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Dynamic Randomness: The Poisson Process

Hall, Chapter 3: The Arrival Process

Counting Process A = {A;, t > 0}, where A; = cumulative number of arrivals during
[0, ¢].

Assume: Ay = 0; a single arrival at a time.

Characterization via sample paths of A: ——

or via times of events = jumps Sy, 52,95, ...

or via inter-arriwal times Ty, 15, ...: S,=T1+---+1T,, n>1.

y

>

e Completely deterministic arrivals at a constant rate \: T, =

e Completely random arrivals at a constant rate A : 7

Today: a mathematical model for completely random arrivals at a constant rate.
(Later: varying rates.)

Contents
e Mathematical Framework: Levy Processes;
e Constructions:

Intuitive (via Bernoulli = Poisson);
Explanatory (via “must” properties: order-statistics);
Axiomatic (Levy + counting);

Practical (exponential interarrivals).
e Properties; PASTA; Biased-sampling & paradoxes.

e Inference & simulation.



Hammel’s Theorem

Additive: All (measurable) solutions f to the functional equation
fls+8)=f(s)+ f(), V¥ stelR,

are of the form f(t)=c-t, for some c € R'.
(measurable <= monotone, continuous, RCLL,. . .)

Proof f(na)=nf(a), n=1,2,..., by induction; (= mf(L)= f(1))

rationals: f(2) = f(n- 4) =nf(L)= = mf(L) == f(1),

continuity: f(z) =z f(1) Va € IR (this is stronger than actually assumed).
Multiplicative: All (measurable) solutions f to the functional equation
9(s +1) = g(s) - g(t), Vs,t >0,
are of the form g(t) = e, t >0, for somec € IR'.
Application to the Poisson Process, say A = {A4;, t > 0}:
L. m(t) =EA : m(t+s)=m(t) +m(s) = m(t) =M, \>0;
1 1 :
A=E <t At> = ;EAt arrival rate (= constant)

2. p(t) = P{A, =0} : p(t+s)=p(t)p(s) = p(t) =™, A>0,

= time till the first arrival is exp(\) = interarrival times are exp(A).
3. g(t) = E(e™%) : gt + 5) = g(t)g(s) = g(t) = '), t>0;

Using infinitesimal properties and %g@)lm =C(a) = Cla) =—A1—e®).

See Theorem (1.9) in Cinlar, page 74.

Q.E.D.



Mathematical Framework: Levy Processes

Discrete-time: Random Walk

S(n) = Ai+---+A,, n>0, where Ay, Ay, ... iid. r.v.
S0) = 0.

Properties:

1. S(m+n)—S(m)<Smn)—S0) Ym,n>0 (£ same distribution)

2. S(mq)—S(0), S(mg) — S(mq), S(msz) — S(mz), ... independent Vim; < my < ---
S ={S(n), n>0} has stationary (1) and independent (2) increments.

The continuous-time analogue is a

Levy process A stochastic process X = {X;, t > 0} is a Levy process if
(0)  X(0) =0 (for simplicity);

(1) X has stationary increments, that is

X(t+7)— X)L X(r) Vt, 7>0:;

(2) X has independent increments, that is
X(t+7) — X(t) independent of {X(s), s <t}, Vt, 7>0;

equivalently, X(t1), X(t2) — X(t1), X(t3) — X(t2)... independent Vit; <ty <---
(Technical) (3) X is continuous in probability: lim; o P{|X;| > €} =0, Ve > 0.
(Convention) (4) X has sample paths that are Right-Continuous with Left Limits (RCLL).

/—\

The Distribution of a Levy Process. (Probabilistic Characterization.)

The finite-dimensional distributions are determined by marginals:

X(tl), X(tz), X(tg), RS 4 X(tg) — X(tQ), X(tg) — X(tl), X(tl) — X(O), .. independent
X(tz —to) X(ty —tq) X(ty),... stationary

In fact, they are determined by X (1)!



Reason: Each X; has a distribution that is infinitely divisible, namely

X(t):X(t”)—X<t-”_1>+X(t-”_1>—X<t-"_2>+---+X(t-1>—X(0),

n n n n n

which is the sum of n iid.rv., Vn=123, ...

Hence, the characteristic functions ¢;(u) = E(e?Xt), u > 0, satisfy

opi(u) = BetXsrt = petuXeni=Xo)euXe — (independent increments)
= FetXen=X) peiuXt — (stationary increments)

= BBt = o (u)p(u), Vs, t>0.

Hammel = ,(u) = explt - 9(u)] = [pr(w)]', >0

= Vt >0, marginal distribution of X, is determined by Xj.

Fact: There exists a complete characterization of infinitely divisible distributions (¢(u)).

FExamples: deterministic, Poisson, Compound Poisson, Normal
c A AN F i, o2

Theorem 1 There is 1-1 correspondence between infinitely divisible distributions and
Levy processes, as follows:

o If X is Levy, then X1 has infinitely divisible distributions;

e Conversely, given the characteristic function o(u) of an infinitely divisible distribution,
there exists a unique Levy process X whose state at time t = 1, X1, has a characteristic
function .

Examples
X1 = p, then X(t) = p-t, uniform motion
X, £ Poisson (\), then X (¢) < Poisson (M), Poisson process
X, 2 Compound Poisson, then X is Compound Poisson process
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X, £ Normal (u,0?), then X (t) £ N(ut,02t), Brownian motion.

Theorem 2 XY independent Levy processes = X +Y ={X;+Y;, t > 0} is also Levy
process.



Modeller’s Dream (from “qualitative” to “quantitative”)

1. A Levy counting process is Poisson \
(Cinlar, pg. 71) -

Y

2. A Levy jump process is Compound Poisson ]
(Cinlar pg. 91) -
changes state in jumps and jumps finitely e
in finite times.

Y

3. A Levy continuous process is Brownian Motion
(Breiman pg. 248)
has continuous sample paths.

The “emergence” of the parameters:

Suppose 3 m(t) = EX(t), t>0. Then

m(s+t) = E[X({t+s)—X@)]+EX({)=m(s)+m(t), Vs t>0
=m(t) = p-t for some pu .

Suppose 3 V (t) = Var X(¢), t > 0. Then

V(s+t)=V(s)+V(t), Vs,t = V(t) = 0°t, forsome o >0.

Final Practical Characterizations

e Poisson process with parameter A (Poisson())): Levy and Counting;
X, £ Poisson (At), t>0.
e Compound Poisson. X; = Z?;l Ag, t >0, where

A ={A;, t >0} is Poisson (A); A = {Ay,A,,...} iid (distribution F); A and A independent.



e Brownian motion, with parameters i, 0> (BM(u,0?)): Levy continuous sample paths;
X; ~ N(ut,o%t), t > 0.

u=0, 0 =1= standard BM (SBM).
X £ BM(p,0%) = X, = ut + 0B, t >0, with B = SBM.



Hall, Chapter 3: The Arrival Process N = {N(t¢), t > 0}

§3.1 Definition 3.2 requires too much. As discussed, Levy + counting =
I\ > 0> N(t) — N(s) ~ Poisson [A(t — s)].

In particular,
P{ N(t+dt)—N(t)=1} = \dt+ o(t)

{ =0} =1—Adi+o(t).
{ > 1} =oft)

§3.2 Deriwvation of the Poisson distribution from Bernoulli.

§3.3 Properties of the Poisson Process.

1. Poisson marginals; number of events in any interval is Poisson;

EN, = M ,Var N, = Mt
VOV

= (C = g_yA_ 2 small for ¢ large.

E- X

2. Interarrival times which are iid exp (\).
Beginning of proof: P(T; >t) = P(N; =0) =, t > 0.
This is a characterizing property that is practical for simulation.

Extensions to 15,73, ..., and their independence, if rigorous, requires more
than the “it should be apparent” in Hall, pg. 58.

3. Memoryless property: time till next event does not depend on the elapsed time
since the last event.

4. S, =T+ -+ T, ~ Gamma (n, \) = Erlang.
5. Order-statistics property: Given N(t) = n, the unordered event times are
distributed as n iid r.v., uniformly distributed on [0, ¢].

= simulation over [0,t] : N(t) ~ Poisson (At); Uy, Us,..., U iid U[0,1] .

§3.4 Goodness of Fit
How well does a Poisson model fit our arrival process?

Qualitative assessments:

Airplanes landing times at a single runway, during an hour: no
Airplanes landing times at a large airport, during an hour: plausible
Job candidates that arrive at their appointments during an hour: no
Visits to a zoo, most of which arrive in groups, during an hour: no
Arrival times at a bank ATM = Automatic Teller Machine,

during an hour: plausible



§3.5

§3.6

Quantitative Tests

Graphical Tests:
cumulative arrivals vs. a straight line (Fig. 3.2)
paired successive interarrivals (Fig. 3.4)

exponential interarrivals
(How do you identify exp (-) when you see one? Use Histograms!)

Parameter Estimation
Estimate A\ = arrival rate.
MLE (Max. Likelihood Estimator), given A(t), t < T : A = 40,

T
Confidence intervals for % : A'{T) + 2, A(TT)S 75 (3.34)
Sample-size: for (1 — a)-confidence interval of width w, N > [%\*]Q

Thus, for w = € 5, we need N > [#=]2,

(Eg.: 95%-confidence interval of width = 10% of mean, requires N > |
1500!)

2><1.96]2 ~
0.1



PASTA = Poisson Arrivals See Time Averages (R. Wolff)

Arrivals (Observations): System:
A={A(), t >0}, B X ={X(t), t >0},
A(t) = number of arrivals in [0, ¢]. X (t) = state at time t.
T l L X(t)d
' im tdt = T
ime average Jm = /o (t) T
1 N
Customer average ]1[1%10 N nz::l X(S,—) = ¢

where S,, = n-th arrival time.
Fact Assume
(i) A is Poisson, and

(ii) X adapted to A: V¢, X(¢) is a function of A(s), s < ¢, hence it is independent of
A(u) — A(t), u > t.

Then 7 = ¢, in the following precise sense:
If one limit exists, then the other exists as well, in which case they are equal.

Proof (Wolff): Based on 1 X(5,—) — Ao X(s)ds = [{ X(s—)d[A(s) — \s]

being a martingale with mean = 0.

Note: o Hall, pg. 168-9, uses PASTA to establish Khinchine-Pollatzchek
e Counterexamples if (i) or (ii) violated; still, conditions not tight; see ASTA.



Application of PASTA: Biased Sampling
A renewal process is a counting process with iid interarrivals.

Descriptions: R ={R(t), t >0} or {T3,T5,...}iid, or {S1,5,...}
Example: Poisson exponential Erlang

Story: Buses arrive to a bus stop according to a renewal process R, = {Ry(t),t > 0}.
T? — times between arrivals of the buses.
Passengers arrive to the bus stop in a completely random fashion (Poisson).
SP — arrival times of the passengers.

Question: How long, on average, do they wait? Plan service-level.

X (t) A

-y

id

A ={A(t), t >0} = Poisson arrivals of passengers.

X ={X(t), t >0} = state = Virtual waiting time.

1 Y 1 7
e 1 PR § _
PASTA: lim ;X(Sn )= fim - /0 X(t)dt =7
. 1
=T = 5 (area under X, over [0,7)
1 /1 1 1
e (G STt S (Then)?)
Ry(T) 1 TP+ +Th 11 b
_ . .=+ B(T")? by SLLN
T 2 Ry(T) me gy 2 Py
1
= §E(T1b) 1+ AT, c= % coefficient of variation.
& —_————

. Bias, due to variabilit
“Deterministic” answer ’ Y

Check Poisson bus arrivals to derive Paradox:
1(“stochastic” answer) = 1 (“deterministic” answer).
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