusted for the change in accumulation at the beginning and end of

TABLE 1
SAMPLE oF RECORDED DaTa
, Vehicles in
Time, p.M. a’f:i&\iglcs Total og::in?fed
Lane A | Lane 6 | Lane 10 p
8:58
v 10 2 2 1 5 3
8:59 6 0 1 0 1 1
. 1 0 1 0 1 1
9:00 3 1 0 0 1 1
S 4 0 1 1 2 2
9:01 5 1 1 0 2 2
9:152 6 0 1 0 1 1
L 5 1 2 0 3 2
9:16 6 5 0 1 6 2
L 4 2 1 0 3 2
9:17 4 1 0 1 2 2
o 2 0 0 0 0 0
9:18 7 1 1 3 5 3
Totals®. ............ 205 41 55 38 134 76
Transactions®
9:18 . 2102 | 79785 | 97466 o
8:58 L. 2034 ' 79698 | 97416
Totals.............. . 68 | §7 | 50 205

* Fourteen minutes omitted.
b Similar to cash-register tally number.

an observation period. More importantly, they also permit computations
to be made for each lane individually, as well as for all lanes collectively.

Table I shows a sample of all three types of data, taken at the Lincoln
Tunnel when three left-hand toll booths were open in one direction and
were handling traffic at the rate of 615 vehicles per hour. Table I also
shows the preliminary steps taken in analyzing the date, these being the
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totals of each column, the total backup for the three lanes at each observa-
tion, and the number of lanes occupied at each observation.

COMPUTATIONS

One of the principal factors of interest is average delay. It is first desir-
able, however, to calculate the over-all time taken per vehicle to clear the
toll lanes; this includes both the delay, or waiting time, and the booth hold-
ing or servicing time. The over-all time used by all vehicles to get through
the toll lanes, based on the sample observations, is 4020 sec, and the average
is 19.6 sec. o

The total booth time used in handling vehicles during the observation
period of Table Iis the total number of occupancies observed—given by the:
total of the last column—multiplied by the observation interval, or 2280
sec. The average booth holding time is 11.1 sec. The average delay per
vehicle is the over-all time per vehicle less the booth holding time, or 8.5 sec.

Another item of interest is the average delay expressed as a multiple of
holding time, which I shall call ‘delay ratio.” This item is of particular
interest because of its use in delay theories, and also because it provides a
measurement of delay that is independent of fluctuations in holding time.
The delay ratio is average delay per vehicle divided by average booth
holding time, or 0.77.

The percentage of vehicles delayed might well be used as a measurement
of the grade of toll-booth service. This can be obtained by counting the
number of instances in which two or more vehicles were observed at a single
booth and dividing this count by the total number of booth occupancies
observed.. Another factor is average delay to delayed vehicles. This is the
average -delay to all vehicles divided by the percentage delayed.

The maximum delay can be estimated from the maximum backup and
the average booth holding time. In the example, the maximum backup
observed was six vehicles. This is found by inspection of the data. The
sixth vehicle waited for the five preceding ones, each assumed to have taken
the average booth holding time. Thus, the maximum delay is 55.5 sec.

The availability of an empty toll lane is still another factor that could
be used to measure the grade of toll-booth service. At first thought one
might state that this is complementary to the percentage of vehicles de-
layed, since any vehicle may go either into an occupied lane and be delayed
or an empty lane and not be delayed, and if drivers always picked an un-
occupied lane when available, this would be the case. Unfortunately, how-
ever, drivers often pick an occupied lane instead of an empty one even
though an empty lane is always available, and in so doing can delay all
vehicles. The number of instances when there were one or more lanes
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empty in the example was 31 out of 40, thusgiving a percentage availability
of 77.5. The complement to the percentage delayed is 55.

In addition to the previously mentioned items, any one of which could
be used to specify the grade of toll-booth service being given, there is in-
terest in the percentage occupancy of the toll booths, which is given by the
number of occupancies observed, divided by the total number of observa-
tions. In the example, this is 63.3.

These calculations have been made for the three toll lanes as a group.
By using the transaction counts shown at the bottom of Table I, all the
items can be calculated for each lane individually.

Having shown how a number of tentative service criteria could be
determined from the data, we shall, in the balance of the paper, concern
ourselves with only those that were actually used to arrive at service stand-
ards. Before going into an analysis of these, let us consider the analysis of
traffic arrivals.

TRAFFIC-ARRIVAL ANALYSIS

The traffic-arrival patterns were analyzed by forming frequency distri-
butions of the number of vehicles arriving in 30-sec intervals at various
volumes. Observations were formed into 200 vehicles-per-hour groups, and
in each group the number of occurrences of arrivals of 0, 1,2, 3, etc. vehicles
were counted and organized into a table. The empirical frequency of
occurrences of each arrival class was computed as a percentage of the total
number of intervals observed. These percentages were then plotted
against the arrival classes, as shown in Fig. 1, and frequency polygons were
drawn. These frequency distributions have rather good resemblances to
the distributions one would expect with pure-chance traffic. One feature
to be noted, however, is the tendency for the right-hand tails of the distribu-
tions at the higher volumes to be somewhat prolonged. The extension of
the distribution for the highest volume shown out to 28 along the abscissa
should be noted in particular.

Comparison for the same volumes of traffic can be made with the theoret-
ical distributions which are shown in Fig. 2. The similarity to the actual
distributions is quite evident; however, it will be noted that the right-hand
tails are not as prolonged. These theoretical distributions are Poisson at
the lower volumes and normal at the higher volumes.

A more easily observed comparison between the actual and the two
theoretical distributions is shown in Fig. 3, where they are plotted together.
These distributions pertain to a volume of 655 vehicles per hour at the
Lincoln Tunnel. The mean arrival rate is 5.46 vehicles per 30-sec interval,
and the standard deviation is 2.73 vehicles per 30-sec interval. In comput-
ing the Poisson and normal values the sample mean was used, but in the
case of the normal distribution the standard deviation used was the theoret-
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F1c. 1. Frequency distribution of traffic arrivals.
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Fr1a. 2. Theoretical frequency distribution of traffic arrivals.

ical one for a pure-chance distribution. In this example the Poisson, shown
solid, appears to give a better fit to the actual than the normal.
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Fi1a.4. Comparison of actual and theoretical traffic arrivals for 1100 vehicles
per hour at George Washington Bridge.

The arrival distributions at the George Washington Bridge, as well as
at the Lincoln Tunnel, were analyzed in the same manner with similar re-
sults, as shown in Fig. 4. This figure applies to a volume of 1100 vehicles
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per hour, with a mean of 9.17 and a standard deviation of 3.00. Here the
normal curve, shown solid, appears to fit slightly better than the Poisson.*

TableII shows the goodness of fit for a number of traffic volumes investi-
gated. There is a very evident tendency for the fit of both distributions to
deteriorate at the higher traffic volumes, although both continue to show
a satisfactory fit better than 0.05. This deterioration, however, is of some
interest since it corresponds with the extended right-hand tails of the actual
distributions that were previously noted. Both the extended tails and the
poorer fit at higher volumes can be explained by the development of con-
gestion, which causes the operation of one vehicle to interfere with the
operation of another. At still higher volumes it is apparent that the fit
would break down, and under bumper-to-bumper congestion the distribu-
tion would tend to become constant. The volume at which the fit becomes
unsatisfactory depends, of course, on the number of lanes in the roadway.
The column indicating the theoretical better fit is based on the theory that
the Poisson expresses the better approximation to the binomial below a
mean value of 5 and the normal the better approximation above this value.
This mean corresponds with a traffic volume of 120X5 equals 600 vehicles
per hour. Two exceptions to this theory, noted by asterisks in the table,

* The Poisson distribution is given by the expression P(x)=e¢ ™m*/x!, where
P(z) in this case is the probability of z vehicles arriving in any interval when the
average arrival rate is m. It will be noted that the Poisson distribution is fully

specified by a single parameter, the mean.
The normal distribution is given by the expression

F(z) =exp[— (z—m)?*/2s%]/s\/2m,

where F(z) is the probability of z vehicles arriving in any interval when the average
arrival rate is m and the standard deviation is s. For pure-chance traffic, where p
is the probability of any random vehicle arriving in a particular interval, ¢ the
probability of it not arriving, and n the total number of vehicles in the hour, the
standard deviation is s=+/npq.

Both of these distributions are close approximations of the binomial distribu-
tion given by the expression P(x)=C,"p*¢"*, when n, the number of vehicles, is
large and p is small. In the distribution of hourly vehicular traffic arrivals in
30-sec intervals, small p is 1/120, ¢ is 119/120, and = is the total traffic volume. How-
ever, our interest is more in the Poisson and normal distributions than the binomial,
since they are easier to deal with.

To learn which of these two theoretical distributions gives the better fit, the
chi-square test of fitness can be used. The chi-square value is given by the ex-
pression

=2 (=f) /s

where f, is the observed frequency and f; the theoretical. When these values have
been computed, they may be looked up in a table of chi-square values to obtain
the probability level of fit. A perfect fit would show a probability level of 1.00,
but a fit showing a probability level better than 0.05 is generally taken as satis-
factory.
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are not considered significant. The results support the belief that the true
distribution, before congestions enter as a factor, is binomial, and conse-
quently is a pure-chance distribution.

OCCUPANCY VS DELAY RATIO

Having established the randomness of traffic we thought that we would
be able to draw curves of traffic volumes vs each of the various service
criteria, and then find a delay theory that would agree closely enough with
the empirical curves for at least some of these criteria to be predictable
from theory. Unfortunately, such was not the case; for some delay fac-
tors satisfactory empirical curves could not be drawn because of the wide
dispersion of points. To determine accurately the correlation curves for
some of the service criteria directly from computed points would have
required a very large amount of data.

TABLE II
TrAFFIC-ARRIVAL GOODNESS oF FIT
Traffic . Theoretical
volume Poisson Normal best fit,
246 0.754 0.235 Poisson
480 0.966 0.743 Poisson
655 0.738* 0.459 Normal
865 0.842 0.882 Normal
1100 0.718 0.812 Normal
1265 0.359* 0.295 Normal
- 1580 0.191 0.575 Normal

The most obvious relation to seek to establish-—that between traffic
volumes and average delay in sec—fell into this category. One reason
for this is that average delay measured in sec is a function not only of
traffic volume but also of booth holding time. Because of differences in
traffic composition, holding times are different at different facilities, and
the data taken at one facility are not usable for another. Another factor
is that holding time is partly under the control of the toll collectors, who
in some cases knew they were being observed and were naturally influenced
to keep holding times lower than usual. These factors made the direct
plotting of average delay for each facility unsatisfactory.

To get around the difficulty our attention was directed to curves of
occupancy vs delay ratio. This relation is independent of holding time,
permitting data from different facilities to be combined. The scattering
of the points was appreciably reduced and, with the greater number of
observations available from combining all facilities, satisfactory empirical
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curves could be drawn. A further consideration is that delay theory is
developed on the basis of holding-time units, and it was desired to compare
the empirical results with the theories of Erlang, Molina, and the joint
theory of Pollaczek and Crommelin.

Erlang’s theory is given by the formula

ly*/2)] [z/(x—y)*]
H4+y+ @20+ @ /B)+ -+ =D 1+ @ /) e/ (x—y)]]

where d is average delay in units of holding time, x is the number of traffic
channels, and y is the traffic intensity in erlangs.! An erlang is defined as
the average occupancy during a time 7', divided by 7'. It is a dimension-
less unit, being similar in this respect to the decibel used to express values
of attenuation. For example, if three channels are each occupied one-
half the time of a period 7', the total occupancy is 1.5T and the traffic
intensity is 1.5 erlangs. The number of erlangs also expresses the average
number of traffic elements handled simultaneously. The delay formula
by Erlang is based on an assumption of exponentially distributed holding
times, where P(f)=et/* gives the probability of an element of traffic
selected at random having a holding time of at least ¢, when the average
holding time is h.

Molina’s formula constitutes a correction factor applied to Erlang’s
formula to alter it for constant holding-time distribution.? The correc-
tion factor is given by the expression

[/ @+ D11 — (y/2)"")/[1 = (y/2)7].

The Pollaczek-Crommelin formula, based on an assumption of constant
holding-time distribution,? is given by the expression

w=1 u—wz U! Yu=wz+1 u!

Figure 5 shows a comparison between values predicted by these for-
mulas and the empirical results for a single toll booth. The empirical
values are shown as plotted points. It can be seen that, as expected, the
Pollaczek-Crommelin formula shows a good fit, whereas both Molina’s and
Erlang’s formulas give delays considerably greater than the empirical re-
sults. This indicates that booth holding times are essentially constant in
distribution, and that the Pollaczek-Crommelin formula more accurately
portrays average delay at the higher occupancies than does Molina’s for-
mula, although there is not much choice between them at lower occupan-
cies. A sampling of holding times by means of stop-watch timing also
indicated booth holding times were more nearly constant than exponential
in distribution.
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In the case of four toll booths, shown in Fig. 6, the empirical results
show greater delays than any of the theories, and Erlang’s formula for
exponentially distributed holding times is closer to the empirical results
than the constant holding-time formulas. The reason for this is that pre-
viously mentioned—of traffic lining up at one booth while another toll lane
is empty. Because the traffic was found to be random, and because of
the fit of the Pollaczek-Crommelin formula to one toll booth, this poor
traffic distribution is virtually the sole cause of the much greater delays
found than that given by the constant holding-time formula. Our efforts
to adjust the formula for this factor were not successful, so it was neces-
sary to proceed with empirical values.

It will be noted that two empirical curves are shown for the case of four
toll booths, one curve applying to four left-hand toll booths and the other
to three lefts and one right. Left-hand toll booths are those on the driver’s
side of a vehicle passing through the lane, and right-hand toll booths are

TABLE III
ComraRIisON OF Four Lerr-HanDp wiTH THree LEFT-, ONe RicaT-HAND BooTHs
Percentage of |~ .
Correspond- Correspond- . 3
equal occu- ing percent-| Delay ratio| ing delay Inc]rease m Vlalue of
p;u}iyhfordfl age for for 4L ratio for .?]e ’} f%/r' Ij”II{I ‘fys
elrv-han DA y /0 (/]
boot hs 3L-1R 3L-1R ’
50 40 0.40 0.60 50 20
60 50 0.60 0.85 41 33
70 60 0.85 1.25 47 43
80 70 1.25 1.80 44 50
90 83 2.00 3.00 ! 50 69

the opposite. Both curves have been shown to illustrate the inferiority
of the right-hand booths.

This is illustrated even more clearly in Table III, which shows the per-
centage increase in delay ratio for equal occupancies and the reduction in
occupancy for equal delays when a right-hand booth is substituted for a
left. In the first comparison it will be noted that this results in an increase
in delay of approximately 50 per cent. The increased delay is suffered by
all traffic in the aggregate, not just by the traffic handled at the right-
hand booth.

In the second comparison it will be noted that at moderate delay levels
a right-hand toll booth has less than one-half the value of a left-hand toll
booth. The value of a right-hand booth increases as congestion at the
tolls plaza increases, thus indicating the overflow character of the right-
hand booths. As a consequence of these findings the Port Authority is
reconstructing all major tolls plazas to provide only left-hand toll booths.
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TRAFFIC VS HOLDING TIME

To convert the dimensionless ratios of occupancy and delay into the
practical units of vehicles per hour and seconds of delay requires a deter-
mination of holding-time values. In some delay problems, holding time
is unaffected by the traffic congestion and by the number of channels em-
ployed. This is the case, for instance, when dealing with telephone traffic.
But in the case of toll operations, as shown in Fig. 7, for the George Wash-
ington Bridge, holding time was found to be a function of traffic volume
and the number of toll booths employed. It can be seen that holding time
is appreciably longer at low volumes of traffic per lane than it is at high
volumes. As traffic per lane approaches zero, the holding time approacheg
a maximum value of approximately 13 sec, and as traffic volume rises to

N
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F1a. 7. Average booth holding time per vehicle at George
Washington Bridge.

the maximum that can be handled per lane, the holding time approaches
a minimum value of 834 sec. It will also be noted from the figure that
the greater the number of toll lanes used, the sooner the holding time
begins to drop. However, once it begins to drop, it does so in the same
manner for all groups of booths, i.e., in proportion to increases in traffic
per lane, the slope being approximately 1 second to 50 vehicles per lane
per hour. '

The explanations for this phenomenon seem apparent. In the first
place, holding time decreases as traffic per lane increases because both toll
collectors and patrons tend to expedite the operation under the pressure
of backed-up traffic. This seems to be a fairly common phenomenon in
waiting problems involving people who are aware of the amount of con-
gestion. In our field observations it was noticed that when traffic was
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light there was considerably more conversation between collector and
patron than when traffic was heavy. Another factor is that when there
is a waiting line at a toll booth, patrons have an opportunity, while wait-
ing, to get their tolls ready; whereas with an empty lane, the patron might
drive right up to the booth before reaching for this toll—and then have to
search to find it.

The explanation for the quicker drop in holding time for larger groups
of lanes appears to lie in the nonuniform distribution of traffic between the
open lanes. Certain lanes, particularly those having left-hand booths,
and those located near the center of the plaza, are considerably favored by
patrons over the others. The greater pressure of traffic in these favored
lanes brings about a reduction in holding time, even though the average
traffic per lane over all lanes may still be low. Since the favored lanes
handle the most traffic, they have a proportionately greater effect on the
average over-all lanes than do the less favored lanes.

When the curves of traffic per lane vs holding time were plotted, it was
found that there were few values at the high traffic volumes to define
clearly the location of the curves at these levels of traffic. The reason for
this is that to obtain points at heavy loadings per lane required the creation
of heavy congestion. This would result in complaints that might be em-
barrassing to answer. Therefore we sought other methods of finding where
the curves leveled off.

The principal method used consisted of stop-watch measurements of
toll transaction times and the calculation of vehicle times for various types
of transactions. Booth holding time is made up of two parts: One is the
time taken by the toll collector to receive the toll from the patron and, if
necessary, to give change or a receipt. The other is the time taken by the
vehicle to move into toll-paying position. The collection, or transaction,
time is taken as the interval between the time the wheels of a vehicle stop
rolling when it moves into a lane and the time they again start rolling when
the vehicle moves out of the lane. The vehicle time is taken as the interval
between the time one vehicle starts to leave and the following vehicle comes
to a stop in toll-paying position.

Using this breakdown of the holding time, it was relatively easy to
make stop-watch measurements of minimum transaction times, just by
watching the wheels of the vehicles as they came to a stop and started up
again in lanes having long lines. It would also have been easy to measure
the vehicle time in a similar fashion, but this was not considered necessary
since information is readily available on the acceleration and deceleration
of automotive vehicles, and these times could be determined from avail-
able curves.

The observations on transaction times, which were made on several
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hundred vehicles, and the determination of vehicles times from accelera-
tion-deceleration curves resulted in a breakdown of minimum booth hold-
ing times by types of vehicles and types of toll booths. This is shown in
Table IV. With this information it is possible to calculate minimum hold-
ing times for traffic composed of various percentages of passenger cars,
buses, trucks, and tractor-trailer units. For example, traffic at the Lincoln
Tunnel is, at peak periods, composed of about 64 per cent passenger vehi-
cles, 15 per cent buses, 14 per cent trucks, and 7 per cent tractor-trailer

TABLE IV
BrEARKDOWN OF AVERAGE MiniMmUM Houping TiMeEs FOR DIFFERENT VEHICLES

Toll time, ‘ Holding time,
Vehicle Vehicle time, sec sec

sec
LH RH LH RH

Passengerecar................... 5.0 3 4 8 9

Bus..... ... ... 6.5 3 4 9.5 10.5
Truek.......................... 6.0 5 6.5 11.0 12.5
Tractor-trailer. . ................ 7.5 6.5 8.0 14.0 15.5

units. The minimum holding times for left-hand and right-hand toll
booths can be computed as follows:

Left-Hand Booths

H.T.=0.64X840.15X9.54+0.14X11+0.07 X 14.
=5.141.441.5+1.0=9.0 sec.

Maximum booth capacity =3600/9=400 vehicles/hour.

Right-Hand Booths

H.T.=0.64X940.15X10.540.14X12.540.07X15.5.
=5.841.641.84+1.1=10.3 sec.

Maximum booth capacity =3600/10.3 =350 vehicles/hour.

As a check against this method, another method was utilized. At the
George Washington Bridge during 18 peak periods in which there was
heavy congestion due solely to overloaded toll booths, the average traffic
per lane was 403 vehicles. Assuming a 95 per cent occupancy at these
times, a minimum holding time of 0.95X(3600,/403)=8.5 was indicated.
This compares exactly with the results of the toll-time and vehicle-time
analysis with equal numbers of left- and right-hand booths handling a com-
position of traffic consisting entirely of passenger cars, which was virtually
the composition at the George Washington Bridge on the occasions men-
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tioned. This method is applicable only at a bridge, because at a tunnel
entrance the congestion caused by the tunnel itself during peak traffic
periods prevents traffic from moving out of toll booths when the transac-
tion is over, thus artificially lengthening the holding time, and at a tunnel
exit the tunnel holds back traffic, thus preventing saturation of the toll
booths.

DEVELOPMENT OF AVERAGE DELAY CURVES

Having established the relation of traffic per lane vs holding time, in
addition to the relation of percentage of occupancy vs delay ratio, it is
now practical to develop the relation of traffic vs average delay in seconds
that was originally sought. Table V shows sample computations of points
for a curve for four left-hand toll booths using values taken from the pre-

TABLE V
Trarric vs DrLay Points ror Four Lerr-Hanp BooTtHs

\’ell;gz(}els)é;er Total Holding Booth- |Occupancy,! Delay Delay,

h(;ur vehicles | time, sec| seconds % ratio sec
100 400 12.9 1290 36.0 0.20 2.6
150 600 12.7 1910 53.0 0.45 5.7
200 800 11.8 2360 65.5 0.73 8.6
250 | 1000 | 10.8 2700 75.0 1.02 11.0
300 ! 1200 | 9.8 2940 81.6 \ 1.31 12.8
350 | 1400 ! 8.9 3120 86.7 1 1.66 14.8
375 | 1500 8.7 3240 9.0 | 2.00 17.3
385 ! 1540 8.6 3300 91.7 I 2.36 . 20.2
400 | 1600 8.5 3400 94.4  3.40 | 299

vious two types of curve. Table V applies to the George Washington
Bridge only, since the holding-time values given in the third column apply
only to this facility. These points were computed by first assuming a
traffic volume per lane, and working from there. Take the point given
by 300 vehicles per lane per hour. The next column shows the total
traffic volume of 1200 for the four lanes. The third column gives the booth
holding time, 9.8 sec, which was read from the holding-time curves. The
booth holding time multiplied by the vehicles per lane gives 2940 booth-
seconds of traffic per lane shown in the fourth column. Dividing the latter
value by the 3600 booth-seconds available in 1 hr gives the 81.6 per cent
occupancy shown in the next column. Entering the occupancy-delay-
ratio curve for four left-hand toll booths at this occupancy gives a delay
ratio of 1.31, and multiplying the delay ratio by the holding time of 9.8
sec yields an average delay value of 12.8 sec.
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When points had been computed and plotted for all the various booth
combinations generally used at the George Washington Bridge, the result
was a family of curves, as shown in Fig. 8. From these curves, it is appar-
ent that the traffic-carrying capacity of different toll booths for a given
delay is not constant but instead varies appreciably between different com-
binations of booths for a gitven amount of delay. Before this analysis was
made, it was generally assumed by the management in scheduling man-
power that one toll booth was just about like another in all circumstances.
Again the overflow nature of the right-hand toll booths shows up here.
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FiG. 8. Average delay for various volumes of traffic at George
Washington Bridge.

The curves for combinations of four lefts with one to four rights all merge
into the curve for four left-hand booths alone at a volume of about 400
vehicles per hour. Below this volume the right-hand booths carry virtu-
ally no traffic.

One solution to the delay problem has now been achieved, but, before
it is used, some indication of its accuracy would be desirable. To see
whether the curves actually portrayed what was given by the original ob-
servations, values read from the curves were compared with the direct
computations of average delays from the data. In so doing it was found
that for observation periods of approximately 20 min the average error
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was 2.64 sec. Considering that the values computed from the data repre-
sent the mean of a sample of the population, it can be estimated that for
a sample of three times this size the probable error would be less by a
factor of one to the square root of 3, making it 1.53 sec. The average
delay of all observations was 11 sec, thus indicating that for hourly periods
the curves would predict average delay with a probable error of about 15
per cent. This, fortunately, was close enough for our purposes. If it had
not have been, we would have had to turn to some other criteria that could
be predicted for purposes of setting service standards and determining
how many toll booths are required for various volumes of traffic.

ANALYSIS OF TRAFFIC BACKUP

Very often in waiting problems, knowledge of the average delay in-
volved is insufficient. An analyst is interested in this, but he is also inter-
ested in the boundary conditions of what the worst delays might be under
given circumstances. If, on the occasion of an important appointment, a
motorist is delayed several minutes waiting in a line of many vehicles to
get through the toll booths, he would likely find little consolation in being
told that by using Port Authority facilities regularly he could expect his
average delay to be very nominal. This realization leads to an analysis
of traffic-backup behavior.

One way of analyzing backup behavior is simply to plot values of the
greatest backups observed against the traffic volume handled for each com-
bination of toll lanes. When this is done, the problem of wide scattering
again arises. For this particular relation the scattering is worse than for
any other investigated. From the limited amount of data taken, only
the roughest idea can be obtained of what maximum backup to expect and
how often to expect it for a given combination of toll booths handling a
given volume of traffic. It is therefore necessary to employ the methods
of mathematical statistics to determine the relation.

In organizing and summarizing the data shown in Table I for purposes
of statistical analysis of backup behavior, it was decided to consider the
number of vehicles in the longest waiting line, rather than the total amount
of backup behind all open toll booths. The reason, of course, is that we
are concerned with the one motorist who incurs the worst delay, and total
backup is not a measure of this because of the nonuniform distribution of
backup between the open lanes.

The first steps in the analysis of backup are similar to those taken in
the analysis of traffic arrivals. One difference, however, is the use of much
smaller samples. In the traffic-arrival analysis, the data were grouped into
200-vehicle volumes. By so grouping, samples consisting of a few hun-
dred intervals could be obtained, and the frequency polygons resulting
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from the samples were fairly smooth. In studying traffic arrivals, con-
sideration did not have to be given to the number and types of toll booths
employed, but, for the backup analysis, observations have to be so segre-
gated. The toll-booth arrangements are, in practice, changed two or more
times an hour because of changing traffic volume and because the reliefs
given to toll collectors sometimes result in a booth of one type being sub-
stituted for one of the other type. It is therefore expedient in analyzing
backup behavior, as was also the case in the average delay analysis, to use
periods of about 20 min. This provides samples of only about forty in-
tervals—two a minute for 20 min. To smooth out the irregularities in
the frequency distribution resulting from the small samples, a three-point
weighted moving average can be employed.

Figure 9 shows the results obtained in plotting frequency distributions
of the backup in the longest line for a combination of three left-hand toll
booths, after the observed distributions had been smoothed by averaging
and had been converted to a base of 100 to give frequency as a percentage
of total occurrences. These curves include cases from both the Lincoln
Tunnel and the George Washington Bridge. The first two curves, for
volumes of 575 and 670 vehicles per hour, are from the tunnel, and the
other two, for volumes of 705 and 890 vehicles per hour, are from the
bridge. It will be noted that the distributions resemble the traffic-arrival
distributions, as one might expect, since holding times are essentially con-
stant in distribution and therefore the cause of variations in backup is
largely the variation in traffic arrivals.

Figure 10 shows Poisson distributions corresponding to the actual dis-
tributions shown in Fig. 9. Except for the irregularities of the actual
distributions, they resemble the Poisson distributions. In computing
values for the Poisson distributions, the same mean value of backup found
in the actual distributions was employed. This feature is different from
the traffic-arrival analysis since in the latter it was unnecessary to deter-
mine the mean value empirically; it is given directly from the traffic volume
and observation interval. There is no doubt a definable relation between
traffic volume and the mean value of backup for a given booth combina-
tion, but we could develop no formula, either theoretical or empirical,
that would predict the mean value of backup for a given volume of traffic.

How closely the Poisson distribution fits the actual distribution of
backup is illustrated more clearly in Fig. 11, which shows both distribu-
tions plotted together. This case covers a condition of three left-hand
toll booths handling traffic at the rate of 615 vehicles per hour at the Lin-
coln Tunnel. This, incidentally, portrays the values given in the sample
data presented in Table I. TFor this case, the mean value of backup is
2.16 vehicles, and the standard deviation is 1.52 vehicles. The standard
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deviation of the mean, which will be used later, is 0.15. The chi-square
probability level for the Poisson is 0.64. For a normal distribution the
chi-square probability is only 0.01.

The results at the George Washington Bridge are comparable to those
at the Lincoln Tunnel, as shown in Fig. 12. This is at a slightly higher
volume of 705 vehicles per hour, and the mean backup value is 2.79 vehi-
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cles, the standard deviation is 1.67, and the standard deviation of the mean
is 0.31. The chi-square probability level (used here as a rough indicator
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of goodness of fit) for the Poisson is 0.55, and, for a normal distribution,
less than 0.01.

In the same way that the traffic-arrival patterns at the tunnel and the
bridge are nearly identical, the backup behavior is also nearly identical.
The identity is so close that we were quite unable to differentiate between
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the two facilities. This was rather surprising since there were quite dis-
cernible differences in average delay values between facilities because of
differences in traffic composition and holding time. We spent a consider-
able amount of effort trying to find differences in backup values, but with-
out success. It was decided that, except for conditions approaching satu-
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Fig. 12. Actual and theoretical maximum backup for 705 vehicles per hour
in three left lanes at George Washington Bridge.

ration, the greater amount of backup caused by a longer holding time for a
given traffic volume is reflected more in time units than in vehicle units.
As a specific illustration, the mean value of backup for 615 vehicles per
hour and three left-hand toll booths was found to be 2.16 vehicles, and the
booth holding time was 11.1 sec. This represents a backup in time units
of 2.16X11.1=24.0 sec. If the holding time increased say 20 per cent to
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13,3 sec and the time backup also increased 20 per cent to 28.8 sec, the
vehicle backup would remain the same at 2.16. Something close to this
seems to happen for small differences in holding time.

In all cases of backup distribution, the normal showed a poorer fit than
the Poisson so that the latter can be considered the true nature of the
backup distribution—up to a point. Table VI indicates that the Poisson
distribution does not hold indefinitely as traffic volumes are increased.
Starting with a rather remarkable fit of 0.93, at a volume of 575 vehicles
per hour, the goodness of fit drops off gradually reaching an unsatisfactory
value at a traffic volume of about 800 vehicles per hour. This particular
volume applies only to three left-hand toll booths, but the same deteriora-
tion of fit was observed at other volumes for all toll-booth combinations
as the traffic volumes approached values of approximately 60 to 75 per

TABLE VI
RELATION OF GOODNESS OF F1T oF BACKUP
10 PorssoN DiSTRIBUTION FOR THREE
Lerr-Hanp Torn Boorns

Traffic volume Goodness of fit
575 0.93
615 0.64
625 0.55
670 0.85
705 - 0.55
750 0.05
867 0.01
890 0.32

cent of saturation. The reason for this deterioration appears to be the
increasing carry-over of vehicles from one interval to the next as saturation
is approached. The traffic volume at which the Poisson distribution broke
down was termed the ‘Poisson point.’

TRAFFIC VOLUME VS MEAN VALUE OF BACKUP

Having established the range of usefulness of the Poisson distribution,
the next step is that of establishing the relation between traffic volumes
and the mean value of backup, the mean value being the sole parameter
necessary to specify the entire distribution. The only satisfactory method
found to determine mean values was to draw an empirical curve, as shown
in Fig. 13. To assist in locating the curve, the points were plotted to show
plus and minus one standard deviation of the mean. In many cases, as
in this one, most of the points were more or less clustered within the range
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of traffic volumes customarily handled by the booth combination con-
cerned. To obtain empirical values at higher traffic volumes would have
required the deliberate creation of excessive congestion, which would make
some patrons very unhappy. Fortunately, this is unnecessary because it
is obvious the curves approach the full occupancy capacity of the booth
combination asymptotically. TFull occupancy capacity is known to be ap-
proximately 400 vehicles per hour for left-hand booths at the Lincoln Tun-
nel and 450 at the George Washington Bridge. To be on the safe side,
the lower value was used, and the curve for three left-hand booths was
drawn to approach a volume of 1200 vehicles per hour.
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F1G. 13. Mean values of maximum backup for three left-hand toll booths.

Combining similar curves for various toll-booth combinations results
in the family of curves shown in Fig. 14. When the Poisson points were
plotted on this chart they were found to be very nearly in the straight line
shown dotted and labeled the ‘Poisson line.’

PROBABLE MAXIMUM BACKUP

Knowledge of the mean values of backup in the longest line, plus knowl-
edge that the distribution of this variable is Poisson, permit us to investi-
gate the boundary values, which can be determined by Poisson summations.
The question is what boundary values are we interested in? Or in tele-
phone terminology, what loss probability should be used? The answer to
this question depends somewhat on judgment. If the loss probability is
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made too large, say 0.1, the boundary value would be exceeded so fre-
quently that it would be a poor measure of the maximum delay that a
patron would incur. On the other hand, if the loss probability is made
too small, say 0.001, the boundary condition would occur so infrequently
as to be misleading in the other direction. Looking at this question in a
slightly different way, if we consider the period of interest to be 1 hr com-
posed of 120 30-sec intervals, and the boundary value of backup is taken
as that having a probability of 0.1 of being equaled or exceeded, the ex-
pected number of intervals of occurrence would be 0.1X120=12. If the
loss probability is taken as 0.001, then the expected number of intervals
that it would occur in 1 hr would be 0.12, and the maximum would be ex-
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pected to occur only once in over 8 hr. It therefore appears logical to
choose a loss probability of 0.01 to define what was called the ‘probable
maximum backup,’ since this maximum could be expected to occur or be
exceeded for about one 30-sec interval out of an hour. The family of
curves shown in Fig. 15 gives backup values at that probability level
These curves have again been extrapolated considerably beyond the data,
and the extrapolation has been made by approaching asymptotically traf-
fic volumes of 400 times the number of toll booths.

As in the case of the average delay curves it was considered advisable
to establish the reliability of the probable maximum backup curves by a
comparison with observed values. For some 53 periods of observation at
the Lincoln Tunnel and the George Washington Bridge covering from one
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to eight booths, over a period of about 20 hr, there were 26 individual ob-
servations out of 2379 in which the actual maximum backup equaled or
exceeded the probable maximum backup given by Fig. 15. The probabil-
ity of equaling or exceeding values read from the curves indicated by this
is 26/2379=0.0109, an error of 9 per cent from the objective of establishing
the p (0.01) values. Out of the 53 periods, which averaged about 20 min
each, there were 10 periods in which the backup exceeded the prediction
for one or more intervals of 30 sec. The average excess amounted to 1.4
vehicles and the maximum was 4. For 41 intervals the actual maximum
was less by an average amount of 1.5 vehicles and a maximum of 4.
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THE OPTIMIZING PROBLEM

Having solved the waiting-line problem in terms of average delay per
vehicle and probable maximum backup, the next problem is that of estab-
lishing an optimum level of service, i.e., of setting service standards. One
way i8 to select an upper limit of average delay, such as 20 sec, and to open
another toll booth when this limit is reached. Such an arbitrary decision
is difficult to support, and is hardly to be recommended in operations re-
search. Furthermore, the objective is not so much to place an upper limit
on delay as it is to control delay more closely than had been done in the
past. The principal dissatisfaction with former methods of manning toll
booths was that they varied so widely—from less than 2 to nearly 50 sec
under substantially normal off-peak conditions.

In order to reduce the extreme swings of average delay and at the same
time to optimize the service it is suggested that the standard should be a
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middle value rather than a maximum. As traffic increases, the average
delay should swing above the standard by an amount equal to the drop
below the standard when an additional booth is manned. The question
is how to select this middle value of delay in a logical manner with a mini-
mum of arbitrariness.

One way would be to assign relative values to traffic volumes handled
and serviced; for example, let 10 vehicles per booth-hour be considered
equivalent in value to an increase in delay of 1 sec. This method of equat-
ing would be hard to support logically. A better one along the same line
would be to consider patron time and toll-collector time of equal value.
Thus another booth would be opened when the traffic volume times the
reduction in delay to be achieved by another booth would equal 3600 sec.
Although this principle makes a certain amount of sense, it was not used.

Another way is to consider the point of diminishing returns. This
method has the advantage of being less controversial and comprises a con-
cept widely accepted and understood by management people. In this case
the cost is characterized by the delay and the return by the traffic volume.
The point where return starts diminishing in relation to the cost is that of
minimum curvature of the curves. Above this point the increases in traf-
fic volume attained for each increment of increase of delay becomes smaller
and smaller, approaching zero as the delay approaches infinity.

The points of diminishing return defined in this way can be determined
by inspection. For the George Washington Bridge they vary from 1014
to 16 sec with a weighted average of about 12 sec. For the Lincoln and
Holland tunnels, they average about 10 and 11 sec respectively. Since it
was desired to provide uniform service at the three crossings, the middle
value of 11 sec was adopted as the standard for all three.

Now capacity standards can be established for the various groups of
toll booths by equalizing the swing on each side of the standard delay as
additional booths are provided. Doing so at the George Washington
Bridge resulted in Table VII. It will be noted that the backup values at
the booth capacities for the standard average delay increase as the number
of booths are increased, ranging from 6 with one booth to 12 with eight
booths. Fortunately, this is a desirable result since experience has shown
that patrons are more willing to accept longer lines as traffic volumes in-
crease. Apparently they intuitively feel that a backup of 12 cars when
eight toll booths are open is qualitatively different from a backup of 12
cars with only one toll booth open.

HOURLY TRAFFIC PATTERN

At this point, two service criteria—average delay and maximum backup
—can be satisfactorily predicted when the traffic volume is known, and a
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standard for one has been established. The question that next arises is
how well traffic volumes can be predicted. This question requires a study
of the hourly pattern of traffic throughout the day and the dispersion from
day to day. This analysis was made by plotting hourly volumes on charts

TABLE VII
GEORGE WasHINGTON BRIDGE ToLL-Boorn CapaciTy

Booths : Backup,
v(é?)?:i(enst/ylfr Delay, sec number
Left-hand Right-hand of cars
1 225 0-16.9 6
2 450 5.1-15.5 7
3 750 6.5-14.0 8
4 1050 8.0-11.5 8
4 1 1250 10.5-12.0 9
4 2 1525 10.0-11.8 10
4 3 1850 10.2-11.5 11
4 4 2150 10.5-11.5 12
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FiG. 16. Hourly volume of westbound traffic on George Washington Bridge.

having time of day as abscissas and traffic volumes as ordinates. In mak-
ing this analysis it was found that the days in the middle of the week had
almost identical patterns and could be combined. Figure 16 shows a pat-
tern found for Tuesdays, Wednesdays, and Thursdays combined at the
George Washington Bridge for the summer of 1952. On the other days
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of the week each day was so different that it required separate treatment.

As can be seen in Fig. 16 two curves were drawn through certain of the
plotted points. One curve was drawn through median points, which was
the simplest way of obtaining an estimate of expected values of traffic
without many computations. Another curve was drawn through the peak
values as the simplest means of estimating the highest values of traffic to
be expected.

Inspection of the curves indicates a spread between median and peak
figures of from 10 to 60 per cent at the George Washington Bridge. At the
tunnels the spread was less, ranging from 10 to 30 per cent. These varia-
tions limit how closely toll booths can be scheduled in advance to provide
optimum service, which brings us to the last part of the problem, the
scheduling of toll booths and collectors.

THE SCHEDULING PROBLEM

In the scheduling of toll booths throughout a day, the number of booths
required was first determined from the capacities of various booth com-
binations derived on the basis of optimum average delay for the median
traffic volumes. Because of the rapid rise and fall of traffic at daily peaks,
it was necessary to do this by half hours. When done, the peak values of
traffic for each half-hourly period were studied for the maximum backup
that might occur. Concern was then given to those cases where maximum
backups several vehicles above the Poisson points were indicated. Our
ability to predict backups satisfactorily no doubt fell off rather rapidly in
this region. Since saturation of booth capacity was being approached,
traffic volumes slightly higher could cause a significant jump in backups.
Judgment was used here to determine how much of a gamble to take. Al-
though more precise methods could be used, they were unnecessary. Judg-
ment suggested a gamble on backups up to three vehicles above the Poisson
points. Therefore, when the spread between median and peak traffic was
great enough to result in backups exceeding this standard, an additional
booth was provided.

This process resulted in a schedule of booths throughout the day, from
which could be determined the total number of booth-hours required for
the day. One more step remained in the problem, that of determining how
many toll collectors were required to keep the scheduled number of booths
open, and still permit toll collectors’ personal and meal reliefs to be given
within certain restrictions. These restrictions were (a) working periods
of not less than 1 nor more than 3 hr between reliefs or ends of the collec-
tor’s tour, (b) meal reliefs in the middle 4 hr of an individual’s tour, and
(c) starting times not earlier than 6 A.m. and quitting times not later than
12:30 A.m.
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The scheduling of manpower in such a manner requires the preparation
of a Gantt-type chart for each day, showing the working and idle periods
for every toll collector. Toll-collector starting times and relief periods
must be juggled in an effort to provide exactly the number of collectors
needed to give the optimum service each half hour of the day. This is
largely a trial-and-error problem, and preparation of such schedules may
be very time-consuming when the objective is to make the schedule as
efficient as possible.

The efficiency of such a schedule is given by the ratio of the number of
collectors required by the booth-hours to the number supplied by the
schedule. As an example, the mid-week days at the George Washington
Bridge during the summer of 1953 required 344 booth-hours per day. The
net working time per toll collector per day is 614 hr; thus the minimum
number of collectors that would meet booth-hour requirements is 344/
6.25=55.04. If a schedule uses 57 men, its efficiency is 55.04/57 =97 per
cent. The first schedules made were not very efficient, and there was
always a question whether a given schedule was the most efficient that
could be made as long as the number of collectors used exceeded the first
integral number above requirements. A great deal of time can be wasted
in trying to reduce the number of collectors employed, when it actually
is not possible to do so within the restrictions imposed.

Analysis and experience show, however, that the efficiency of such a
schedule depends largely on the magnitude and duration of peak periods.
By considering the relief requirements during the morning and evening
peaks, and the period just after midnight, an estimate can be made of the
number of collectors required on each tour. This analysis is made by
totaling the number of booth-hours required for the peak 314 hr and divid-
ing by 3. Doing so allows a one-half-hr relief period for each toll collector.
Continuing with the example of the George Washington Bridge mid-week
days, there are 70 booth-hours in the morning peak, requiring 70/3=23.3,
or 24, men; 71.5 booth-hours in the evening peak, requiring 71.5/3=23.8,
or 24, men; and 21 booth-hours after midnight, requiring 21/3=7 men.
The total for the three tours comes out to 55 men, thus indicating a sched-
ule close to actual requirements is possible. The actual schedule used 56
men for a scheduling efficiency of 55.04/56=98.3 per cent. In most cases
traffic patterns enable scheduling efficiencies of 95 per cent or better.

RESULTS

With the development of an efficient method of scheduling, the last
problem of the study was solved. A big question, however, remained
before the results could be recommended to management. This question
was: would a method of manning toll booths based on these techniques
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really work any better than the former method of just giving a toll sergeant
approximately the right number of collectors and letting him use his own
judgment about how many booths should be kept open as traffic varied
and when collectors should be given reliefs. The only way to find out was
to try it. If it worked continuously for a week, it should be able to work
indefinitely.

A trial was conducted at the Lincoln Tunnel. The numbers of toll
booths required every half hour for the entire week were predicted in both
directions of traffic. This entailed 512 predictions of booth requirements.
Each toll collector was given a slip showing his booth assignments and
relief periods and was instructed to follow the schedule strictly. During
the entire week, the prearranged schedules were followed without a hitch.
At no time did excessive backups occur, and at no time did reliefs have to
be deferred. The movement of collectors and the opening and closing of
booths took place without the attention of the toll sergeant. At times
the number of booths were slightly excessive, but not to the extent pre-
viously occurring under the former method. Needless to say, there is a
good ‘deal of satisfaction in seeing the validity of so much work,actually
established.
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