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Dynamic Randomness: The Poisson Process

Hall, Chapter 3: The Arrival Process

Counting Process A = {At, t ≥ 0}, where At = cumulative number of arrivals during
[0, t].

Assume: A0 = 0; a single arrival at a time.

Characterization via sample paths of A:

t

A

or via times of events = jumps S1, S2, S3, . . .

or via inter-arrival times T1, T2, . . . : Sn = T1 + · · ·+ Tn, n ≥ 1.
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• Completely deterministic arrivals at a constant rate λ : Tn ≡ 1
λ

.

• Completely random arrivals at a constant rate λ : ?

Today: a mathematical model for completely random arrivals at a constant rate.
(Later: varying rates.)

Contents

• Mathematical Framework: Levy Processes;

• Constructions:

Intuitive (via Bernoulli ⇒ Poisson);

Explanatory (via “must” properties: order-statistics);

Axiomatic (Levy + counting);

Practical (exponential interarrivals).

• Properties; PASTA; Biased-sampling & paradoxes.

• Inference & simulation.
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Hammel’s Theorem

Additive: All (measurable) solutions f to the functional equation

f(s + t) = f(s) + f(t), ∀ s, t ∈ IR1,

are of the form f(t) = c · t, for some c ∈ IR1.
(measurable ⇐ monotone, continuous, RCLL,. . .)

Proof f(na) = nf(a), n = 1, 2, . . . , by induction; (⇒ mf( 1
m

) ≡ f(1))

rationals: f( n
m

) = f(n · 1
m

) = nf( 1
m

) = n
m
·mf( 1

m
) = n

m
f(1),

continuity: f(x) = xf(1) ∀x ∈ IR1 (this is stronger than actually assumed). Q.E.D.

Multiplicative: All (measurable) solutions f to the functional equation

g(s + t) = g(s) · g(t), ∀ s, t ≥ 0,

are of the form g(t) = ec·t, t ≥ 0, for some c ∈ IR1.

Application to the Poisson Process, say A = {At, t ≥ 0}:

1. m(t) = EAt : m(t + s) = m(t) + m(s) ⇒ m(t) = λt, λ > 0;

λ ≡ E
(

1

t
At

)
=

1

t
EAt arrival rate (≡ constant)

2. p(t) = P{At = 0} : p(t + s) = p(t)p(s) ⇒ p(t) = e−λt, λ > 0 ,
⇒ time till the first arrival is exp(λ) ⇒ interarrival times are exp(λ).

3. g(t) = E(e−αAt) : g(t + s) = g(t)g(s) ⇒ g(t) = etC(α), t ≥ 0;

Using infinitesimal properties and ∂
∂t

g(t)
∣∣∣
t=0

= C(α) ⇒ C(α) = −λ(1− e−α).

See Theorem (1.9) in Cinlar, page 74.
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Mathematical Framework: Levy Processes

Discrete-time: Random Walk

S(n) = ∆1 + · · ·+ ∆n, n ≥ 0, where ∆1, ∆2, . . . , i.i.d. r.v.

S(0) = 0 .

Properties:

1. S(m + n)− S(m)
d
= S(n)− S(0) ∀m,n ≥ 0 (

d
= same distribution)

2. S(m1)− S(0), S(m2)− S(m1), S(m3)− S(m2), . . . independent ∀m1 ≤ m2 ≤ · · ·

S = {S(n), n ≥ 0} has stationary (1) and independent (2) increments.

The continuous-time analogue is a

Levy process A stochastic process X = {Xt, t ≥ 0} is a Levy process if

(0) X(0) ≡ 0 (for simplicity);

(1) X has stationary increments, that is

X(t + τ)−X(t)
d
= X(τ) ∀ t, τ ≥ 0;

(2) X has independent increments, that is
X(t + τ)−X(t) independent of {X(s), s ≤ t}, ∀ t, τ ≥ 0;

equivalently, X(t1), X(t2)−X(t1), X(t3)−X(t2) . . . independent ∀ t1 ≤ t2 ≤ · · ·
(Technical) (3) X is continuous in probability: limt→0 P{|Xt| > ε} = 0, ∀ε > 0.

(Convention) (4) X has sample paths that are Right-Continuous with Left Limits (RCLL).

The Distribution of a Levy Process. (Probabilistic Characterization.)

The finite-dimensional distributions are determined by marginals:

X(t1), X(t2), X(t3), . . . ⇔ X(t3)−X(t2), X(t2)−X(t1), X(t1)−X(0), . . . independent
X(t3 − t2) X(t2 − t1) X(t1), . . . stationary

In fact, they are determined by X(1)!
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Reason: Each Xt has a distribution that is infinitely divisible, namely

X(t) = X
(
t
n

n

)
−X

(
t · n− 1

n

)

︸ ︷︷ ︸
+ X

(
t · n− 1

n

)
−X

(
t · n− 2

n

)

︸ ︷︷ ︸
+ · · ·+X

(
t · 1

n

)
−X(0)

︸ ︷︷ ︸
,

which is the sum of n i.i.d. r.v., ∀n = 1, 2, 3, . . .

Hence, the characteristic functions ϕt(u) = E(eiuXt), u ≥ 0, satisfy

ϕs+t(u) = EeiuXs+t = Eeiu(Xs+t−Xt)eiuXt = (independent increments)

= Eeiu(Xs+t−Xt)EeiuXt = (stationary increments)

= EeiuXsEeiuXt = ϕs(u)ϕt(u) , ∀ s, t ≥ 0 .

Hammel ⇒ ϕt(u) = exp[t · ψ(u)] = [ϕ1(u)]t, t ≥ 0

⇒ ∀ t ≥ 0, marginal distribution of Xt is determined by X1.

Fact: There exists a complete characterization of infinitely divisible distributions (ψ(u)).

Examples: deterministic, Poisson, Compound Poisson, Normal
c λ λ, F µ, σ2

Theorem 1 There is 1–1 correspondence between infinitely divisible distributions and
Levy processes, as follows:

• If X is Levy, then X1 has infinitely divisible distributions;

• Conversely, given the characteristic function ϕ(u) of an infinitely divisible distribution,
there exists a unique Levy process X whose state at time t = 1, X1, has a characteristic
function ϕ.

Examples

X1 ≡ µ, then X(t) = µ · t, uniform motion

X1
d
= Poisson (λ), then X(t)

d
= Poisson (λt), Poisson process

X1
d
= Compound Poisson, then X is Compound Poisson process

X1
d
= Normal (µ, σ2), then X(t)

d
= N(µt, σ2t), Brownian motion.

Theorem 2 X, Y independent Levy processes ⇒ X + Y = {Xt + Yt, t ≥ 0} is also Levy
process.
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Modeller’s Dream (from “qualitative” to “quantitative”)

1. A Levy counting process is Poisson
(Cinlar, pg. 71)

t

2. A Levy jump process is Compound Poisson
(Cinlar pg. 91)
changes state in jumps and jumps finitely
in finite times. t

3. A Levy continuous process is Brownian Motion
(Breiman pg. 248)
has continuous sample paths.

The “emergence” of the parameters:

Suppose ∃ m(t) = EX(t), t ≥ 0. Then

m(s + t) = E[X(t + s)−X(t)] + EX(t) = m(s) + m(t), ∀ s, t ≥ 0

⇒ m(t) = µ · t for some µ .

Suppose ∃ V (t) = Var X(t), t ≥ 0. Then

V (s + t) = V (s) + V (t), ∀ s, t ⇒ V (t) = σ2t, for some σ ≥ 0 .

Final Practical Characterizations

• Poisson process with parameter λ (Poisson(λ)): Levy and Counting;

Xt
d
= Poisson (λt), t ≥ 0.

• Compound Poisson: Xt =
∑At

k=1 ∆k, t ≥ 0, where

A = {At, t ≥ 0} is Poisson (λ); ∆ = {∆1, ∆2, . . .} iid (distribution F); A and ∆ independent.
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• Brownian motion, with parameters µ, σ2 (BM(µ, σ2)): Levy continuous sample paths;
Xt ∼ N(µt, σ2t), t ≥ 0.

µ = 0, σ = 1 ⇒ standard BM (SBM).

X
d
= BM(µ, σ2) ⇒ Xt = µt + σBt, t ≥ 0, with B = SBM.
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Hall, Chapter 3: The Arrival Process N = {N(t), t ≥ 0}
§3.1 Definition 3.2 requires too much. As discussed, Levy + counting ⇒

∃λ > 0 3 N(t)−N(s) ∼ Poisson [λ(t− s)].

In particular,

P{ N(t + dt)−N(t) = 1} = λdt + o(t)
{ = 0} = 1− λdt + o(t).
{ > 1} = o(t)

§3.2 Derivation of the Poisson distribution from Bernoulli.

§3.3 Properties of the Poisson Process.

1. Poisson marginals; number of events in any interval is Poisson;

ENt = λt , Var Nt = λt

⇒ C =
σ

E
=

√
λt

λt
=

1√
λt

small for t large.

2. Interarrival times which are iid exp (λ).

Beginning of proof: P (T1 ≥ t) = P (Nt = 0) = e−λt, t ≥ 0.

This is a characterizing property that is practical for simulation.

Extensions to T2, T3, . . . , and their independence, if rigorous, requires more
than the “it should be apparent” in Hall, pg. 58.

3. Memoryless property: time till next event does not depend on the elapsed time
since the last event.

4. Sn = T1 + · · ·+ Tn ∼ Gamma (n, λ) = Erlang.

5. Order-statistics property: Given N(t) = n, the unordered event times are
distributed as n iid r.v., uniformly distributed on [0, t].

⇒ simulation over [0, t] : N(t) ∼ Poisson (λt); U1, U2, . . . , UN(t) iid U [0, t] .

§3.4 Goodness of Fit

How well does a Poisson model fit our arrival process?

Qualitative assessments:

Airplanes landing times at a single runway, during an hour: no
Airplanes landing times at a large airport, during an hour: plausible
Job candidates that arrive at their appointments during an hour: no
Visits to a zoo, most of which arrive in groups, during an hour: no
Arrival times at a bank ATM = Automatic Teller Machine,

during an hour: plausible
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§3.5 Quantitative Tests

Graphical Tests:

cumulative arrivals vs. a straight line (Fig. 3.2)

paired successive interarrivals (Fig. 3.4)

exponential interarrivals
(How do you identify exp (·) when you see one? Use Histograms!)

§3.6 Parameter Estimation

Estimate λ = arrival rate.

MLE (Max. Likelihood Estimator), given A(t), t ≤ T : λ̂ = A(T )
T

.

Confidence intervals for 1
λ

: T
A(T )

± zα
T

A(T )3/2 (3.34)

Sample-size: for (1− α)-confidence interval of width w, N ≥ [2zα

wλ
]2.

Thus, for w = ε · 1
λ
, we need N ≥ [2zα

ε
]2.

(Eg.: 95%-confidence interval of width = 10% of mean, requires N ≥ [2×1.96
0.1

]2 ≈
1500!)
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PASTA = Poisson Arrivals See Time Averages (R. Wolff)

Arrivals (Observations): System:
A = {A(t), t ≥ 0}, X = {X(t), t ≥ 0},
A(t) = number of arrivals in [0, t]. X(t) = state at time t.

Time average lim
T↑∞

1

T

∫ T

0
X(t)dt

.
= τ̄

Customer average lim
N↑∞

1

N

N∑

n=1

X(Sn−)
.
= c̄

where Sn = n-th arrival time.

Fact Assume

(i) A is Poisson, and

(ii) X adapted to A: ∀ t, X(t) is a function of A(s), s ≤ t, hence it is independent of
A(u)− A(t), u ≥ t.

Then τ̄ = c̄, in the following precise sense:
If one limit exists, then the other exists as well, in which case they are equal.

Proof (Wolff): Based on
∑A(t)

1 X(Sn−)− λ
∫ t
0 X(s)ds =

∫ t
0 X(s−)d[A(s)− λs]

being a martingale with mean ≡ 0.

Note: • Hall, pg. 168–9, uses PASTA to establish Khinchine-Pollatzchek
• Counterexamples if (i) or (ii) violated; still, conditions not tight; see ASTA.

9



Application of PASTA: Biased Sampling

A renewal process is a counting process with iid interarrivals.

Descriptions: R = {R(t), t ≥ 0} or {T1, T2, . . .} iid, or {S1, S2, . . .}
Example: Poisson exponential Erlang

Story: Buses arrive to a bus stop according to a renewal process Rb = {Rb(t), t ≥ 0}.
T b

i — times between arrivals of the buses.
Passengers arrive to the bus stop in a completely random fashion (Poisson).
Sp

i — arrival times of the passengers.

Question: How long, on average, do they wait? Plan service-level.

X(t)

T T T T iidt1 2 3 4
b b bb

A = {A(t), t ≥ 0} = Poisson arrivals of passengers.

X = {X(t), t ≥ 0} = state = Virtual waiting time.

PASTA: lim
N↑∞

1

N

N∑

n=1

X(Sp
n−) = lim

T↑∞
1

T

∫ T

0
X(t)dt = τ̄

⇒ τ̄ =
1

T
· (area under X, over [0, T ])

≈ 1

T
·
(

1

2
(T b

1 )2 +
1

2
(T b

2 )2 + · · ·+ 1

2
(T b

Rb(T ))
2
)

=
Rb(T )

T
· 1

2
· T 2

1 + · · ·+ T 2
Rb(T )

Rb(T )
−→
T↑∞

1

E(T b
1 )
· 1

2
· E(T b

1 )2 , by SLLN

=
1

2
E(T b

1 )
︸ ︷︷ ︸

“Deterministic” answer

[1 + c2(T b
1 )],︸ ︷︷ ︸

Bias, due to variability

c =
σ

E
coefficient of variation.

Check Poisson bus arrivals to derive Paradox:
1(“stochastic” answer) = 1

2
(“deterministic” answer).
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