

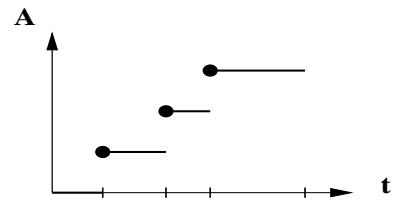
Dynamic Randomness: The Poisson Process

Hall, Chapter 3: The *Arrival Process*

Counting Process $A = \{A_t, t \geq 0\}$, where A_t = cumulative number of arrivals during $[0, t]$.

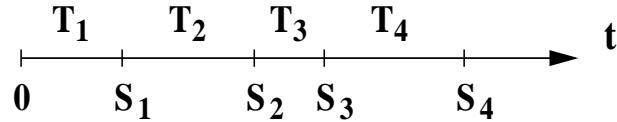
Assume: $A_0 = 0$; a single arrival at a time.

Characterization via sample paths of A :



or via times of *events* = jumps S_1, S_2, S_3, \dots

or via *inter-arrival times* T_1, T_2, \dots : $S_n = T_1 + \dots + T_n$, $n \geq 1$.



- Completely *deterministic* arrivals at a constant rate λ : $T_n \equiv \frac{1}{\lambda}$.
- Completely *random* arrivals at a constant rate λ : ?

Today: a mathematical *model* for completely random arrivals at a *constant* rate.
(Later: *varying rates*.)

Contents

- Mathematical Framework: Levy Processes;
- Constructions:
 - Intuitive (via Bernoulli \Rightarrow Poisson);
 - Explanatory (via “must” properties: order-statistics);
 - Axiomatic (Levy + counting);
 - Practical (exponential interarrivals).
- Properties; PASTA; Biased-sampling & paradoxes.
- Inference & simulation.

Hammel's Theorem

Additive: All (measurable) solutions f to the functional equation

$$f(s+t) = f(s) + f(t), \quad \forall s, t \in \mathbb{R}^1,$$

are of the form $f(t) = c \cdot t$, for some $c \in \mathbb{R}^1$.

(measurable \Leftarrow monotone, continuous, RCLL, ...)

Proof $f(na) = nf(a)$, $n = 1, 2, \dots$, by induction; $(\Rightarrow mf(\frac{1}{m}) \equiv f(1))$

rationals: $f(\frac{n}{m}) = f(n \cdot \frac{1}{m}) = nf(\frac{1}{m}) = \frac{n}{m} \cdot mf(\frac{1}{m}) = \frac{n}{m}f(1)$,

continuity: $f(x) = xf(1) \quad \forall x \in \mathbb{R}^1$ (this is stronger than actually assumed). **Q.E.D.**

Multiplicative: All (measurable) solutions f to the functional equation

$$g(s+t) = g(s) \cdot g(t), \quad \forall s, t \geq 0,$$

are of the form $g(t) = e^{ct}$, $t \geq 0$, for some $c \in \mathbb{R}^1$.

Application to the **Poisson Process**, say $A = \{A_t, t \geq 0\}$:

1. $m(t) = \mathbb{E}A_t : m(t+s) = m(t) + m(s) \Rightarrow m(t) = \lambda t$, $\lambda > 0$;

$$\lambda \equiv \mathbb{E}\left(\frac{1}{t} A_t\right) = \frac{1}{t} \mathbb{E}A_t \quad \text{arrival rate } (\equiv \text{constant})$$

2. $p(t) = P\{A_t = 0\} : p(t+s) = p(t)p(s) \Rightarrow p(t) = e^{-\lambda t}$, $\lambda > 0$,

\Rightarrow time till the first arrival is $\exp(\lambda) \Rightarrow$ interarrival times are $\exp(\lambda)$.

3. $g(t) = E(e^{-\alpha A_t}) : g(t+s) = g(t)g(s) \Rightarrow g(t) = e^{tC(\alpha)}$, $t \geq 0$;

Using infinitesimal properties and $\frac{\partial}{\partial t}g(t)\Big|_{t=0} = C(\alpha) \Rightarrow C(\alpha) = -\lambda(1 - e^{-\alpha})$.

See Theorem (1.9) in Cinlar, page 74.

Mathematical Framework: Levy Processes

Discrete-time: Random Walk

$$\begin{aligned} S(n) &= \Delta_1 + \cdots + \Delta_n, \quad n \geq 0, \quad \text{where } \Delta_1, \Delta_2, \dots, \text{i.i.d. r.v.} \\ S(0) &= 0. \end{aligned}$$

Properties:

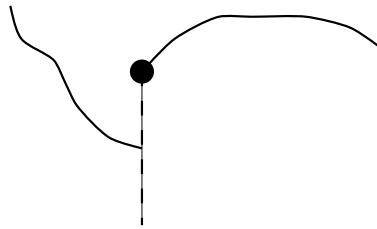
1. $S(m+n) - S(m) \stackrel{d}{=} S(n) - S(0) \quad \forall m, n \geq 0$ ($\stackrel{d}{=}$ same distribution)
2. $S(m_1) - S(0), S(m_2) - S(m_1), S(m_3) - S(m_2), \dots$ independent $\forall m_1 \leq m_2 \leq \dots$

$S = \{S(n), n \geq 0\}$ has **stationary** (1) and **independent** (2) increments.

The continuous-time analogue is a

Levy process A stochastic process $X = \{X_t, t \geq 0\}$ is a Levy process if

- (0) $X(0) \equiv 0$ (for simplicity);
- (1) X has *stationary* increments, that is
 $X(t+\tau) - X(t) \stackrel{d}{=} X(\tau) \quad \forall t, \tau \geq 0$;
- (2) X has *independent* increments, that is
 $X(t+\tau) - X(t)$ independent of $\{X(s), s \leq t\}, \quad \forall t, \tau \geq 0$;
equivalently, $X(t_1), X(t_2) - X(t_1), X(t_3) - X(t_2) \dots$ independent $\forall t_1 \leq t_2 \leq \dots$
- (Technical) (3) X is continuous in probability: $\lim_{t \rightarrow 0} P\{|X_t| > \epsilon\} = 0, \quad \forall \epsilon > 0$.
- (Convention) (4) X has sample paths that are **Right-Continuous with Left Limits** (RCLL).



The Distribution of a Levy Process. (Probabilistic Characterization.)

The *finite-dimensional distributions* are determined by marginals:

$$\begin{aligned} X(t_1), X(t_2), X(t_3), \dots &\Leftrightarrow X(t_3) - X(t_2), X(t_2) - X(t_1), X(t_1) - X(0), \dots \text{ independent} \\ X(t_3 - t_2) &\qquad X(t_2 - t_1) \qquad X(t_1), \dots \text{ stationary} \end{aligned}$$

In fact, they are determined by $X(1)!$

Reason: Each X_t has a distribution that is *infinitely divisible*, namely

$$X(t) = \underbrace{X\left(t \frac{n}{n}\right) - X\left(t \cdot \frac{n-1}{n}\right)}_{\text{sum of } n-1 \text{ i.i.d. r.v.}} + \underbrace{X\left(t \cdot \frac{n-1}{n}\right) - X\left(t \cdot \frac{n-2}{n}\right)}_{\text{sum of } n-2 \text{ i.i.d. r.v.}} + \cdots + \underbrace{X\left(t \cdot \frac{1}{n}\right) - X(0)}_{\text{sum of } 1 \text{ i.i.d. r.v.}},$$

which is the sum of n i.i.d. r.v., $\forall n = 1, 2, 3, \dots$

Hence, the characteristic functions $\varphi_t(u) = E(e^{iuX_t})$, $u \geq 0$, satisfy

$$\begin{aligned}\varphi_{s+t}(u) &= Ee^{iuX_{s+t}} = Ee^{iu(X_{s+t}-X_t)}e^{iuX_t} = \text{(independent increments)} \\ &= Ee^{iu(X_{s+t}-X_t)}Ee^{iuX_t} = \text{(stationary increments)} \\ &= Ee^{iuX_s}Ee^{iuX_t} = \varphi_s(u)\varphi_t(u), \forall s, t \geq 0.\end{aligned}$$

$$\text{Hammel} \Rightarrow \varphi_t(u) = \exp[t \cdot \psi(u)] = [\varphi_1(u)]^t, \quad t \geq 0$$

$\Rightarrow \forall t \geq 0$, marginal distribution of X_t is determined by X_1 .

Fact: There exists a complete characterization of infinitely divisible distributions ($\psi(u)$).

Examples: deterministic, Poisson, Compound Poisson, Normal
 c λ λ, F μ, σ^2

Theorem 1 *There is 1-1 correspondence between infinitely divisible distributions and Levy processes, as follows:*

- If X is Levy, then X_1 has infinitely divisible distributions;
- Conversely, given the characteristic function $\varphi(u)$ of an infinitely divisible distribution, there exists a unique Levy process X whose state at time $t = 1$, X_1 , has a characteristic function φ .

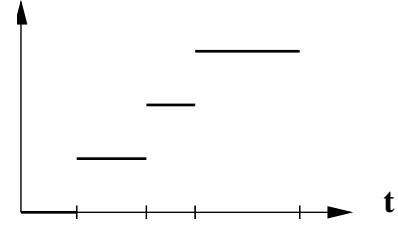
Examples

$X_1 \equiv \mu$, then $X(t) = \mu \cdot t$,	uniform motion
$X_1 \stackrel{d}{=} \text{Poisson } (\lambda)$, then $X(t) \stackrel{d}{=} \text{Poisson } (\lambda t)$,	Poisson process
$X_1 \stackrel{d}{=} \text{Compound Poisson}$, then X is	Compound Poisson process
$X_1 \stackrel{d}{=} \text{Normal } (\mu, \sigma^2)$, then $X(t) \stackrel{d}{=} N(\mu t, \sigma^2 t)$,	Brownian motion.

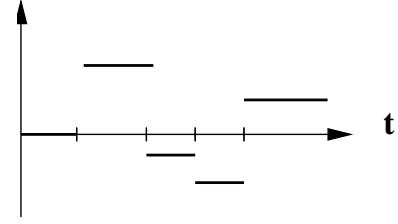
Theorem 2 X, Y independent Levy processes $\Rightarrow X + Y = \{X_t + Y_t, t \geq 0\}$ is also Levy process.

Modeller's Dream (from “qualitative” to “quantitative”)

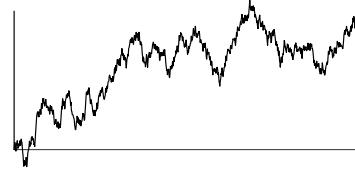
1. A Levy *counting* process is *Poisson*
(Cinlar, pg. 71)



2. A Levy *jump* process is *Compound Poisson*
(Cinlar pg. 91)
changes state in jumps and jumps finitely
in finite times.



3. A Levy *continuous* process is *Brownian Motion*
(Breiman pg. 248)
has continuous sample paths.



The “emergence” of the parameters:

Suppose $\exists m(t) = EX(t)$, $t \geq 0$. Then

$$\begin{aligned} m(s+t) &= E[X(t+s) - X(t)] + EX(t) = m(s) + m(t), \quad \forall s, t \geq 0 \\ \Rightarrow m(t) &= \mu \cdot t \text{ for some } \mu. \end{aligned}$$

Suppose $\exists V(t) = \text{Var } X(t)$, $t \geq 0$. Then

$$V(s+t) = V(s) + V(t), \quad \forall s, t \Rightarrow V(t) = \sigma^2 t, \quad \text{for some } \sigma \geq 0.$$

Final Practical Characterizations

- *Poisson* process with parameter λ ($\text{Poisson}(\lambda)$): Levy and Counting;
 $X_t \stackrel{d}{=} \text{Poisson}(\lambda t)$, $t \geq 0$.
- *Compound Poisson*: $X_t = \sum_{k=1}^{A_t} \Delta_k$, $t \geq 0$, where

$A = \{A_t, t \geq 0\}$ is Poisson (λ); $\Delta = \{\Delta_1, \Delta_2, \dots\}$ iid (distribution F); A and Δ independent.

- *Brownian motion*, with parameters μ, σ^2 (BM(μ, σ^2)): Levy continuous sample paths;
 $X_t \sim N(\mu t, \sigma^2 t)$, $t \geq 0$.

$\mu = 0, \sigma = 1 \Rightarrow$ *standard BM* (SBM).

$X \stackrel{d}{=} \text{BM}(\mu, \sigma^2) \Rightarrow X_t = \mu t + \sigma B_t, t \geq 0$, with B = SBM.

Hall, Chapter 3: The Arrival Process $N = \{N(t), t \geq 0\}$

§3.1 *Definition 3.2* requires too much. As discussed, Levy + counting $\Rightarrow \exists \lambda > 0 \ni N(t) - N(s) \sim \text{Poisson} [\lambda(t-s)]$.

In particular,

$$\begin{aligned} P\{N(t+dt) - N(t) = 1\} &= \lambda dt + o(t) \\ \{ &= 0\} = 1 - \lambda dt + o(t). \\ \{ &> 1\} = o(t) \end{aligned}$$

§3.2 *Derivation* of the Poisson distribution from Bernoulli.

§3.3 *Properties* of the Poisson Process.

1. Poisson *marginals*; number of events in any interval is Poisson;

$$\begin{aligned} EN_t &= \lambda t, \text{Var } N_t = \lambda t \\ \Rightarrow C &= \frac{\sigma}{E} = \frac{\sqrt{\lambda t}}{\lambda t} = \frac{1}{\sqrt{\lambda t}} \text{ small for } t \text{ large.} \end{aligned}$$

2. *Interarrival times* which are iid $\exp(\lambda)$.

Beginning of proof: $P(T_1 \geq t) = P(N_t = 0) = e^{-\lambda t}, t \geq 0$.

This is a characterizing property that is practical for simulation.

Extensions to T_2, T_3, \dots , and their independence, if rigorous, requires more than the “it should be apparent” in Hall, pg. 58.

3. *Memoryless* property: time till next event does not depend on the elapsed time since the last event.
4. $S_n = T_1 + \dots + T_n \sim \text{Gamma}(n, \lambda) = \text{Erlang}$.
5. *Order-statistics* property: Given $N(t) = n$, the unordered event times are distributed as n iid r.v., uniformly distributed on $[0, t]$.

\Rightarrow simulation over $[0, t] : N(t) \sim \text{Poisson}(\lambda t); U_1, U_2, \dots, U_{N(t)}$ iid $U[0, t]$.

§3.4 Goodness of Fit

How well does a Poisson model fit our arrival process?

Qualitative assessments:

Airplanes landing times at a single runway, during an hour:	no
Airplanes landing times at a large airport, during an hour:	plausible
Job candidates that arrive at their appointments during an hour:	no
Visits to a zoo, most of which arrive in groups, during an hour:	no
Arrival times at a bank ATM = Automatic Teller Machine, during an hour:	plausible

§3.5 Quantitative Tests

Graphical Tests:

cumulative arrivals vs. a straight line (Fig. 3.2)

paired successive interarrivals (Fig. 3.4)

exponential interarrivals

(How do you identify $\exp(\cdot)$ when you see one? Use Histograms!)

§3.6 Parameter Estimation

Estimate λ = arrival rate.

MLE (Max. Likelihood Estimator), given $A(t)$, $t \leq T$: $\hat{\lambda} = \frac{A(T)}{T}$.

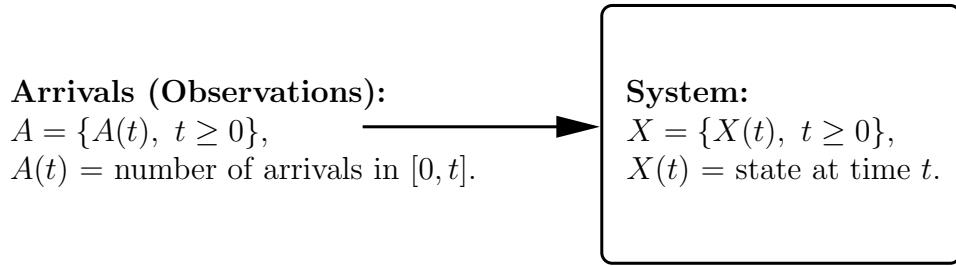
Confidence intervals for $\frac{1}{\lambda}$: $\frac{T}{A(T)} \pm z_\alpha \frac{T}{A(T)^{3/2}}$ (3.34)

Sample-size: for $(1 - \alpha)$ -confidence interval of width w , $N \geq [\frac{2z_\alpha}{w\lambda}]^2$.

Thus, for $w = \epsilon \cdot \frac{1}{\lambda}$, we need $N \geq [\frac{2z_\alpha}{\epsilon}]^2$.

(Eg.: 95%-confidence interval of width = 10% of mean, requires $N \geq [\frac{2 \times 1.96}{0.1}]^2 \approx 1500!$)

PASTA = Poisson Arrivals See Time Averages (R. Wolff)



$$\begin{aligned} \text{Time average} \quad & \lim_{T \uparrow \infty} \frac{1}{T} \int_0^T X(t) dt \quad \doteq \quad \bar{\tau} \\ \text{Customer average} \quad & \lim_{N \uparrow \infty} \frac{1}{N} \sum_{n=1}^N X(S_n-) \quad \doteq \quad \bar{c} \end{aligned}$$

where S_n = n-th arrival time.

Fact Assume

- (i) A is Poisson, and
- (ii) X adapted to A : $\forall t$, $X(t)$ is a function of $A(s)$, $s \leq t$, hence it is independent of $A(u) - A(t)$, $u \geq t$.

Then $\bar{\tau} = \bar{c}$, in the following precise sense:

If one limit exists, then the other exists as well, in which case they are equal.

Proof (Wolff): Based on $\sum_1^{A(t)} X(S_n-) - \lambda \int_0^t X(s) ds = \int_0^t X(s-) d[A(s) - \lambda s]$ being a martingale with mean $\equiv 0$.

Note: • Hall, pg. 168–9, uses PASTA to establish Khinchine-Pollatzchek
• Counterexamples if (i) or (ii) violated; still, conditions not tight; see ASTA.

Application of PASTA: Biased Sampling

A *renewal process* is a counting process with iid interarrivals.

Descriptions: $R = \{R(t), t \geq 0\}$ or $\{T_1, T_2, \dots\}$ iid, or $\{S_1, S_2, \dots\}$
 Example: Poisson exponential Erlang

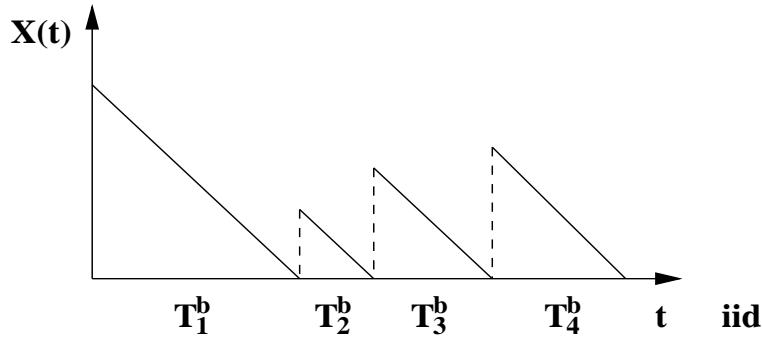
Story: Buses arrive to a bus stop according to a renewal process $R_b = \{R_b(t), t \geq 0\}$.

T_i^b — times between arrivals of the buses.

Passengers arrive to the bus stop in a completely random fashion (Poisson).

S_i^p — arrival times of the passengers.

Question: How long, on average, do they wait? Plan service-level.



$A = \{A(t), t \geq 0\}$ = Poisson arrivals of passengers.

$X = \{X(t), t \geq 0\}$ = state = *Virtual waiting time*.

$$\begin{aligned}
 \text{PASTA: } \lim_{N \uparrow \infty} \frac{1}{N} \sum_{n=1}^N X(S_n^p -) &= \lim_{T \uparrow \infty} \frac{1}{T} \int_0^T X(t) dt = \bar{\tau} \\
 \Rightarrow \bar{\tau} &= \frac{1}{T} \cdot (\text{area under } X, \text{ over } [0, T]) \\
 &\approx \frac{1}{T} \cdot \left(\frac{1}{2}(T_1^b)^2 + \frac{1}{2}(T_2^b)^2 + \dots + \frac{1}{2}(T_{R_b(T)}^b)^2 \right) \\
 &= \frac{R_b(T)}{T} \cdot \frac{1}{2} \cdot \frac{T_1^b + \dots + T_{R_b(T)}^b}{R_b(T)} \xrightarrow{T \uparrow \infty} \frac{1}{E(T_1^b)} \cdot \frac{1}{2} \cdot E(T_1^b)^2, \text{ by SLLN} \\
 &= \underbrace{\frac{1}{2}E(T_1^b)}_{\text{“Deterministic” answer}} \quad \underbrace{[1 + c^2(T_1^b)]}_{\text{Bias, due to variability}}, \quad c = \frac{\sigma}{E} \text{ coefficient of variation.}
 \end{aligned}$$

Check Poisson bus arrivals to derive Paradox:

$1(\text{“stochastic” answer}) = \frac{1}{2} (\text{“deterministic” answer})$.